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THE SPATIAL FORM OF ANTIAUTOMORPHISMS
OF VON NEUMANN ALGEBRAS

ERLING STØRMER

1. Introduction. There are three problems which have been studied
concerning antiautomorphisms of von Neumann algebras; the existence
problem, the conjugacy problem, and their description. The latter
problem includes whether they are spatial of a particular form, i.e., of
the form x → w∗x∗w with w a conjugate linear isometry of a prescribed
type. In the present paper we shall study the spatial problem, with
main emphasis on antiautomorphisms α leaving the center elementwise
fixed, called central in the sequel, and with α an involution, i.e., α2 = 1.
This problem with variations has previously been studied in [2, 6].
E.g., it was shown in [6] that a central involution α is automatically
spatial with w2 a selfadjoint unitary operator in the center of the
von Neumann algebra.

It turns out that the general problem of whether a central antiautomor-
phism is spatial has a solution similar to that of automorphisms, with
proof also quite similar. We include these results for the sake of com-
pleteness. The main new ingredient in the paper is that if α is a central
involution of the von Neumann algebra M then α is necessarily of the
form α(x) = Jx∗J with J a conjugation, unless the commutant M ′ of
M has a direct summand of type In with n odd. In the latter case it
may happen that α can only be written in the form α(x) = −jx∗j with
j2 = −1.

2. The results. Recall that two projections e and f in a
von Neumann algebra M acting on a Hilbert space H are said to be
equivalent, written e ∼ f(modM), or just e ∼ f if there is a partial
isometry v ∈ M such that v∗v = e, vv∗ = f . e is said to be cyclic, writ-
ten e = [M ′ξ] if there is a vector ξ ∈ H such that e is the projection onto
the space spanned by vectors of the form x′ξ, x′ ∈ M ′. If w is a conju-
gate linear operator we denote by w∗ its adjoint, viz, (w∗ξ, η) = (wη, ξ).
We denote by ωξ the positive functional ωξ(x) = (xξ, ξ) on M .
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LEMMA. Let M be a von Neumann algebra acting on a Hilbert space H.
Suppose α is a central antiautomorphism of M . Let ξ be a unit vector in
H.

(i) If [M ′ξ] ∼ α([M ′ξ])(modM) then there exists a unit vector
η ∈ [Mξ]H satisfying

(1) ωη = ωξoα

(2) [Mξ] ∼ [Mη] (modM ′)

(ii) If η is a unit vector in H satisfying (1), then there exists a conjugate
linear partial isometry w on H such that w∗w = [Mξ], ww∗ = [Mη], and
w∗x∗w[Mξ] = α(x)[Mξ], x ∈ M .

(iii) Suppose ξ is cyclic and ωξ is α-invariant. If α2n = ι, the identity
map, then w can be chosen so that w2n = 1.

PROOF. Let e = [M ′ξ] be the support of the vector state ωξ. Let
f = α−1(e). By assumption e ∼ f , so there exists a partial isometry
v ∈ M such that v∗v = e, vv∗ = f . Since α and α−1 are order
isomorphisms of M ,

supp ωξoα = α−1(supp ωξ) = α−1(e) = f = [M ′vξ].

By [8, Theorem 5.23] there is η ∈ [Mξ]H such that ωξoα = ωη. This
proves (1). Since [M ′η] = α−1(e) ∼ e = [M ′ξ], (2) follows by [1; Chapter
III, §1.3, Corollary].

With η as above define a conjugate linear operator w : Mξ → Mη
by wxξ = α−1(x∗)η. Then ||wxξ|| = ||α−1(x∗)η||2 = (α−1(x∗x)η, η) =
(x∗xξ, ξ) = ||xξ||2, so that w extends to a conjugate linear isometry of
[Mξ](H) onto [Mη](H). Extend w to all of H by defining it to be 0 on
[Mξ](H). Since w∗w = [Mξ] we have, for x, y ∈ M ,

w∗x∗wyξ = w∗x∗α−1(y∗)η
= w∗α−1(y∗α(x∗))η = w∗w(y∗α(x∗))∗ξ = α(x)yξ.

Thus (iii) follows.

Finally, if ξ is cyclic and ωξ is α-invariant, then w is a conjugate
linear isometry such that w∗x∗w = α(x), x ∈ M . By definition of
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w, w2kxξ = α−2k(x)ξ, k ∈ N ; hence, in particular, w2nxξ = xξ for all x,
so that w2n = 1.

THEOREM 1. Let M be a von Neumann algebra and α an antiauto-
morphism such that α(e) ∼ e for all projections e ∈ M . Then α is
spatial.

PROOF. We first note that if e′ is a projection in M ′ then the map
αe′ : Me′ → Me′ defined by

αe′(xe′) = α(x)e′

is an antiautomorphism. Indeed, if x ∈ M let cx denote the central
projection which is the intersection of all central projections q in M with
qx = x. Since the assumption on α implies α is central, cx = cα(x). By
[5; Lemma 3.1.1] xe′ = 0 if and only if 0 = cxce′ = cα(x)ce′ , if and only
if α(x)e′ = 0. Thus αe′ is well defined and injective. Since it is clearly
surjective, the assertion follows.

To prove the theorem let, by Zorn’s lemma, p′ be a projection in
M ′ maximal with respect to the property that αp′ is spatial on Mp′.
Suppose p′ �= 1 and let q′ = 1 − p′. Let ξ be a unit vector in q′(H) and
let, by Lemma, (i), η be a unit vector in q′(H) such that ωη = ωξoα
on Mq′. Let w : [Mξ](H) → [Mη](H) be as in Lemma, (ii). By
Lemma, (i) [Mξ] ∼ [Mη] (mod M ′) so there is u ∈ M ′ such that
u∗u = [Mη], uu∗ = [Mξ]. Then uw is a conjugate linear partial isometry
which is 0 on [Mξ](H)⊥ and isometric on [Mξ](H) onto itself, such that
if x ∈ M [Mξ] then

(uw)∗x∗(uw) = w∗u∗xuw = w∗xw = α[Mξ](x),

using u ∈ M ′ and [Mξ]u = u. Thus αp′ + α[Mξ] = αp′+[Mξ] is spatial,
contradicting the maximality of p′. Thus p′ = 1, completing the proof.

THEOREM 2. Let M be von Neumann algebra with no direct summand
of type II∞ with finite commutant. Then each central antiautomorphism
of M is spatial.

PROOF. Let α be a central antiautomorphism of M . We may consider
the different types separately. The type I portion is taken care of by [6,
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Lemma 4.3]. Suppose M is finite. Let Φ be the centervalued trace on
M which is the identity on the center. By uniqueness of Φ, Φoα = Φ,
hence Φ(α(e)) = Φ(e) for all projections e. It follows that e ∼ α(e) for
all projections, hence α is spatial by Theorem 1.

Assume M is of type II∞ with II∞ commutant. Since the identity
is the sum of central projections which are countably decomposable
with respect to the center, we may assume the center is countably
decomposable. By [5, Lemma 3.3.6] there is a cyclic projection e =
[M ′ξ], ξ a unit vector, in M with central support 1 such that eq is infinite
for all central projections q �= 0 in M . Since α maps infinite projections
onto infinite projections, f = α−1(e) is infinite and is the support of
ωξoα. Since M ′ is infinite there is a unit vector η such that ωξoα = ωη

[1; Chapter III, §8.6, Corollary 10 and Chapter III, §1.4, Theorem 4].
Thus f = [M ′η] is countably decomposable, and fq is infinite for all
central projections q �= 0, and the central support of f equals that of e
since α is central. By [1; Chapter III,§8.6, Corollary 5] f ∼ e.

The proof is completed with a maximality argument similar to that
used in Theorem 1. Let p′ be a projection in M ′ maximal with respect
to the property that αp′ is spatial on Mp′. Suppose q′ = 1−p′ �= 0. Apply
the previous paragraph to Mq′ and find a cyclic projection e = [M ′ξ]
in M with ξ a unit vector in q′M with the described properties. Then
f = α−1(e) = [M ′η] ∼ e, where ωξoα = ωη on Mq′. The proof is now
completed exactly like that of Theorem 1.

Finally, assume M is of type III. Then each normal state is a vector
state [1; Chapter III, §8.6, Corollary 10] so the conclusion of Lemma, (i)
holds. Since any two countably decomposable projections with the same
central supports are equivalent in M , the argument from the proof of
Theorem 1 case applies to conclude that α is spatial.

REMARK 1. The above theorem reflects the situation for automor-
phisms of von Neumann algebras. For a factor M of type II∞ with finite
commutant it was shown by Kadison [4] that an automorphism is spa-
tial if and only if it preserves the trace, or equivalently the dimension of
projections. By Theorem 1 the latter condition is sufficient for an anti-
automorphism α to be spatial. Conversely, if α is spatial the argument
of Kadison on [4, p. 324] can be repeated word by word to conclude that
α preserves the dimension of projections.
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The difficulty in the above situation can be avoided if α is periodic.

THEOREM 3. Let M be a von Neumann algebra and α a periodic central
antiautomorphism. Then α is spatial. Furthermore, if each normal state
on M is a vector state (e.g., if M has a separating vector, or M ′ is
properly infinite) then there exists a conjugate linear isometry w such
that α(x) = w∗x∗w with w2n = 1, where 2n is the period of α.

PROOF. Let e be a projection in M . In order to show α(e) ∼ e we may,
since α is central, assume by the Comparison Theorem that α(e) ≺ e.
Iterating, we have e = α2n(e) ≺ α2n−1(e) ≺ · · · ≺ α(e) ≺ e. Thus
α(e) ∼ e, and α is spatial by Theorem 1.

Now assume each normal state is a vector state. Let φ be a unit vector.
Then the state

ω =
1
2n

2n∑
k=1

ωφoαk

is a normal α-invariant state. Thus ω = ωξ for a unit vector ξ, and
ωξoα = ωξ. By the proof of Lemma, (iii) there exists a conjugate linear
partial isometry w with support and range [Mξ] such that w2n = [Mξ],
and w∗x∗w[Mξ] = α(x)[Mξ]. A maximality argument like that employed
in the proof of Theorem 1 now completes the proof.

The above theorem states that, for a periodic α with M ′ large, then w
can be chosen with w2n = 1. Our last result gives a sharper statement
if α is an involution. Special cases of this result appeared in [6]. Recall
that a conjugation is a conjugate linear isometry J such that J2 = 1.

THEOREM 4. Let M be a von Neumann algebra whose commutant
has no direct summand of type In with n an odd integer. If α is a
central involution on M then there exists a conjugation J such that
α(x) = Jx∗J, x ∈ M .

PROOF. Let M act on a Hilbert space H and assume first that M
has no direct summand of type I. By [6, Theorem 3.7] there exist central
projections p and q in M such that α|pM is implemented by a conjugation
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on p(H) and α|qM by a conjugate isometry j with j2 = −q. To
prove the theorem it suffices to modify j so that α|qM is implemented
by a conjugation. We therefore assume α(x) = −jx∗j for x ∈ M ,
where j2 = −1. In particular, α extends to an involution α of B(H)
implemented by j, which leaves M ′ globally invariant. Since M ′ has no
direct summand of type I, neither does the fixed point algebra A of α in
M ′ [3, 7.4.3], hence the Halving Lemma for Jordan algebras [3, 5.2.14]
yields the existence of projections e, f ∈ A with sum 1 and a symmetry
s ∈ A such that ses = f . Let e11 = e, e12 = es, e21 = se = fs, e22 = f .
Then {eij : i, j = 1, 2} is a set of matrix units which generates an
I2-factor M2. Since α(e12) = e21, α(eii) = eii, α leaves M2 globally
invariant. Thus B(H) = B(H0) ⊗ M2, and α = α1 ⊗ α2 with α1 an
involution of B(H0), and α2 = α|M2 an involution of M2. For simplicity
of notation we identify M with M ⊗ 1, and consider M as a subalgebra
of B(H0). Since an involution of a factor is implemented by a conjugate
linear isometry v with v2 = 1 or −1, [6, Theorem 3.7], it follows that
j = j1 ⊗ j2 with j2

i = ±1, and α|M = α1|M is implemented by j1. If
j2
1 = −1 replace j2 by a conjugate linear isometry v with square −1, and

if j2
1 = +1 by v with square +1. In either case J = j1⊗v is a conjugation

implementing α1, and hence α on M .

It remains to consider the case when M is of type I. Since α is central
we may consider the different direct summands separately, hence we
may assume M is homogeneous of type In, n ∈ N ∪ {∞}, with M ′

homogeneous of type Ir, r ∈ N ∪ {∞}, see, e.g., [1; Chapter III, §3.1,
Proposition 2] applied to M and M ′. For a Hilbert space K let t denote
the transpose on B(K) with respect to some orthonormal basis, and let
q be the involution

q

((
a b
c d

))
=
(

d −b
−c a

)

on the complex 2 × 2 matrices. By [7, Theorem 2.6] M is a direct sum
M = M1 ⊕M2 such that α leaves each Mi invariant; M1 = B(H1)⊗Z1,
M2 = B(H2) ⊗ B(C 2) ⊗ Z2, where in both cases Zi is an abelian von
Neumann algebra with Z ′

i of type Ir. In the first case α|M1 = t ⊗ ι,
hence α|M1 is implemented by a conjugation, see, e.g. [3, §7.5]. In the
second case α|M2 = t⊗q⊗ι. Now q is implemented by a conjugate linear
isometry j such that j2 = −1, while t is implemented by a conjugation
J . Since, by assumption M ′, is of type Ir with r even or r = ∞, there
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exists a conjugate linear isometry jr with j2
r = −1 which implements a

central involution on Z ′
2, see [3, §7.5]. Thus J ⊗ j ⊗ jr is a conjugation

which implements α on M2. This completes the proof of the theorem.

REMARK 2. The conclusion of Theorem 4 is false if M ′ is of
type In with n ∈ N odd. Let, for example, M = Mm(C) ⊗ C1n, so
that M ′ = C1m ⊗ Mn(C), with m even and n odd. Then there exists
j on Cm such that j2 = −1, while each involution on Mn(C) is conju-
gate to the transpose map. Let α(x ⊗ 1) = (−jx∗j) ⊗ 1n on M . Then
α is not implemented by a conjugation. Indeed, if J is a conjugation
on Cm ⊗ Cn implementing α, then J also implements an involution on
M ′ = C1m⊗Mn(C); hence there would exist a conjugation J ′ on Cn such
that JxJ = −(j⊗J ′)x(j⊗J ′) for all x ∈ B(Cm⊗Cn) = Mm(C)⊗Mn(C).
Since J2 = 1 and (j ⊗ J ′)2 = −1, this is impossible by [6, Lemma 3.9],
hence α is not implemented by a conjugation. This example also shows
that the assumption on the normal states being vector states is necessary
in Theorem 3.
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1. J. Dixmier, Les algèbres d’operateurs dans l’espace hilbertien, Gauthier-Villars,
Paris, 1969.

2. T. Giordano, Antiautomorphismes involutifs des facteurs de von Neumann
injectifs, J. Operator Theory, 10 (1983), 251 287.

3. H. Hanche-Olsen and E. Størmer, Jordan operator algebras, Pitman, London,
1984.

4. R.V. Kadison, Isomorphisms of factors of infinite type, Canad. J. Math. 7
(1955), 322 327.

5. , Unitary invariants for representations of operator algebras, Ann. of
Math. 66 (1957), 304 379.

6. E. Størmer, On antiautomorphisms of von Neumann algebras, Pacific J. Math.
21 (1967), 349 370.

7. , Conjugacy of involutive antiautomorphisms of von Neumann algebras,
J. Funct. Anal. 66 (1986), 54 66.

8. S. Stratila and L. Zsido, Lectures on von Neumann algebras, Abacus Press,
Tunbridge Wells, 1979.

University of Oslo, Inst. for Math. Fag, P.O. Box 1053, Blindern (0316)
Oslo (3), Norway


