THE SPATIAL FORM OF ANTIAUTOMORPHISMS OF VON NEUMANN ALGEBRAS

ERLING STØRMER

1. Introduction. There are three problems which have been studied concerning antiautomorphisms of von Neumann algebras; the existence problem, the conjugacy problem, and their description. The latter problem includes whether they are spatial of a particular form, i.e., of the form $x \rightarrow w^{*} x^{*} w$ with w a conjugate linear isometry of a prescribed type. In the present paper we shall study the spatial problem, with main emphasis on antiautomorphisms α leaving the center elementwise fixed, called central in the sequel, and with α an involution, i.e., $\alpha^{2}=1$. This problem with variations has previously been studied in $[\mathbf{2}, \mathbf{6}]$. E.g., it was shown in [6] that a central involution α is automatically spatial with w^{2} a selfadjoint unitary operator in the center of the von Neumann algebra.

It turns out that the general problem of whether a central antiautomorphism is spatial has a solution similar to that of automorphisms, with proof also quite similar. We include these results for the sake of completeness. The main new ingredient in the paper is that if α is a central involution of the von Neumann algebra M then α is necessarily of the form $\alpha(x)=J x^{*} J$ with J a conjugation, unless the commutant M^{\prime} of M has a direct summand of type I_{n} with n odd. In the latter case it may happen that α can only be written in the form $\alpha(x)=-j x^{*} j$ with $j^{2}=-1$.
2. The results. Recall that two projections e and f in a von Neumann algebra M acting on a Hilbert space H are said to be equivalent, written $e \sim f(\bmod M)$, or just $e \sim f$ if there is a partial isometry $v \in M$ such that $v^{*} v=e, v v^{*}=f . e$ is said to be cyclic, written $e=\left[M^{\prime} \xi\right]$ if there is a vector $\xi \in H$ such that e is the projection onto the space spanned by vectors of the form $x^{\prime} \xi, x^{\prime} \in M^{\prime}$. If w is a conjugate linear operator we denote by w^{*} its adjoint, viz, $\left(w^{*} \xi, \eta\right)=(w \eta, \xi)$. We denote by ω_{ξ} the positive functional $\omega_{\xi}(x)=(x \xi, \xi)$ on M.

[^0]Lemma. Let M be a von Neumann algebra acting on a Hilbert space H. Suppose α is a central antiautomorphism of M. Let ξ be a unit vector in H.
(i) If $\left[M^{\prime} \xi\right] \sim \alpha\left(\left[M^{\prime} \xi\right]\right)(\bmod M)$ then there exists a unit vector $\eta \in[M \xi] H$ satisfying
(1) $\omega_{\eta}=\omega_{\xi} O \alpha$
(2) $[M \xi] \sim[M \eta]\left(\bmod M^{\prime}\right)$
(ii) If η is a unit vector in H satisfying (1), then there exists a conjugate linear partial isometry w on H such that $w^{*} w=[M \xi]$, $w w^{*}=[M \eta]$, and $w^{*} x^{*} w[M \xi]=\alpha(x)[M \xi], x \in M$.
(iii) Suppose ξ is cyclic and ω_{ξ} is α-invariant. If $\alpha^{2 n}=\iota$, the identity map, then w can be chosen so that $w^{2 n}=1$.

Proof. Let $e=\left[M^{\prime} \xi\right]$ be the support of the vector state ω_{ξ}. Let $f=\alpha^{-1}(e)$. By assumption $e \sim f$, so there exists a partial isometry $v \in M$ such that $v^{*} v=e, v v^{*}=f$. Since α and α^{-1} are order isomorphisms of M,

$$
\operatorname{supp} \omega_{\xi} o \alpha=\alpha^{-1}\left(\operatorname{supp} \omega_{\xi}\right)=\alpha^{-1}(e)=f=\left[M^{\prime} v \xi\right]
$$

By [8, Theorem 5.23] there is $\eta \in[M \xi] H$ such that $\omega_{\xi} o \alpha=\omega_{\eta}$. This proves (1). Since $\left[M^{\prime} \eta\right]=\alpha^{-1}(e) \sim e=\left[M^{\prime} \xi\right]$, (2) follows by [1; Chapter III, §1.3, Corollary].

With η as above define a conjugate linear operator $w: M \xi \rightarrow M \eta$ by $w x \xi=\alpha^{-1}\left(x^{*}\right) \eta$. Then $\|w x \xi\|=\left\|\alpha^{-1}\left(x^{*}\right) \eta\right\|^{2}=\left(\alpha^{-1}\left(x^{*} x\right) \eta, \eta\right)=$ $\left(x^{*} x \xi, \xi\right)=\|x \xi\|^{2}$, so that w extends to a conjugate linear isometry of $[M \xi](H)$ onto $[M \eta](H)$. Extend w to all of H by defining it to be 0 on $[M \xi](H)$. Since $w^{*} w=[M \xi]$ we have, for $x, y \in M$,

$$
\begin{aligned}
w^{*} x^{*} w y \xi & =w^{*} x^{*} \alpha^{-1}\left(y^{*}\right) \eta \\
& =w^{*} \alpha^{-1}\left(y^{*} \alpha\left(x^{*}\right)\right) \eta=w^{*} w\left(y^{*} \alpha\left(x^{*}\right)\right)^{*} \xi=\alpha(x) y \xi
\end{aligned}
$$

Thus (iii) follows.
Finally, if ξ is cyclic and ω_{ξ} is α-invariant, then w is a conjugate linear isometry such that $w^{*} x^{*} w=\alpha(x), x \in M$. By definition of
$w, w^{2 k} x \xi=\alpha^{-2 k}(x) \xi, k \in N$; hence, in particular, $w^{2 n} x \xi=x \xi$ for all x, so that $w^{2 n}=1$.

TheOrem 1. Let M be a von Neumann algebra and α an antiautomorphism such that $\alpha(e) \sim e$ for all projections $e \in M$. Then α is spatial.

Proof. We first note that if e^{\prime} is a projection in M^{\prime} then the map $\alpha_{e^{\prime}}: M e^{\prime} \rightarrow M e^{\prime}$ defined by

$$
\alpha_{e^{\prime}}\left(x e^{\prime}\right)=\alpha(x) e^{\prime}
$$

is an antiautomorphism. Indeed, if $x \in M$ let c_{x} denote the central projection which is the intersection of all central projections q in M with $q x=x$. Since the assumption on α implies α is central, $c_{x}=c_{\alpha(x)}$. By [5; Lemma 3.1.1] $x e^{\prime}=0$ if and only if $0=c_{x} c_{e^{\prime}}=c_{\alpha(x)} c_{e^{\prime}}$, if and only if $\alpha(x) e^{\prime}=0$. Thus $\alpha_{e^{\prime}}$ is well defined and injective. Since it is clearly surjective, the assertion follows.

To prove the theorem let, by Zorn's lemma, p^{\prime} be a projection in M^{\prime} maximal with respect to the property that $\alpha_{p^{\prime}}$ is spatial on $M p^{\prime}$. Suppose $p^{\prime} \neq 1$ and let $q^{\prime}=1-p^{\prime}$. Let ξ be a unit vector in $q^{\prime}(H)$ and let, by Lemma, (i), η be a unit vector in $q^{\prime}(H)$ such that $\omega_{\eta}=\omega_{\xi} o \alpha$ on $M q^{\prime}$. Let $w:[M \xi](H) \rightarrow[M \eta](H)$ be as in Lemma, (ii). By Lemma, (i) $[M \xi] \sim[M \eta]\left(\bmod M^{\prime}\right)$ so there is $u \in M^{\prime}$ such that $u^{*} u=[M \eta], u u^{*}=[M \xi]$. Then $u w$ is a conjugate linear partial isometry which is 0 on $[M \xi](H)^{\perp}$ and isometric on $[M \xi](H)$ onto itself, such that if $x \in M[M \xi]$ then

$$
(u w)^{*} x^{*}(u w)=w^{*} u^{*} x u w=w^{*} x w=\alpha_{[M \xi]}(x),
$$

using $u \in M^{\prime}$ and $[M \xi] u=u$. Thus $\alpha_{p^{\prime}}+\alpha_{[M \xi]}=\alpha_{p^{\prime}+[M \xi]}$ is spatial, contradicting the maximality of p^{\prime}. Thus $p^{\prime}=1$, completing the proof. \square

TheOrem 2. Let M be von Neumann algebra with no direct summand of type II_{∞} with finite commutant. Then each central antiautomorphism of M is spatial.

Proof. Let α be a central antiautomorphism of M. We may consider the different types separately. The type I portion is taken care of by [6,

Lemma 4.3]. Suppose M is finite. Let Φ be the centervalued trace on M which is the identity on the center. By uniqueness of $\Phi, \Phi o \alpha=\Phi$, hence $\Phi(\alpha(e))=\Phi(e)$ for all projections e. It follows that $e \sim \alpha(e)$ for all projections, hence α is spatial by Theorem 1 .

Assume M is of type II_{∞} with II_{∞} commutant. Since the identity is the sum of central projections which are countably decomposable with respect to the center, we may assume the center is countably decomposable. By [5, Lemma 3.3.6] there is a cyclic projection $e=$ $\left[M^{\prime} \xi\right], \xi$ a unit vector, in M with central support 1 such that eq is infinite for all central projections $q \neq 0$ in M. Since α maps infinite projections onto infinite projections, $f=\alpha^{-1}(e)$ is infinite and is the support of $\omega_{\xi} o \alpha$. Since M^{\prime} is infinite there is a unit vector η such that $\omega_{\xi} o \alpha=\omega_{\eta}$ [1; Chapter III, $\S 8.6$, Corollary 10 and Chapter III, $\S 1.4$, Theorem 4]. Thus $f=\left[M^{\prime} \eta\right]$ is countably decomposable, and $f q$ is infinite for all central projections $q \neq 0$, and the central support of f equals that of e since α is central. By [1; Chapter III, $\S 8.6$, Corollary 5] $f \sim e$.

The proof is completed with a maximality argument similar to that used in Theorem 1. Let p^{\prime} be a projection in M^{\prime} maximal with respect to the property that $\alpha_{p^{\prime}}$ is spatial on $M p^{\prime}$. Suppose $q^{\prime}=1-p^{\prime} \neq 0$. Apply the previous paragraph to $M q^{\prime}$ and find a cyclic projection $e=\left[M^{\prime} \xi\right]$ in M with ξ a unit vector in $q^{\prime} M$ with the described properties. Then $f=\alpha^{-1}(e)=\left[M^{\prime} \eta\right] \sim e$, where $\omega_{\xi} o \alpha=\omega_{\eta}$ on $M q^{\prime}$. The proof is now completed exactly like that of Theorem 1.

Finally, assume M is of type III. Then each normal state is a vector state [1; Chapter III, $\S 8.6$, Corollary 10] so the conclusion of Lemma, (i) holds. Since any two countably decomposable projections with the same central supports are equivalent in M, the argument from the proof of Theorem 1 case applies to conclude that α is spatial. \square

REMARK 1. The above theorem reflects the situation for automorphisms of von Neumann algebras. For a factor M of type II_{∞} with finite commutant it was shown by Kadison [4] that an automorphism is spatial if and only if it preserves the trace, or equivalently the dimension of projections. By Theorem 1 the latter condition is sufficient for an antiautomorphism α to be spatial. Conversely, if α is spatial the argument of Kadison on [4, p. 324] can be repeated word by word to conclude that α preserves the dimension of projections.

The difficulty in the above situation can be avoided if α is periodic.

THEOREM 3. Let M be a von Neumann algebra and α a periodic central antiautomorphism. Then α is spatial. Furthermore, if each normal state on M is a vector state (e.g., if M has a separating vector, or M^{\prime} is properly infinite) then there exists a conjugate linear isometry w such that $\alpha(x)=w^{*} x^{*} w$ with $w^{2 n}=1$, where $2 n$ is the period of α.

Proof. Let e be a projection in M. In order to show $\alpha(e) \sim e$ we may, since α is central, assume by the Comparison Theorem that $\alpha(e) \prec e$. Iterating, we have $e=\alpha^{2 n}(e) \prec \alpha^{2 n-1}(e) \prec \cdots \prec \alpha(e) \prec e$. Thus $\alpha(e) \sim e$, and α is spatial by Theorem 1 .

Now assume each normal state is a vector state. Let ϕ be a unit vector. Then the state

$$
\omega=\frac{1}{2 n} \sum_{k=1}^{2 n} \omega_{\phi} O \alpha^{k}
$$

is a normal α-invariant state. Thus $\omega=\omega_{\xi}$ for a unit vector ξ, and $\omega_{\xi} O \alpha=\omega_{\xi}$. By the proof of Lemma, (iii) there exists a conjugate linear partial isometry w with support and range $[M \xi]$ such that $w^{2 n}=[M \xi]$, and $w^{*} x^{*} w[M \xi]=\alpha(x)[M \xi]$. A maximality argument like that employed in the proof of Theorem 1 now completes the proof.

The above theorem states that, for a periodic α with M^{\prime} large, then w can be chosen with $w^{2 n}=1$. Our last result gives a sharper statement if α is an involution. Special cases of this result appeared in [6]. Recall that a conjugation is a conjugate linear isometry J such that $J^{2}=1$.

ThEOREM 4. Let M be a von Neumann algebra whose commutant has no direct summand of type I_{n} with n an odd integer. If α is a central involution on M then there exists a conjugation J such that $\alpha(x)=J x^{*} J, x \in M$.

Proof. Let M act on a Hilbert space H and assume first that M has no direct summand of type I. By [6, Theorem 3.7] there exist central projections p and q in M such that $\alpha \mid p M$ is implemented by a conjugation
on $p(H)$ and $\alpha \mid q M$ by a conjugate isometry j with $j^{2}=-q$. To prove the theorem it suffices to modify j so that $\alpha \mid q M$ is implemented by a conjugation. We therefore assume $\alpha(x)=-j x^{*} j$ for $x \in M$, where $j^{2}=-1$. In particular, α extends to an involution α of $B(H)$ implemented by j, which leaves M^{\prime} globally invariant. Since M^{\prime} has no direct summand of type I, neither does the fixed point algebra A of α in $M^{\prime}[\mathbf{3}, 7.4 .3]$, hence the Halving Lemma for Jordan algebras [3, 5.2.14] yields the existence of projections $e, f \in A$ with sum 1 and a symmetry $s \in A$ such that ses $=f$. Let $e_{11}=e, e_{12}=e s, e_{21}=s e=f s, e_{22}=f$. Then $\left\{e_{i j}: i, j=1,2\right\}$ is a set of matrix units which generates an I_{2}-factor M_{2}. Since $\alpha\left(e_{12}\right)=e_{21}, \alpha\left(e_{i i}\right)=e_{i i}, \alpha$ leaves M_{2} globally invariant. Thus $B(H)=B\left(H_{0}\right) \otimes M_{2}$, and $\alpha=\alpha_{1} \otimes \alpha_{2}$ with α_{1} an involution of $B\left(H_{0}\right)$, and $\alpha_{2}=\alpha \mid M_{2}$ an involution of M_{2}. For simplicity of notation we identify M with $M \otimes 1$, and consider M as a subalgebra of $B\left(H_{0}\right)$. Since an involution of a factor is implemented by a conjugate linear isometry v with $v^{2}=1$ or $-1,[6$, Theorem 3.7], it follows that $j=j_{1} \otimes j_{2}$ with $j_{i}^{2}= \pm 1$, and $\alpha\left|M=\alpha_{1}\right| M$ is implemented by j_{1}. If $j_{1}^{2}=-1$ replace j_{2} by a conjugate linear isometry v with square -1 , and if $j_{1}^{2}=+1$ by v with square +1 . In either case $J=j_{1} \otimes v$ is a conjugation implementing α_{1}, and hence α on M.

It remains to consider the case when M is of type I. Since α is central we may consider the different direct summands separately, hence we may assume M is homogeneous of type $\mathrm{I}_{n}, n \in \mathbf{N} \cup\{\infty\}$, with M^{\prime} homogeneous of type $\mathrm{I}_{r}, r \in \mathbf{N} \cup\{\infty\}$, see, e.g., [1; Chapter III, §3.1, Proposition 2] applied to M and M^{\prime}. For a Hilbert space K let t denote the transpose on $B(K)$ with respect to some orthonormal basis, and let q be the involution

$$
q\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

on the complex 2×2 matrices. By [7, Theorem 2.6] M is a direct sum $M=M_{1} \oplus M_{2}$ such that α leaves each M_{i} invariant; $M_{1}=B\left(H_{1}\right) \otimes Z_{1}$, $M_{2}=B\left(H_{2}\right) \otimes B\left(\mathbf{C}^{2}\right) \otimes Z_{2}$, where in both cases Z_{i} is an abelian von Neumann algebra with Z_{i}^{\prime} of type I_{r}. In the first case $\alpha \mid M_{1}=t \otimes \iota$, hence $\alpha \mid M_{1}$ is implemented by a conjugation, see, e.g. [3, §7.5]. In the second case $\alpha \mid M_{2}=t \otimes q \otimes \iota$. Now q is implemented by a conjugate linear isometry j such that $j^{2}=-1$, while t is implemented by a conjugation J. Since, by assumption M^{\prime}, is of type I_{r} with r even or $r=\infty$, there
exists a conjugate linear isometry j_{r} with $j_{r}^{2}=-1$ which implements a central involution on Z_{2}^{\prime}, see $[\mathbf{3}, \S 7.5]$. Thus $J \otimes j \otimes j_{r}$ is a conjugation which implements α on M_{2}. This completes the proof of the theorem.

REMARK 2. The conclusion of Theorem 4 is false if M^{\prime} is of type I_{n} with $n \in \mathbf{N}$ odd. Let, for example, $M=M_{m}(C) \otimes C 1_{n}$, so that $M^{\prime}=C 1_{m} \otimes M_{n}(C)$, with m even and n odd. Then there exists j on C^{m} such that $j^{2}=-1$, while each involution on $M_{n}(C)$ is conjugate to the transpose map. Let $\alpha(x \otimes 1)=\left(-j x^{*} j\right) \otimes 1_{n}$ on M. Then α is not implemented by a conjugation. Indeed, if J is a conjugation on $C^{m} \otimes C^{n}$ implementing α, then J also implements an involution on $M^{\prime}=C 1_{m} \otimes M_{n}(C)$; hence there would exist a conjugation J^{\prime} on C^{n} such that $J x J=-\left(j \otimes J^{\prime}\right) x\left(j \otimes J^{\prime}\right)$ for all $x \in B\left(C^{m} \otimes C^{n}\right)=M_{m}(C) \otimes M_{n}(C)$. Since $J^{2}=1$ and $\left(j \otimes J^{\prime}\right)^{2}=-1$, this is impossible by [6, Lemma 3.9], hence α is not implemented by a conjugation. This example also shows that the assumption on the normal states being vector states is necessary in Theorem 3.

REFERENCES

1. J. Dixmier, Les algèbres d'operateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
2. T. Giordano, Antiautomorphismes involutifs des facteurs de von Neumann injectifs, J. Operator Theory, 10 (1983), 251-287.
3. H. Hanche-Olsen and E. Størmer, Jordan operator algebras, Pitman, London, 1984.
4. R.V. Kadison, Isomorphisms of factors of infinite type, Canad. J. Math. 7 (1955), 322-327.
5. -, Unitary invariants for representations of operator algebras, Ann. of Math. 66 (1957), 304-379.
6. E. Størmer, On antiautomorphisms of von Neumann algebras, Pacific J. Math. 21 (1967), 349-370.
7. - Conjugacy of involutive antiautomorphisms of von Neumann algebras, J. Funct. Anal. 66 (1986), 54-66.
8. S. Stratila and L. Zsido, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.

[^0]: Received by the editors on October 15, 1987, and in revised form, on January 25 , 1987.

