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DIRECT INTEGRALS OF STANDARD
FORMS OF W*-ALGEBRAS

LOTHAR M. SCHMITT

ABSTRACT. Bés [Invent. Math. 37 (1976), p. 241] proved
that standard forms of W*-algebras behave naturally with
respect to direct integrals. We give a new approach to disin-
tegration of standard forms, which uses the characterization
of matrix-ordered Hilbert spaces in standard forms of W*-
algebras obtained by Wittstock and the author [Math. Scand.
51 (1982), p. 241].

Introduction. Araki [1], Connes [3] and Haagerup [7] developed
standard forms of W*-algebras. Connes [3] characterized the ordered
Hilbert spaces arising in these standard forms. Penney [8] developed
direct integrals of selfdual cones. Based on [3], and [8], Bos showed
in [2] that standard forms behave naturally with respect to direct
integrals. Wittstock and the author [11, 12] characterized the Hilbert
spaces arising in standard forms of W*-algebras among matrix ordered
spaces. In this note we give a self contained and simplified approach
to disintegration of standard forms. In fact proper use of a result of
Elliott [5] makes it possible to work with only a few consequences of
the measurable choice theorem due to Sainte-Beuve [9]. Furthermore
disintegration of matrix order allows us to dispense with the rather
technical direct integral of orientations [2] and is therefore more natural
from a categorial point of view.

1. Technical preliminaries.

1.1 Separability conditions.

PROPOSITION. Let M be a W*-algebra. Then the following condi-
tions are equivalent:

a) M has a separable predual M ..
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b) The Hilbert space H in the standard form (M, H,J,H™) [7, p.
241] of M is separable.

¢) M has a faithful W*-representation on a separable Hilbert space.

PROOF. (a) = (b) follows from Bures’s inequality, see [13, §10.24,
Proposition]. (¢) = (a) is [10, Proposition 2.1.1]. O

Disintegration of W*-algebras exists in the above case [4, 14] and
other special situations.

1.2 Direct integrals of selfdual cones. Let (I, u) be a o-finite measure
space. Let {H (), € T'} be a measurable family of Hilbert spaces and
set

b
H :/F H (y)dp(v).

In what follows we shall assume that a disintegration of H as above
is given, but we do not assume H to be separable. If H T is a cone
in H, then we shall call H ™ compatible with I" if the projections in
the diagonal algebra £ = L*°(T, ) map H ™ into H*. The following
Lemma is essentially due to Penney [8] and is used to fix our notation.

1.2.1. LEMMA. Let HY be a selfdual cone in H compatible with T.

(a) The conjugate linear symmetry J associated with H* by [3,
Proposition 4.1] is a decomposable operator, i.e.,

D
7 = / 7 (3)du(7).

(b) There exists a sequence {(x(7),k € N}y in H ={¢ € H|¢ =
T €} such that {&x(7),k € N} is dense in H (7)7 ) a.e.

(c) With the sequence {&x,k € N} as in (b) set
H () ={& (), ke N},

where & = §,j - &, ,jJ_ f,;,f,j € H™ is the canonical decomposition
of &k [3, Proposition 4.1]. Then H (v) is a selfdual cone in H (v) with
associated conjugate linear symmetry J () a.e.
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(d) €M & (€(1),6 (1) > 0 ae. Yk EN.

(e) If x = flfB xz(y)du(y) € B(H) is a decomposable operator [14, p.
273, then x is positive with respect to H ' if and only if x(7) is positive
with respect to H 1 () a.e.

PROOF. (a). J commutes with £ since H T is compatible with T.
Hence J is decomposable by a conjugate linear version of [4; I1.2.5,
Theorem 1].

(b). Take {(1+ J)&Y, k € N} for a fundamental sequence [14, p.
270] {2, ke N} C H.

(c). Apply the proof of [8, Theorem II.10].

(d). The set {[{€(7),&5 (7)) > 0 a.e. Vk € N} is a selfdual cone,
which contains H .

(e). By (d) x is positive if and only if (x(*y)f,j(*y),fj(*y)) >0 ae.
Vk,jeN.o

Following Penney [8, Definition I1.6], we shall write

D
H+=[:waww>

in the situation of Lemma 1.2.1. For the remainder of this section we
shall keep the notation of Lemma 1.2.1, and shall moreover assume that
the following conditions hold:

C1: p is finite and the measurable family of Hilbert spaces

{H (v),y € T} is constant, i.e., H = L*(T,K)

for some separable Hilbert space IC.

Co: H (y)T = {0} for all y € T for which H (y)* is not selfdual.

For a closed, convex subset A of K let d(n, A),n € K, denote the
distance between 1 and A, taken to be oo in the case A = @. In
addition, let U(r),r > 0, be the open ball of radius r in K. The
following three lemmata are essentially consequences of the measurable
selection theorem due to von Neumann, Aumann and Sainte-Beuve, see
[9].
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1.2.2. LEMMA. The following functions are measurable:

(a) h:TxK -RT
a
h(v,n) =d(mn,H(y)"), yel,nek.

f:TxK3—=RTU{o0}
(b) flrm) =dim,m+H ) Nns —H (),
’76:[‘777: (7717,’727773) EIC3~

PROOF. (a). h(y,n) = inf|ln — & (y)]| is measurable since
(v,m) — (& (7),n) € K? and the inner product are measurable.

(b). Let Pr(v,n) =~. We conclude from [9, Theorem 4] that

p= U pe{onnl I+ 6 0) =+ & Ol <
LeN

},k,meN,

is a measurable subset of I'. Now

m - —&F 5 S I‘m
fk (77,’7) — { H771 72 gk (’Y)H Y fn
0, vy gl—‘k

is a measurable function on I x 3. We have

1
m

©)  d(mm+H )T =HE) +U(=)) < inf (),

@ w2 < dlmom+ 1) =10 +0 (527 )

An application of the parallelogram law shows that the left hand side
of (1) converges to f(v,n) as m — co0. O

1.2.3. LEMMA. Let p € H,n,n1,m2 € HY be such that m; < n < n2
and |[p —nl|[ = d(p, [m,n2]). Then

o(y) = n(Il = d(p(v), [ (), m2(7)]) a-e.
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PROOF. Let Q be the set of (y,7,) € I' x K such that

(1) {d(w [m(7),m2(7)]) =0

d(p(y), Im(v), n2(MD) = llp(v) = 14|l } if m1(7) < m2(7),

(2) 7y = 0if n1(y) £ n2(7).

2 is measurable by Lemma 1.2.2. Hence v — 1, is measurable by [9,
Theorem 4] and has range in [, 72]. Clearly

() = [ dp(y p(y) = n(n) | Pdp(v)
/ </

and therefore n, = n(vy) a.e. 0

For p € H* let F(p) = Uren [0, £p] denote the face generated by p.
For any face ' C H ™ let Pr denote the projection onto span cF'. Pp
commutes with 7 and £. The following statement is taken from Bos’s

paper [2].

1.2.4. LEMMA. Suppose F is a closed face in H ™.

(a) There exists p € F such that F = W

(b) £ € F = &(v) € F(p(v)) a-e.

(c) (Ppn)(7) = Pr(p()n(7) a-e, n € H.

(d) F(p(7)) is a face a.e.

(e) If p,p' € HT are such that F = F(p) and F+ = F(p'), then
(o)) =F(p'(7)) a.e.

PROOF. Let pj, € F be such that ||& — pi|| = d(&5, F), k € N. We
define p = > 27%||px|| "' pk, where the summation is taken over all k
with pr, # 0. Fix £ € F. For a fixed k € N, set

N = {y] IEF(v) = pDI > 11EE () = €I

Then p’ = (1 — Xn)pr + Xn€ € F and || — pi|| < [|&F — prl| unless
#(N) = 0. Consequently

(1) 16(7) =PI < 211E(7) = & (NI ace.
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Now let 0 < ny < £- p be such ||§ — n|| = d(&,]0,£p]). Lemma 1.2.3
and (1) show that v — ||£(y) — ne(7)]] is a decreasing sequence of L2-
functions which converges pointwise to zero a.e. Lebesgue’s Theorem
shows that £ = lim7y. These arguments show (a) and (b). In order
to show (c) one can assume that 7 € H and then apply a similar
argument using the order intervals [—fp, fp]. To show (d) consider
the set Q of (v,&,n) € T' x K2 with |[¢]] < 1,m # 0;n,& —n €
H ()T inf, d(&, [0, €p(v)]) = 0;inf, d(n, [0, £p(~y)]) > 0. Q is measurable
by Lemma 1.2.2. Tts projection on I';, N = Pr(2), is measurable by [9,
Theorem 4]. Let ' = T'\N x{(0,0)}U€Q. By [9, Theorem 3] there exist
measurable functions £;,7n; such that (v,&1(v),m1(y)) € Q' for v € T.
Hence, by (b), & € F,0<m <& = m € F = u(N) =0. Finally, to
prove (e) let £ be the set of (v,7) € I' x K such that

0<|lnll <1; neHMMY (n,p() =0; dn, F(p'(v))) > 0.

As in the proof of (d) the projection of  on I is a p-null set. O

1.3. Direct integrals of matrix ordered Hilbert spaces. If V is a set,
then we shall denote the set of n x n matrices with entries in V' by
M,(V),n € N. If V is a vector space we shall also write V,, for
M, (V). Let T',u,H (y) and H be as in 1.2, without the additional
assumptions C1 and C2. Then {H (7)., € I'} is a measurable field of
Hilbert spaces and H ,, can be identified with

(&)
/ H(Y)ndp(y).

Let {H} C H,,n € N} be a family of selfdual cones such that
(H,H; ,n € N) is amatrix-ordered space. We shall say that {H ', n €
N } is compatible with I if each projection in £ is completely positive.
By [12, Theorem 2.2] it is equivalent to say that £ is in the center
of the matrix multiplier algebra [12, Definition 2.1] of (H,H ). [12,
Lemma 1.3] shows that the antilinear symmetry 7, associated with
H ;' equals J 1 @ st, where st is the adjoint operation on M,,(C).

Let {¢¥ k € N} be an enumeration of the elements in (1 +
T )M, ({&),k € N'}) for a fundamental sequence {£),k € N} in H.
We define, for v € T,

H ()% ={a’ & (Vala € Myn(Q); m ke N,




W*-ALGEBRAS 567

where M, »(Q) denotes the m x n matrix over Q. The construction
in the proof of Lemma 1.2.1 shows that (H (y),H (7);)) is a matrix
ordered Hilbert space a.e. In this situation we shall write

52

(H,HE) = / (H (1), H () du()

and call this a direct integral of matrix-ordered Hilbert spaces with
selfdual cones.

2. Direct integrals of standard forms.

2.1. THEOREM. let (T', u) be a o-finite measure space and let

@
(. HE) = / (H () H () du()

T

be a direct integral of matriz-ordered Hilbert spaces with selfdual cones.
Let M respectively M ., denote the matriz multiplier algebra of
(H,H), respectively (H (), H (7);}), for v € T\N, where N is the
p-null set for which M, is not defined. Let M., = C for v € N.
Then the following statements are equivalent:

(a) (M, H,H}) is a matriz-ordered standard form [12, Definition
1.4]

(b) (M, H(7),H(y);}) is a matriz-ordered standard form a.e. If

n
one of the above conditions is satisfied then

(&)
M :/F Modp(y).

PROOF. We may assume without loss of generality that the additional
conditions C1 and C2 hold.

(a) = (b). L is in the center of M. By [5, Lemma 4] M can
be disintegrated into a direct integral of W*-algebras M (v),y € T.
M = TMJ implies M (y) = T ()M ()T (y) a.e. To obtain
(b) and the last statement of the theorem it is sufficient to show that
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M(y) = M, ae. Let {z1,k € N} be a countable *-subalgebra of
M over Q such that M (v) = {zx(y),k € N}". Then z4(y) € M,
a.e., since M is the matrix multiplier algebra of (H,H ;). Kaplansky’s
density theorem shows that M (y) C M. Now, by [12, Theorem 2.2],

M@ =T (IMNT (v) €T (YIMLT () C ML CM(y) ae.

b) = (a). Suppose that F = Ft1 is a face in H} and 1 €
n n

PrH ,NHY . We apply Lemma 1.2.4: let p € F be such that F = F(p);
then 7(7) € Pr(p()H (V)a NH ()7 and F(p(7))™" = F(p(7)) a-e.

By [11; Theorem 1.3, Lemma 1.5] it follows that n(y)* € F(p(v)) a.e.
Hence n* € F. Applying [11; Theorem 1.3, Lemma 1.5], again we are

done. O

The following two theorems include the main results of Bos [2]. Recall
that, for a selfdual cone H + in a Hilbert space H ,

DHT)={6€BH)|exp(tS)HT =HT VteR}.

2.2. THEOREM. Let (T', u) be a o-finite measure space and let

[S]
(HH*) = / (H (1) H (1) )dpu()
I

be a direct integral of ordered Hilbert spaces with selfdual cones. Then

(a) D(H*) = {5 = ¥ 5(x)du()|8(y) € D(H(1)T) a.e}
(b) H™* is homogeneous [3, Definition 5.1] and orientable [3, Defini-
tion 4.1.1] if and only if the following conditions hold:

(1) H ()" is homogeneous and there exists an orientation I, on
D(HM)/Z(D(HM)T)) a.e.

(2) If 6 = fF@ 5(v)du(y) € D(H™), then there exists a measur-
able, bounded field 6;(y) € D(H (v)") such that 6;(y) € L,(6(7) +
Z(D(H(y)1))) a.e.

PROOF. Assume without loss of generality that the additional condi-
tions C1 and C2 hold.
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(a). If § € D(H™),p € L is a projection and &7 € H™, then
(0p€, (1 — p)n) = 0 by [6, Theorem 3]. Hence pd = pdp = op and ¢
is decomposable. Also p € Z(D(H)™"). If 6 = fl? d(y)du(7y), then by
[6, Theorem 3] and Lemma 1.2.1 there exists Ag > 0 such that, for all
A € Q with |A| > Ao, (A —d(7)) 7! is positive a.e. This shows C in (a).
The converse inclusion follows directly from [6, Theorem 1(iii)].

(b). Suppose that H is homogeneous and orientable. Let M be
the W*-algebra with standard form (M ,H ,J,H ™), which exists by
[3, Theorem 5.2]. The proof of (a) and [3, Proposition 4.10] shows
that £ C M. Hence M = fF@M(v)d,u('y) is decomposable by
[6, Lemma 4]. Now one checks that (M (v),H (7)., T (v),H (y)") is
a standard form a.e. This shows (1). If 6 € D(H ™) then § =
r+JxT,x € M, by [3, Theorem 3.4]. Let x = fr@ z(y)du(y) and
5:(v) = iz(y) + T (v)iz(y)T (7). d;(7) satisfies (2). Conversely, H
is orientable if (1) and (2) are satisfied. Let F' be a closed face in
‘H . By Lemma 1.2.4 there exists p and p’ in H T such that F = F(p)
and F+ = F(p/). Let £&,n € HT with ¢*n. By Lemma 1.2.4 and [6,
Theorem 1(iii)] applied to H ()™, we obtain

(Pré,) = / (Pr(on(7) (1)) dia(7)

- / (Pt ()on())du(y) = (PrL €, 1).

Hence H T is homogeneous, again by [6, Theorem 1(iii)]. O

2.3. THEOREM. Let (T', u) be a o-finite measure space and let

(&)
(M, H) = / (M), H(7))d(7)

be a direct integral of W*-algebras {M(v),y € T'} acting on Hilbert
spaces {H(~y),v € T'}. Let (M, H,H ) be the matriz-ordered standard
form of M. Then there exists a direct integral of matriz-ordered
standard forms (M (v), H (v), H (7)) of M(v) such that

(&)
<M,H,H:>:/ (M (3).H (). H () da().

T
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If ¢, respectively ¢, is the W*-isomorphism between M and M,
respectively M () and M (v), then

53]
1) :/ o~dp(y) [4; 8113, Definition 3].
r

PROOF. As Bos [2] points out, [4; II.3, Proposition 11] remains
valid under the above hypothesis by virtue of [5, Lemma 4]. Now
the existence of the disintegration

D
(M. H) = / (M (7). H (7)) du()

follows, as well as the last statement in the theorem. §1.3 and Theorem
2.1 show that the matrix-order automatically disintegrates as stated. o
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