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ON EXACT CONTROLLABILITY OF OPERATORS
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Dedicated to the memory of Constantin Apostol

1. Introduction. Let X ,Y be Banach spaces, and let A ∈
L(Y ), B ∈ L(X ,Y ) (as usual, L(X ,Y ) stands for the Banach space
of all linear bounded operators from X into Y , and L(Y ) is the
abbreviation of L(Y ,Y )). The pair (A, B) is called exactly controllable
if

Y =
∞⋃

n=1

( n−1∑
j=0

Im An−1−jB
)
.

(Here and elsewhere we denote

Im S = {Sx |x ∈ X }

for S ∈ L(X ,Y ).) This notion appears naturally in linear systems
theory (an indication to that is given in the next section) and was
studied by several authors [1, 2, 3, 6, 8]. In the finite dimensional
case (dimY < ∞) the notion of exact controllability is one of the most
important in modern linear system theory and can be found in virtually
every book on the subject (see, e.g., [5, 10]).

A crucial property of exactly controllable pairs in the finite dimen-
sional case is the following fact (known as the pole, or spectrum, as-
signment theorem, see [5, 9]): A pair (A, B) is exactly controllable if
and only if, for every m-tuple (here m = dimY ) of complex numbers
λ1, . . . , λm there is F ∈L(Y ,X ) such that σ(A+BF ) = {λ1, . . . , λm}.
Recently, infinite dimensional versions of these results were proved in
[2, 8].

In this paper we make more precise the spectrum assignment results
for exactly controllable pairs proved in [8] by exhibiting the continuous
dependence on the parameters involved.
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2. Exactly controllable pairs of operators. Let X and Y be
Banach spaces, and let A ∈ L(Y ), B ∈ L(X ,Y ). Consider the linear
system

(2.1) xn = Axn−1 + Bun−1, n = 1, 2, . . . ,

where {xn}∞n=0 is a sequence of vectors in Y and {un}∞n=0 is a sequence
of vectors in X .

The equation (2.1) is often interpreted in terms of system theory.
Thus, Y is assumed to represent the states of a system, while X
represents controls (or inputs). The problem then becomes to choose
the sequence of controls {un}∞n=1 in a certain way to ensure desired
properties of the system.

A system (2.1) (or, equivalently, the pair (A, B)) is called exactly
controllable if any state x can be reached from any initial value x0 in a
finite number of steps. More precisely, this means the following: for any
x0, x ∈ Y there is an integer m(≥ 0) and controls u0, . . . , um−1 such
that if x1, . . . , xm are defined by (2.1) for n = 1, . . . , m, then x = xm.
As the solution of (2.1) is given by

xn = Anx0 +
n−1∑
j=0

An−1−jBuj , n = 1, 2, . . . ,

it follows that if (2.1) is exactly controllable then

(2.2) Y =
∞⋃

n=1

( n−1∑
j=0

Im An−1−jB
)
.

Actually, Theorem 2.1 below implies that (2.2) is equivalent to exact
controllability of (2.1).

THEOREM 2.1. (a) A pair of Banach space operators A ∈ L(Y ) and
B ∈ L(X ,Y ) is exactly controllable if and only if

Y =
( m−1∑

j=0

Im Am−1−jB
)

for some integer m.
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(b) The operator

[B, AB, . . . , Am−1B] ∈ L(X m,Y )

is right invertible for some integer m if and only if

[λI − A, B] ∈ L(Y ⊕ X ,Y )

is right invertible for every λ ∈ C .

Part (a) is a consequence of the open mapping theorem (see [6]); the
proof of part (b) is found in [4, Appendix] (see also [7]).

In case X is a Hilbert space, the conditions expressed in part (a) are
obviously the same as in part (b).

3. Spectrum assignment theorems. An important problem in
control is to bring about the desired behavior of the system (2.1) by
using state feedback, that is, by putting un = Fxn, n = 1, 2, . . . , where
F ∈ L(Y ,X ) is a suitable operator. The operator will be called the
feedback operator. In particular, one is interested to find if there is a
feedback operator F such that the system

(3.1) xn = Axn−1 + Bun−1, un−1 = Fxn−1, n = 1, 2, . . . ,

is stable, i.e., the spectrum of A + BF ∈ L(Y ) lies in the open unit
disc {λ ∈ C | |λ | < 1}. More generally, it is of interest to find a
feedback operator F such that A+BF has its spectrum in a prescribed
set in the complex plane. Also, it is important to have some control on
the behavior of F ; for instance, it is desirable to keep the norm of F
moderate.

It turns out that if the system (2.1) is exactly controllable and the
spaces X and Y are Hilbert spaces, then, by using suitable F , one
can make the spectrum of A + BF to be any prescribed non-empty
compact set in the complex plane. Moreover, F can be chosen to depend
continuously on A, B and the prescribed compact set. We make this
precise (and other related statements) in this section. Everywhere in
this section it will be assumed that X and Y are Hilbert spaces.

Consider the set Sn of all n-tuples {λ1, . . . , λn} of complex numbers
with repetitions allowed. Two n-tuples obtained from each other by



552 L. RODMAN

a permutation are considered the same element in Sn. One defines
naturally a metric on Sn:

dn({λ1, . . . , λn}, {μ1, . . . , μn}) = inf sup
1≤i≤n

|λi − μσ(i)|,

where the infimum is taken over all permutations σ of the set {1, . . . , n}.
Consider also the set C(C ) of all non-empty compact subsets of the
complex plane with the usual Hausdorff metric (here M, Λ ∈ C(C )):

d(M, Λ) = max{max
y∈Λ

min
x∈M

|x − y | , max
y∈M

min
x∈Λ

|x − y | }

For λ = {λ1, . . . , λn} ∈ Sn denote by ||λ|| the quantity max1≤j≤n |λj |,
and for Λ ∈ C(C ), put

||Λ|| = max
z∈Λ

|z|.

The following is a more precise version of the main theorem in [8].

THEOREM 3.1. Let A ∈ L(Y ), B ∈ L(X ,Y ) be such that

(3.2)
n−1∑
k=0

(AkB)(X ) = Y .

(a) Let λ = {λ1, . . . , λn} ∈ Sn. Then there exist positive constants ε
(depending on A, B only) and K (depending on A, B and ||λ||) with the
following property: For every pair A′ ∈ L(Y ), B′ ∈ L(X ,Y ) such that

(3.3) ||A − A′|| + ||B − B′|| < ε

and, for every μ = {μ1, . . . , μn} ∈ Sn, there is a feedback F =
F (A′, B′, μ) such that

n∏
j=1

(A′ + B′F − μjI) = 0

and the inequalities

(3.4) ||F (A, B, λ)|| ≤ K
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and

(3.5) ||F (A′, B′, μ)−F (A, B, λ)|| ≤ K(||A′−A||+||B′−B||+dn(λ, μ))

hold for any μ ∈ Sn and any A′, B′ satisfying (3.3).

(b) Assume that Y is infinite dimensional, and let Λ ∈ C(C ).
Then there exist positive constants ε (depending on A, B only) and K
(depending on A, B and ||Λ||) with the following property: For every
pair A′, B′ of operators satisfying (3.3) and for every M ∈ C(C ) there
is a feedback F = F (A′, B′, M) such that

σ(A′ + B′F ) = M

and

(3.6) ||F (A′, B′, Λ)|| ≤ K,

(3.7)
||F (A′, B′, M) − F (A, B, Λ)|| ≤ K(||A′ − A|| + ||B′ − B|| + d(Λ, M)).

The following simple proposition will be used in the proof of Theorem
3.1.

PROPOSITION 3.2. (a) Assume dimY ≥ n. Given λ ∈ Sn, for every
μ = {μ1, . . . , μn} ∈ Sn there exists a normal operator N(μ) ∈ L(Y )
such that σ(N(μ)) = μ and

||N(μ) − N(λ)|| ≤ dn(λ, μ).

(b) Assume dimY = ∞. Given Λ ∈ C(C ), for every M ∈ C(C )
there exists a normal operator N(M) ∈ L(Y ) such that σ(N(M)) = M
and

||N(M) − N(Λ)|| ≤ 2d(Λ, M)

for every M ∈ C(C ).

PROOF. We omit the proof of statement (a) (it can be done by taking
N(μ) to be a diagonal matrix in a fixed orthonormal basis in Y ).



554 L. RODMAN

We prove part (b). Without loss of generality we can assume that Y
is separable. Let {λj}∞j=1 be a sequence of (not necessarily different)
complex numbers from Λ such that the closure of the set {λ1, λ2, . . . }
is Λ itself.

We can assume that
Y = ⊕∞

i=0Y i,

where Y i is a Hilbert space with an orthonormal basis {e(i)
j }∞j=1. Define

N(Λ) ∈ L(Y ) by N(Λ)e(i)
j = λje

(i)
j . Consider now M ∈ C(C ), which

is different from Λ, so d(M, Λ) > 0. Let y1, y2, . . . be a countable
dense subset in M . For each λj let xj ∈ M be such that |λj − xj | =
minx∈M |λj − x|. For each yi let λki

be such that

|yi − λki
| ≤ min

x∈Λ
(yi − x) + d(Λ, M).

Form the operator N(M) as follows:

N(M)e(0)
j = xje

(0)
j , j = 1, 2, . . . ,

N(M)e(i)
ki

= yie
(i)
ki

, i = 1, 2, . . . ,

N(M)e(i)
j = xje

(i)
j , for j �= ki and i = 1, 2, . . . .

Clearly, N(M) is normal, the spectrum of N(M) is M and

||N(M) − N(Λ)|| = sup{|λj − xj |, j = 1, 2, . . . ;
|yi − λki

|, i = 1, 2, . . . }
≤ 2d(M, Λ).

PROOF OF THEOREM 3.1. We follow the approach developed in the
proof of the main theorem in [8]. Apply induction on n. If n = 1, then
(3.2) becomes BX = Y , i.e., B is right invertible. Choose ε so small that
B′ is right invertible for every B′ ∈ L(X ,Y ) satisfying ||B′ −B|| < 2ε,
and put

F (A′, B′, μ) = B′−1(N(μ) − A′), μ ∈ S1,

where N(μ) is taken from Proposition 3.2 and B′−1 is some right inverse
of B′ chosen so that ||B′−1 −B−1|| ≤ K0||B′ −B||, where the constant
K0 depends on B only. The estimates (3.4) and (3.5) are easily verified.



EXACT CONTROLLABILITY 555

Analogously one proves part (b) in case n = 1.

Assume now Theorem 3.1 is proved with n replaced by n − 1. Let
A, B be operators for which (3.2) holds. As in [2] or [8], we show that
there is a (closed) subspace M 1 ⊂ Y such that

(3.8)
n−1∑
k=0

Ak(M 1) = Y

(3.9) BC = IM1

for some operator C ∈ L(M 1,X ).

Indeed (see [8, p. 539]), one can take

M 1 = Bε(X ),

where
Bε = B(I − E(ε)),

E(t), 0 ≤ t ≤ ∞, is the spectral resolution for the positive semidefinite
operator B∗B, and ε > 0 is chosen sufficiently close to zero.

Without loss of generality, we can assume M 1 �= Y (otherwise B is
right invertible and we can repeat the proof given above for the case
n = 1).

Choose ε > 0 so small that, for every A′, B′ satisfying (3.3), we have

n−1∑
k=0

A′k(M 1) = Y

and

(3.10) B′C ′ = IM1

for some operator C ′ ∈ L(M 1,X ); moreover, the estimate

||C − C ′|| ≤ K0||B′ − B||

holds where the positive constant K0 depends on B and M 1 only.
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With respect to the orthogonal decomposition Y = M 1 ⊕M⊥
1 write

A =
[

A11 A12

A21 A22

]
.

Then (3.8) implies

n−2∑
k=0

Ak
22A21(M 1) = M⊥

1 .

So, applying the induction hypothesis, we find K1, ε1 > 0 such that, for
any operators A′

22, A
′
21 with

||A′
22 − A22|| + ||A′

21 − A21|| < ε1

and any μ̃ = {μ1, . . . , μn−1} ∈ Sn−1, there is an operator D =
D(A′

22, A
′
21, μ̃) ∈ L(M⊥

1 ,M 1) such that

(3.11)
n−1∏
j=1

(A′
22 + A′

21D − μjI) = 0

and

(3.12) ||D(A22, A21, λ̃)|| ≤ K1,

(3.13)
||D(A′

22, A
′
21, μ̃) − D(A22, A21, λ̃)||

≤ K1(||A′
22 − A22|| + ||A′

21 − A21|| + dn−1(μ̃, λ̃)).

Here λ̃ = {λ1, . . . , λn−1} and the entries λ1, . . . , λn are enumerated so
that ||λ̃|| = ||λ||.

Now given A′, B′ satisfying (3.3), write

A′ =
[

A′
11 A′

12

A′
21 A′

22

]

with respect to the orthogonal decomposition Y = M 1⊕M⊥
1 , and, for

μ = {μ1, . . . , μn} ∈ Sn, put

F (A′, B′, μ) =[C ′(DA′
21 + μσ(n)I − A′

11), C
′(DA′

22 − μσ(n)D − A′
12)]

: M 1 ⊕M⊥
1 → X,
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where C ′ is taken from (3.10), D = D(A′
22, A

′
21, μ̃), μ̃ = {μσ(1) . . . ,

μσ(n−1)}, and the permutation σ of {1, . . . , n} is chosen so that

dn(λ, μ) = sup
1≤i≤n

|λi − μσ(i)|.

This choice of σ ensures that

dn−1(λ̃, μ̃) ≤ dn(λ, μ) and d1(λn, μσ(n)) ≤ dn(λ, μ).

It can be checked (as in [8, pp. 540 541]) that

(3.14)
n∏

j=1

(A′ + B′F (A′, B′, μ) − μσ(j)I] = 0.

Finally, using (3.12) and (3.13), one verifies the estimates (3.4) and
(3.5).

For the part (b) assume that Y is infinite dimensional. Then, in
view of (3.8), M 1 is infinite dimensional as well. By Proposition
3.2(b), for any M ∈ C(C ), choose a normal operator N(M) such that
σ(N(M)) = M and

||N(M) − N(Λ)|| ≤ 2d(Λ, M).

Put

F (A′, B′, M) = [C ′(DA′
21 + N(M) − A′

11), C
′(DA′

22 − N(M)D − A′
12]

∈ L(M 1 ⊕M⊥
1 ,Y ),

where D = D(A′
22, A

′
21, M) is an operator which exists by the induction

hypothesis. Then A′ + B′F (A′, B′, M) is similar to

T =
[

N(M) 0
A′

21 A′
22 + A′

21D

]

(cf. the proof of the theorem in [8]). Since σ(N(M)) = M, σ(A′
22 +

A′
21D) = M and N(M) is normal, we have that σ(T ) = M . The

estimates (3.4) and (3.5) are proved in the same way as in the part (a).
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We remark that the converse of Theorem 3.1 is true as well: spectrum
assignability by feedback implies exact controllability. Actually, rather
weak assumptions in terms of spectrum assignability allow one to deduce
that the system is exactly controllable (see [8] for some results of this
kind).

Next, consider behavior of the feedback in the presence of analytic
dependence of the operators A and B on a complex parameter. Here
also the feedback can be chosen to be well-behaved, at least locally:

THEOREM 3.3. Let Ω ⊂ C be an open set, and let A : Ω → L(Y ),
B : Ω → L(X ,Y ) be operator valued functions which are analytic in Ω.
Assume that z0 ∈ Ω is such that

n−1∑
k=0

(A(z0))kB(z0)(X ) = Y

for some n. Then, for every n-tuple of scalar analytic functions
λ1(z), . . . , λn(z) defined on an open neighborhood U of z0, there is an
analytic operator function F : V → L(Y ,X ), where V ⊂ U is an open
neighborhood of z0 such that

n∏
j−1

(A(z) + B(z)F (z) − λj(z)I) = 0

for all z ∈ V .

PROOF. We mimic the ideas used in the proof of Theorem 3.1. Proceed
by induction on n. We omit the consideration of the case n = 1, which
is easy.

Assume Theorem 3.3 is proved with n replaced by n − 1. As in the
proof of Theorem 3.1, find a closed subspace M1 ⊂ Y such that

(3.15)
n−1∑
k=0

(A(z0))k(M 1) = Y

and

(3.16) B(z0)C = IM1
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for some C ∈ L(M 1,X ). Let us examine the equality (3.16). Since C
is left invertible, ImC is a (closed) subspace. Write B(z) in the 2 × 2
block operator matrix form

B(z) =
[

B11(z) B12(z)
B21(z) B22(z)

]
: (Im C) ⊕ (Im C)⊥ → M 1 ⊕M⊥

1

(so, for instance, B11(z) ∈ L(ImC,M 1)). The equality (3.16) implies
that B21(z0) = 0 and that B11(z0) is invertible (its inverse is C
considered as an operator from X onto Im C). So B11(z) is invertible
for all z ∈ V1, where V1 is a sufficiently small neighborhood of z0. Let

S(z) =
[

IM 1 0
−B21(z)B11(z)−1 IM⊥

1

]
: M 1⊕M⊥

1 → M 1⊕M⊥
1 , z ∈ V1.

Obviously, S(z) is invertible, and S(z)B(z) =
[ ∗

0
∗
∗
]
. Replacing A(z)

byS(z)A(z)S(z)−1 and B(z) by S(z)B(z) we can assume that B21(z) is
zero for z ∈ V1. This means

B(z)C = IM1 , z ∈ V1

Taking V1 smaller if necessary we can ensure that also

n−1∑
k=0

(A(z))k(M 1) = Y , z ∈ V1.

Now we repeat the construction given in the proof of Theorem 3.1.

The results of this and preceding sections admit dual statements,
which can be obtained by passing to the adjoint operators. For example,
the following is the dual statement to the part (b) of Theorem 2.1 (see
[4, Appendix]).

THEOREM 3.4. Let A ∈ L(Y ) and C ∈ L(Y ,X ) be Banach space
operators. Then the operator

⎡
⎢⎢⎣

C
CA
...

CAm−1

⎤
⎥⎥⎦ ∈ L(Y ,X m)
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is left invertible for some m if and only if the operator

[
λI − A

C

]
∈ L(Y ,Y ⊕ X )

is left invertible for all λ ∈ C .

It is an open question whether Theorem 3.1 (under the assumption
that [B, AB, . . . , An−1B] is right invertible) is valid for Banach space
operators.
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