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ON SPECTRAL PROPERTIES OF ALMOST
MATHIEU OPERATORS AND CONNECTIONS
WITH IRRATIONAL ROTATION C∗-ALGEBRAS

NORBERT RIEDEL

1. In [2] we introduced some concepts that led to a study of some
almost periodic Schrödinger operators in the light of the C∗-algebras
they are associated with in a natural way. More specifically, our topic
is almost Mathieu operators h(α, β), in the setup of irrational rotation
C∗-algebras. Let α be an irrational number and let u, v be two unitary
operators such that uv = e2παivu. Then h(α, β) is the self-adjoint
element u + u∗ + β(v + v∗) in the C∗-algebra Aα generated by the
operators u and v.

In what follows we shall discuss some problems related to this C∗-
algebraic approach. First, we investigate (primarily from an algebraic
point of view) the difference equation that characterizes all formal
Fourier series in u and v which commute with h(α, β). Then we apply
this to exhibit domains for β where h(α, β) fails to have point spectrum
under certain representations of Aα on the Hilbert space �2(Z ). Finally,
using rational interpolation, we give a characterization in terms of C∗-
algebras of those operators h(α, β) which have a Cantor spectrum.

2. In the sequel we always assume that α is an irrational number
and β �∈ {−1, 0, 1}. A state φ on Aα is called an eigenstate of h(α, β)
for some χ ∈ Sp(h(α, β)) (cf. [2]) if

φ(ha) = χφ(a) for all a ∈ Aα.

The dimension of the linear subspace of the dual A∗
α generated by the

eigenstates for χ is called the multiplicity of χ ∈ Sp(h(α, β)). The
multiplicity of χ is always less than or equal to two. We consider the
automorphisms σ of Aα determined by σ(u) = u∗, σ(v) = v∗. Let
λ = eπαi and, for p, q ∈ Z , let Spq = λ−pq(upvq + u−pv−q), Tpq =
λ−pq(upvq − u−pv−q)i.
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If φ is an eigenstate for χ and we set

spq = φ(Spq), tpq = φ(Tpq),

then {spq} and {tpq} are double sequences of real numbers which solve
the following system of linear equations:
(2.1)
(a) cos(παq)(xp−1,q + xp+1,q) + β cos(παp)(xp,q−1 + xp,q+1) = χxpq.

(b) sin(παq)(xp−1,q − xp+1,q) − β sin(παp)(xp,q−1 − xp,q+1) = 0.

We consider the formal (Fourier) series

(2.2) f =
∑

p,q∈Z

cpqSpq +
∑

p,q∈Z

dpqTpq

with complex coefficients cpq, dpq. We shall always assume that cpq =
c−p,−q and dp,q = −d−p,−q, thus rendering (2.2) into a unique repre-
sentation. If g is a formal series with only finitely many non-vanishing
coefficients (we shall refer to such a formal series as a polynomial), then
we can extend the usual product of polynomials in the canonical way
to define the products fg and gf . To any linear functional ψ on the
∗-algebra generated by u and v we associate the formal series

∑
p,q∈Z

ψ(Spq)Spq +
∑

p,q∈Z

ψ(Tpq)Tpq.

If a is an element in Aα then its Fourier series is

1
4

( ∑
p,q∈Z

τ (aSpq)Spq +
∑

p,q∈Z

τ (aTpq)Tpq

)
,

where τ is the (unique) normalized trace on Aα. In this case the
coefficients form two square summable double sequences. We record
the following basic fact.

PROPOSITION 2.1. A formal series commutes with h(α, β) if and only
if its coefficients satisfy the equation (2.1b) for all p, q ∈ Z .
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REMARK. The relative commutant of the C∗-algebra C∗(h(α, β)) in
Aα is always abelian. To see this, note that it was shown in [2] that,
for each χ ∈ Sp(h(α, β)), there is exactly one σ-invariant eigenstate;
consequently, C∗(h(α, β)) is maximal abelian in the fixed-point algebra
Aσ

α. Now let a and b be in the commutant. In order to show that a and
b commute it suffices to consider the case that a and b are self-adjoint
with σ(a) = −a, σ(b) = −b. We have

(ab− ba)(ba− ab) = ab2a− b(ab)a− a(ba)b+ ba2b

= a2b2 − ba2b− ab2a+ a2b2 = 0,

whence ab = ba.

In the same way one can show that the relative commutant of
C∗(h(α, β)) in the von Neumann algebra associated with the trace τ is
abelian.

Our ultimate interest is in those formal series commuting with h(α, β)
whose coefficients are square summable. (We shall refer to formal series
with square summable coefficients as square summable series or as being
in �2.) A complete description can be given of all square summable
series commuting with h(α, β) such that dpq = 0 for all p, q ∈ Z in
(2.2):

THEOREM 2.2. The square summable series in Spq commuting with
h(α, β) are in one-one correspondence with the square integrable func-
tions on the spectrum Sp(h(α, β)) of h(α, β) with respect to the inte-
grated density of states.

This theorem is a consequence of [2], Theorem 2.2(a). At the
present stage we do not know whether there are any non-trivial square
summable series in Tpq which commute with h(α, β). However, we can
show the following.

PROPOSITION 2.3. If f =
∑

p,q∈Z dpqTpq is in �2 and f commutes
with h(α, β) then

(2.3) dpq =
{

0 for |p| ≥ |q| if |β| > 1
0 for |p| ≤ |q| if |β| < 1.
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PROOF. We have a representation πτ of Aα on the Hilbert space
�2(Z 2) such that τ (a) = 〈πτ (a)δ(0,0), δ(0,0)〉 for all a ∈ Aα. To f there
corresponds a normalized vector ξ in �2(Z 2) such that

〈Spqδ(0,0), ξ〉 = 0, 〈Tpqδ(0,0), ξ〉 = dpq , p, q ∈ Z .

Since f commutes with h(α, β), the functional

ψ(a) = 〈aδ(0,0), ξ〉, a ∈ Aα,

is h(α, β)-central (i.e., ψ(ah(α, β)) = ψ(h(α, β)a)). Thus ψ is in the
weak closure of the linear span of all eigenstates of h(α, β). Since the
condition (2.3) is satisfied for the eigenstates [2, §2], we conclude that
(2.3) is true for f .

Henceforth we assume that |β| > 1. The case 0 < |β| < 1 is treated
in a similar way. In order to analyze the solutions {xpq} of (2.1b)
satisfying (2.3) we introduce an operator Hs on the space of all double
sequences x = {xpq}p,q∈Z by

(Hsx)pq = cos(παq)(xp−1,q+xp+1,q)+β cos(παp)(xp,q−1+xp,q+1)−sxpq.

We shall use the following recursion formula, which produces the
solutions of (2.1) satisfying (2.3) for q > p ≥ 0.
(2.4)(
xp,q+1

xp−1,q

)
=

1
β sinπα(q − p)

( − sin 2παq −β sinπα(p+ q)
β sin πα(p+ q) β2 sin 2παp

) (
xp+1,q

xp,q−1

)

+
χxpq

sin πα(q − p)

(
β−1 sin παq
− sinπαp

)
.

We apply this recursion simultaneously for all χ: Set

xp,q = 0 for p ≥ q ≥ 0, xp,p+1 = (−β)−p for p ≥ 0.

For each k ≥ 2 we determine xp,p+k for p ≥ 0 by means of (2.4), having
determined xp,p+k−1 and xp,p+k−2 for p ≥ 0 already. (The recursion
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formula (2.4) is redundant, reflecting the fact that the system (2.1) is
overdetermined.) Finally, we set

x−p,q = xp,q for p, q ≥ 0,
xp,−q = −xp,q for q ≥ 0.

From (2.4) we read off the following facts.

PROPOSITION 2.4. There exists a (unique) double sequence of poly-
nomials {ωpq(χ)} with the following properties:

(a) ω01 = 1, ωpq = 0 for |p| ≥ |q|.
(b) ω−p,q = ωp,q , ωp,−q = −ωp,q for all p, q ∈ Z .

(c) ωpq(χ) is a solution of (2.1) for all χ.

Moreover, this double sequence has additional properties:

(d) ωpq has the degree |q| − |p| − 1 for |q| > |p|.
(e) ωp,p+k(χ) decays exponentially as k → ∞, for all p ≥ 0. More

precisely, we have
lim

k→∞
βkωp,p+k(χ) <∞.

It is readily seen that if we prescribe arbitrary values for x0q, then
there is exactly one solution of (2.1b) satisfying (2.3) that takes those
values in the corresponding positions. Conversely, any solution of (2.1b)
with (2.3) can be obtained in this fashion. Thus 2.4(d) gives rise to the
following corollary.

COROLLARY 2.5. There is a one-one correspondence between the
linear functionals on the vector space of all polynomials in one variable
and the solutions of (2.1b) satisfying (2.3).

We shall give a more specific description of the coefficients of the
polynomials in 2.4 in terms of the operator Hs we have introduced
earlier. Consider some fixed number s. Let ωs

pq(χ) = ωpq(χ − s), and

let a(k)
pq be the k-th coefficient of ωs

pq. We have

(Hsωs)(χ) = (χ− s)ωs(χ).
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It follows that Hsa(k) = ak−1 for k ≥ 2 and Hsa(1) = 0. We can
summarize this as

THEOREM 2.5. There is, up to a scaling factor, exactly one sequence
a(0), a(1), . . . of double sequences such that

(a) a(k) solves (2.1b),

(b) a(k)
−p,q = a

(k)
pq , a

(k)
p,−q = −a(k)

−p,q,

(c) a(k)
pq = 0 for |q| < |p| + k,

(d) Hsa(k) = a(k−1), where a(0) = 0.

Moreover, for any solution {xpq} of (2.1b) satisfying (2.3), there is a
sequence {ck} such that

xpq =
∞∑

k=1

cka
(k)
pq .

We have
lim

k→∞
βkxp,p+k <∞.

3. In this section we use ideas from §2 to prove the absence of point
spectrum for h(α, β), 0 < |β| < 1, under certain representations of Aα.
For each z ∈ C , |z| = 1, let πz be the representation of Aα on �2(Z )
determined by

(πz(u)ξ)n = ξn+1, (πz(v)ξ)n = ze−2παiξn.

If we set z = e−iθ, then we have

(πz(h(α, β))ξ)n = ξn+1 + ξn−1 + 2β cos(2παn+ θ)ξn, ξ ∈ �2(Z ).

We shall establish

THEOREM 3.1. If θ �∈ αZ and 0 < |β| < 1, then πz(h(α, β)) has no
eigenvectors in �2(Z ).
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PROOF. Assume that the contrary is true. So there is a θ ∈ R \αZ
and there are χ ∈ Sp(h(α, β)), ξ ∈ �2(Z ) such that ||ξ|| = 1 and

πz(h(α, β))ξ = χξ.

If ξ = {ξn}n∈N is the conjugate vector of ξ then ξ is also an eigenvector
for χ. Thus we may assume that ξ is a real vector. In particular,

〈(u− u∗)ξ, ξ〉 ∈ R .

Since θ �∈ αZ , it follows from [2, Theorem 3.2] that χ has multiplicity
2. In particular, the eigenstate

φξ(a) = 〈a, ξ, ξ〉, a ∈ A,

is not σ-invariant. It follows that {φξ(Tpq)} is a non-trivial bounded
solution of (2.1) satisfying (2.3). Thus,

φξ(T10) = φξ(u− u∗) �= 0.

Since φξ is a self-adjoint functional and u−u∗ is skew-adjoint, φξ(u−u∗)
is a non-zero imaginary number, contradicting our earlier conclusion.

REMARKS. (a) At the present stage we don’t know whether point
spectrum can occur for πz(h(α, β)), 0 < |β| < 1, if θ ∈ αZ .

(b) It was shown in [3], by similar ideas, that πz(h(α, β)) never has
eigenvectors for |β| = 1 and all θ.

4. From now on we assume that α1, α2, . . . is a sequence of rational
numbers converging to the irrational number α = α∞. We set

(uξ)n = ξn+1, (vαk
ξ)n = e−2παkniξn, ξ ∈ �2(Z )

and let Aα be the C∗-algebra generated by u and vα. Then
{Aαn

}n∈N∪{∞} is a continuous field of C∗-algebras on the one point
compactification of N , where the (non-commutative) polynomials in
the generators u and vα form a generating family of continuous opera-
tor fields [1]. Let B denote the C∗-algebra of continuous operator fields.
We choose a sequence β1, β2, . . . in R , such that β = β∞ = limn→∞ βn
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and (after a possible adjustment of the sequence {αn}) the gaps in the
spectrum of the operator

h(αn, βn) = u+ u∗ + βn(vαn
+ v∗αn

)

are all open (this is equivalent to the requirement that the multiplicity
for any χ ∈ Sp(h(αn, βn)), as defined in §2, be less than or equal to
two). We denote by C the C∗-subalgebra of B generated by the operator
field n �→ h(αn, βn) and the continuous complex functions on N ∪{∞}.
We shall need the following.

LEMMA 4.1. Let I1, I2, . . . be a sequence of closed intervals such that
In is a connected component of Sp(h(αn, βn)) for each n ∈ N . Then
limn→∞(lengthIn) = 0.

PROOF. For each n ∈ N the C∗-algebra Aαn
is isomorphic to the C∗-

algebra of continuous matrix-valued functions on the circle T generated
by

z �→ z

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1

. . .

1
1 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
qn

and

z �→

⎛
⎜⎜⎝

1 0 · · · 0
0 e−2παni

...
0 · · · e−2π(qn−1)αni

⎞
⎟⎟⎠

where αn = pn/qn, with pn and qn relatively prime. Let en be
the spectral projection of h(αn, βn) corresponding to the interval In.
Since all gaps are open by assumption, it follows that en(z) is a one
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dimensional projection in the matrix algebra Mqn
(C ) for all z ∈ T−.

In particular the C∗-algebra enAαn
en is abelian.

Now assume that the assertion is not true. It follows that there is a
non-degenerate closed interval I and a sequence n1, n2, . . . in N such
that

I ⊂
⋂

k∈N

Ink
.

We may assume that nk = k. Take a continuous function f which is
non-zero on I but vanishes outside I. We have

f(h(αn, βn))Aαn
f(h(αn, βn)) ⊆ enAαn

en.

In particular the C∗-algebra on the left-hand side is abelian. It follows
that f(h(α, β))Aαf(h(α, β)) is also abelian (and non-zero), which is
impossible since Aα is a simple C∗-algebra having no abelian hereditary
subalgebras.

We shall prove the following.

THEOREM 4.2. The spectrum h(α, β) is totally disconnected if and
only if the Gelfand spectrum of the abelian C∗-algebra C is homeomor-
phic to a subset of R .

PROOF. We note that the Gelfand spectrum Ω of C is homeomorphic
to the following compact subset of R 2:

∞⋃
n=1

{(
s,

1
n

)∣∣∣ s ∈ Sp(h(αn, βn))
}
∪ {(s, 0)|s ∈ Sp(h(α, β))}.

It follows from 4.1 that the lengths of the connected components of
Sp(h(αn, βn)) converge to zero uniformly in n. First assume that
Sp(h(α, β)) is totally disconnected. Then

R \Sp(h(α, β)) =
∞⋃

k=1

Fk ∪ F−∞ ∪ F+∞,

where F1, F2, . . . are finite open intervals and F−∞, F+∞ are infinite
open intervals, F−∞ is bounded from above, F∞ is bounded from below.
Let

ak := inf Fk, k ∈ N ∪ {∞}, bk := supFk, k ∈ N ∪ {−∞}.
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For each k ∈ N
⋃{∞}, n ∈ N , let I(k)

n be a connected component
of Sp(h(αn, βn)) × {1/n} which has minimum distance from (ak, 0).
Similarly, for each k ∈ N ∪ {−∞}, n ∈ N , let J (k)

n be a connected
component of Sp(h(αn, βn)) × {1/n} which has minimum distance
from (bk, 0). Then {I(k)

n }n∈N converges to (ak, 0) and {J (k)
n }n∈N

converges to (bk, 0). By passing to subsequences and filling in some
left-over intervals, if necessary, we may assume that any two sequences
of intervals with different limits are mutually disjoint and that the
union of all these intervals is equal to Ω. For each k ∈ N ∪{∞} we can
find a sequence {Î(k)

n } of mutually disjoint compact subintervals of Fk

converging to ak and, for each k ∈ N ∪ {−∞}, we can find a sequence
{Ĵ (k)

n } of mutually disjoint compact subintervals of Fk converging to
bk. For k ∈ N we assume that {Î(k)

n } and {Ĵ (k)
n } are mutually

disjoint. Any mapping from ∪∞
n=1Sp(h(αn, βn)) × {1/n} into M =

∪ k∈N∪{∞}
n∈N

I(k)
n ∪ ∪ k∈N ∪{−∞}

n∈N
J (k)

n that maps I(k)
n into Ĵn

(k)
and J (k)

n

onto Ĵ (k)
n , homeomorphically, extends (uniquely) to a homeomorphism

from Ω onto M ∪ Sp(h(α, β)).

Now let us assume that Sp(h(α, β)) is not totally disconnected. Then
there is an open interval I ⊂ Sp(H(α, β)). Pick a point a ∈ I and a
sequence {an} converging to a with an ∈ Sp(h(αn, βn)). The compact
subset {(an, 1/n) |n ∈ N } ∪ (J × {0}) of Ω cannot be embedded
topologically into R . Therefore Ω is not homeomorphic to a subset
of R .
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