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INTERPOLATION OF SPECTRUM OF BOUNDED
OPERATORS ON LEBESGUE SPACES

BRUCE A. BARNES

ABSTRACT. Let μ be a σ-finite positive measure. Assume
1 ≤ p < s < ∞. Let T be a linear operator on Lp(μ) ∩ Ls(μ)
that has bounded extensions Tp and Ts on Lp(μ) and Ls(μ)
respectively. Then T has a bounded extension Tr on Lr(μ), p ≤
r ≤ s. The aim of this paper is to study the relationship between
the spectral and Fredholm properties of the operator Tr and
those of Tp and Ts.

1. Introduction. Let μ be a fixed positive σ-finite measure, and let
Lp = Lp(μ) be the usual Lebesgue spaces relative to μ for 1 ≤ p ≤ ∞.
Assume 1 ≤ p < s < ∞. Suppose T is a linear operator mapping Lp ∩Ls

into itself such that T has bounded extensions Tp on Lp and Ts on Ls.
Then the Riesz Convexity Theorem [7; Theorem 11, p. 525] implies that,
for p < r < s, T has a bounded extension Tr on Lr with

||Tr|| ≤ max{||Tp||, ||Ts||}.
Let σ(T ) denote the spectrum of an operator T . It is not difficult to find
examples where σ(Tr) is different for different r ∈ [p, s]; see for example
[6] or [10, pp. 328 329].

One aim of this paper is to deal with the following questions in the
situation described above:

(i) How does σ(Tr) relate to σ(Tp) and σ(Ts)?

(ii) If Tp and Ts are Fredholm operators, then under what conditions
is Tr a Fredholm operator?

(iii) How does the Fredholm spectrum and the Weyl spectrum of Tr

relate to the same spectra of Tp and Ts?

Some answers to these questions are given in §4 and §5. (The case
where s = ∞ is also included.) Question (i) has been considered by a
number of mathematicians; see [2], [8], [9], and [15].
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These questions are more easily answered when μ is a finite measure.
We give a sample of the type of results obtained in this case. Assuming
μ is finite, if p < r < s, then σ(Tr) ⊆ σ(Tp) ∪ σ(Ts), and for u = r, p, s
and v = r, p, s every component of σ(Tu) has nonempty intersection with
σ(Tv). Also, if Tp and Ts are Fredholm operators with the same index
k, then Tr is Fredholm with index k. It follows from this that the Weyl
spectrum of Tr, denoted W (Tr), has the property

W (Tr) ⊆ W (Tp) ∪ W (Ts).

Our methods for dealing with these questions involve Banach algebra
theory applied to certain algebras of operators. In this regard, the
results of the author’s paper [3] are used frequently throughout. As a
consequence of this method, our results go further than providing answers
to questions (i) (iii). In general we characterize when certain operators
are in the underlying Banach algebra of operators. For example, in
the finite measure case we prove more than the inclusion W (Tr) ⊆
W (Tp) ∪ W (Ts). In fact, we show that when Tk is Fredholm of index
zero on Lk for k = p and s, then ∃ R and ∃ G linear maps on Lp ∩ Ls

such that T = R + G, and Rk is invertible in B(Lk) and Gk is of finite
rank on Lk for k = p and s. Although perhaps not obvious, this latter
result is much stronger than the inclusion result mentioned above.

2. Notation: L∞
0 . Throughout μ is a positive σ-finite measure

defined on a σ-algebra of subsets of a set Ω. When f and g are measurable
functions on Ω with fg ∈ L1(μ), then the notation 〈f, g〉 is defined by

〈f, g〉 =
∫

Ω

fgdμ.

The space Lp = Lp(μ) is the usual Lebesgue space of (equivalence classes
of) complex-valued measurable functions on Ω with the usual norm ||f ||p.
Let Lp,s = Lp ∩ Ls with norm

||f ||p,s = max{||f ||p, ||f ||s}.

Then (Lp,s, || · ||p,s) is a Banach space. As is well-known, when 1 ≤ p <
s ≤ ∞ and p ≤ r ≤ s, then Lp,s ⊆ Lr. A linear operator T : Lp,s → Lp,s

is r-continuous when T is continuous on Lp,s with respect to the r-norm.
In this case, assuming r < ∞, T has a unique extension to a bounded
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linear operator Tr on Lr (the case r = ∞ is considered later). When
T : Lp,s → Lp,s as above, and T is bounded as an operator on the Banach
space Lp,s, then we often write Tp,s for T when referring to properties of
T as an operator on Lp,s.

Let X be a normed linear space. We denote the dual space of X by X ′.
Also, B(X) denotes the Banach algebra of all bounded linear operators
mapping X into X. For T ∈ B(X), let ||T ||op be the operator norm of
T (often the subscript “op” will be omitted). There is the usual bilinear
form 〈·, ·〉 on X × X ′ given by

〈x, α〉 = α(x), x ∈ X, α ∈ X ′.

For T ∈ B(X), let T ′ ∈ B(X ′) be the adjoint operator of T . Thus,

〈Tx, α〉 = 〈x, T ′α〉, x ∈ X, α ∈ X ′.

Assume B is a Banach algebra of operators containing the identity
operator I. Let Inv(B) be the group of invertible elements in B. The
spectrum relative to B of an element T ∈ B is denoted σB(T ). Assume F
is a designated inessential ideal of B [5, p. 42]. We use the notation Φ(B)
for the set of elements in B which are invertible in B modulo F . The set
Φ0(B) are those elements in Φ(B) which have general index function zero
[5, pp. 38 39]. When B = B(X) and F is the ideal in B(X) consisting of
finite rank operators, then we use the notation Inv(X), Φ(X), and Φ0(X)
for these same sets. Also, for T ∈ B(X), the spectrum of T relative to
B(X) is written simply as σ(T ). When T ∈ Φ(X), ind(T ) denotes the
usual index of T on X (the nullity of T minus the defect of T ).

Now we define the Banach space L∞
0 and look at some of the properties

of this space. Let S be the linear space of all simple functions in L1(μ).
Let L∞

0 be the closure of S in L∞. It follows from the definition that if
1 ≤ p < ∞, then the closure of Lp,∞ in L∞ is L∞

0 . In the case where
μ(Ω) < ∞, the space L∞

0 = L∞, but in general, L∞
0 � L∞.

Assuming 1 ≤ p < ∞, when T is a linear operator on Lp,∞ which is ∞-
continuous, then T has a unique extension to a bounded linear operator
T∞ on L∞

0 .

Next we note a property of L∞
0 which is useful in what follows. The

verification of this property is straightforward.

NOTE. For g ∈ L1(μ),

(2.1) ||g||1 = sup{|〈g, f〉| : f ∈ L∞
0 , ||f ||∞ ≤ 1}.



362 B.A. BARNES

Now we prove a result which is used frequently later.

PROPOSITION 2.2. Assume 1 < s ≤ ∞. Assume T : L1,s → L1,s is a
linear operator that is both 1-continuous and s-continuous. Then

T ′
1(L

∞
0 ) ⊆ L∞

0 .

PROOF. First assume s �= ∞ and t is the conjugate exponent of s. For
f ∈ L1,s and g ∈ Lt,∞,

||Ts|| ||f ||s ||g||t ≥ |〈Tf, g〉| = |〈f, T ′
1(g)〉|.

Therefore f → 〈f, T ′
1(g)〉 has a unique extension to a continuous linear

functional α on Ls. There exists a unique h ∈ Lt such that

α(f) = 〈f, h〉, f ∈ Ls.

Thus T ′
1(g) = h ∈ Lt,∞. Now assume g ∈ L∞

0 . Then ∃ {sn} ⊆ S
such that ‖sn − g||∞ → 0. Since S ⊆ Lt,∞, {T ′

1(sn)} ⊆ Lt,∞. Also
||T ′

1(sn) − T ′
1(g)||∞ → 0 and this implies T ′

1(g) ∈ L∞
0 .

Now suppose s = ∞. Fix r, 1 < r < ∞. Then T : L1,r → L1,r and
T is 1-continuous and r-continuous on L1,r. Thus, it follows from the
previous case that (T1)′(L∞

0 ) ⊆ L∞
0 .

3. Certain Banach algebras of operators. Fix p and s, 1 ≤ p <
s ≤ ∞. Let Bp,s be the algebra of all linear operators T : Lp,s → Lp,s

such that T is both p-continuous and s-continuous on Lp,s. Then T has
unique continuous extensions Tp ∈ B(Lp)and Ts ∈ B(Ls)(T∞ ∈ B(L∞

0 )
when s = ∞). The algebra Bp,s is a Banach algebra in the norm

||T || = max{||Tp||, ||Ts||}.

PROPOSITION 3.1. Assume 1 ≤ p < s ≤ ∞ and p < r < s. If T ∈ Bp,s,
then T has a unique extension Tr ∈ B(Lr). Furthermore,

||Tr|| ≤ max{||Tp||, ||Ts||}.
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PROOF. When s �= ∞, the proposition follows immediately from the
Riesz Convexity Theorem [7; Theorem 11, p.525].

Now assume s = ∞. Fix Γ a measurable subset of Ω such that
μ(Γ) < ∞. Let μ̃ be the restriction of μ to Γ. When f ∈ Lu(μ̃, Γ),
define fe ∈ Lu(μ, Ω) by

fe(ω) = f(ω) for ω ∈ Γ

and
fe(ω) = 0 for ω �∈ Γ.

Define TΓ : Lp,∞(μ̃) → Lp,∞(μ) by TΓ(f) = T (fe) when f ∈ Lp,∞(μ̃).
Then TΓ has continuous extensions (TΓ)p : Lp(μ̃) → Lp(μ) and (TΓ)∞ :
L∞(μ̃) → L∞(μ) (note here that Lp,∞(μ̃) = L∞(μ̃) since μ̃(Γ) < ∞).
By the Riesz Convexity Theorem TΓ has a continuous extension (TΓ)r :
(Lr(μ̃) → Lr(μ)) with

||(TΓ)r|| ≤ max{||(TΓ)p||, ||(TΓ)∞||} ≤ M,

where M = max{||Tp||, ||T∞||}. If g ∈ S, then g vanishes outside of some
measurable set Γ with μ(Γ) < ∞. Thus, when g ∈ S and ||g||r ≤ 1, we
have ||T (g)||r = ||TΓ(g)||r ≤ M . Since S is a dense subspace of Lr(μ),
this implies T has a unique extension Tr ∈ B(Lr) with ||Tr|| ≤ M .

Fix 1 ≤ p < s ≤ ∞. We shall always denote the conjugate exponent of
p by q and the conjugate exponent of s by t. Thus p + q = pq, and when
p = 1, then q = ∞.

If f ∈ Lp,s and g is contained in either Lq or Lt, then let g∗⊗ f denote
the operator on Lp,s given by

(g∗ ⊗ f)(h) = 〈h, g〉f, h ∈ Lp,s.

Clearly, g∗ ⊗ f ∈ Bp,s when g ∈ Lq,t. Now define Fp,s to be the set of
all finite rank linear operators on Lp,s which are both p-continuous and
s-continuous. Then Fp,s is an ideal of Bp,s. When s �= ∞,

Fp,s = span{g∗ ⊗ f : f ∈ Lp,s, g ∈ Lq,t}.
When s = ∞, then Fp,∞ is the span of operators of the form g∗ ⊗ f ,
where f ∈ Lp,∞ and g ∈ Lq with the property h → 〈h, g〉 is ∞-continuous
on Lp,∞. In every case, Fp,s is the socle of Bp,s [5, p. 106].
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Following [5; Definition F.2.5, p. 31], we set Φ(Bp,s) to be the set of
all T ∈ Bp,s such that ∃ S ∈ Bp,s and ∃ F, G ∈ Fp,s with

TS = I − F and ST = I − G.

Now we introduce another Banach algebra of operators which will prove
useful in what follows. Let X and Y be Banach spaces and assume there
is a nondegenerate bilinear form 〈·, ·〉 defined on X ×Y and ∃ c > 0 such
that

|〈x, y〉| ≤ c||x|| ||y||, x ∈ X, y ∈ Y.

Let A = A(X, Y ) be the algebra of all T ∈ B(X) such that T has an
adjoint T ′ ∈ B(Y ) relative to the given bilinear form

〈Tx, y〉 = 〈x, T ′y〉, x ∈ X, y ∈ Y.

Then A is a Banach algebra with norm

||T || = max{||T ||op, ||T ′||op}.
The algebra A(X, Y ) is used extensively by K. Jörgens in his book [10]
to study linear integral operators. Also, these algebras and Fredholm
theory relative to them is the focus of [3].

For x ∈ X, y ∈ Y , let y∗ ⊗ x be the operator in A(X, Y ) defined by

(y∗ ⊗ x)(z) = 〈z, y〉x, z ∈ X.

Let F = F(X, Y ) be the algebraic span of the set {y∗⊗x : y ∈ Y, x ∈ X}.
Then F is an inessential ideal of A.

PROPOSITION 3.2. (1) Assume 1 ≤ p < s ≤ ∞, and t ≤ u ≤ q, u �= 1.
Then Bp,s ⊆ A(Lp,s, Lu).

(2) For 1 < s ≤ ∞,B1,s ⊆ A(L1,s, L∞
0 ).

(3) For 1 ≤ p < ∞,Bp,∞ ⊆ A(Lp,∞, (L∞
0 )′).

PROOF. Assume p, s, and u are as in (1). Let r be the conjugate index
of u, so p ≤ r ≤ s, r �= ∞. If f ∈ Lp,s, then f ∈ Lr. Let (Lp,s)×Lu have
the natural bilinear form

〈f, g〉 =
∫

Ω

fgdμ, f ∈ Lp,s, g ∈ Lu.
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Note that, for f ∈ Lp,s,

||f ||r ≤ max{||f ||p, ||f ||s} = ||f ||p,s

by [7; Lemma 9, p. 524]. Thus, using Hölder’s Inequality we have, for
f ∈ Lp,s, g ∈ Lu,

|〈f, g〉| ≤ ||f ||r||g||u ≤ ||f ||p,s||g||u.

Now assume T ∈ Bp,s. Then T ∈ B(Lp,s) since T is both p-continuous
and s-continuous. For g ∈ Lu, define T ′(g) = (Tr)′(g). Then, for f ∈ Lp,s

and g ∈ Lu, 〈Tf, g〉 = 〈f, T ′(g)〉. Therefore T ∈ A(Lp,s, Lu).

Assume 1 < s ≤ ∞. Let (L1,s) × L∞
0 have the natural bilinear form

〈f, g〉 just as above. Assume T ∈ B1,s. Then T ∈ B(L1,s), and, by
Proposition 2.2, T ′

1(L
∞
0 ) ⊆ L∞

0 . Set T ′(g) = T ′
1(g) for g ∈ L∞

0 . Then
clearly

〈Tf, g〉 = 〈f, T ′g〉, f ∈ L1,s, g ∈ L∞
0 .

Therefore T ∈ A(L1,s, L∞
0 ).

Now we verify (3). We use the natural bilinear form on Lp,∞ × (L∞
0 )′

given by
〈f, α〉 = α(f), f ∈ Lp,∞, α ∈ (L∞

0 )′

(note that Lp,∞ ⊆ L∞
0 ). For T ∈ Bp,∞, set T ′ = T ′

∞, so

〈Tf, α〉 = 〈f, T ′α〉, f ∈ Lp,∞, α ∈ (L∞
0 )′.

Since T ∈ B(Lp,∞) and T ′ ∈ B((L∞
0 )′), we have T ∈ A(Lp,∞, (L∞

0 )′).

The next result clarifies the role played by the Banach algebras Bp,s in
the study of properties of the operators Tr, r ∈ [p, s].

THEOREM 3.3. Assume 1 ≤ p < s ≤ ∞ and T ∈ Bp,s. Assume
p ≤ r ≤ s.

(1) If T ∈ Inv(Bp,s), then Tr ∈ Inv(Lr) (Inv(L∞
0 ) when r = ∞).

(2) If T ∈ Φ(Bp,s), then Tr ∈ Φ(Lr) (Φ(L∞
0 ) when r = ∞) and

ind(Tp) = ind(Tr) = ind(Ts) = ind(Tp,s). In addition, when p =
1, (T ′

1|L∞
0 ) ∈ Φ(L∞

0 ) and ind(T1,s) = −ind(T ′
1|L∞

0 ).
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PROOF. The assertion in (1) is elementary since T → Tr is an algebra
monomorphism of Bp,s into B(Lr) (B(L∞

0 ) when r = ∞).

To prove (2), suppose that T ∈ Φ(Bp,s). Then ∃ S ∈ Bp,s and
∃ G, F ∈ Fp,s such that ST = I−F and TS = I−G. Thus on Lr (L∞

0 if
r = ∞), SrTr = I−Fr and TrSr ∈ I−Gr. Therefore Tr ∈ Φ(Lr) (Φ(L∞

0 )
if r = ∞).

Now assume 1 ≤ r < ∞, and let u be the conjugate exponent of r.
By Proposition 3.2 Bp,s ⊆ A = A(Lp,s, Lu). Also, F, G ∈ F(Lp,s, Lu).
It follows that T ∈ Φ(A). Therefore [3, Theorem 2.5 (3)] implies that
Tp,s ∈ Φ(Lp,s), T ′

r ∈ Φ(Lu), and ind(Tp,s) = −ind(T ′
r). By standard

Fredholm theory [16; Theorem 4.1, p. 120], ind(Tr) = −ind(T ′
r). Thus

ind(Tp,s) = ind(Tr) whenever p ≤ r ≤ s, r �= ∞.

Again, by Proposition 3.2 B1,s ⊆ A = A(L1,s, L∞
0 ) whenever 1 < s ≤

∞. Also, for T ∈ B1,s, the adjoint T ′ of T on L∞
0 is (T ′

1|L∞
0 ). Thus,

when T ∈ Φ(B1,s), T ∈ Φ(A); so by [3, Theorem 2.5 (3)], T1,s ∈ Φ(L1,s),
(T ′

1|L∞
0 ) ∈ Φ(L∞

0 ), and ind(T1,s) = −ind(T ′
1|L∞

0 ).

Now assume 1 ≤ p < ∞. By Proposition 3.2(3), Bp,∞ ⊆ A =
A(Lp,∞, (L∞

0 )′). An argument analogous to the previous ones shows
that in this case when T ∈ Φ(Bp,∞), then T ∈ Φ(A), and thus,
ind(Tp,∞) = ind(T∞).

These three cases complete the proof of (2).

The final result of this section is an elementary proposition which
proves useful later.

PROPOSITION 3.4. Assume 1 ≤ p < s ≤ ∞.

(1) If R ∈ A(Lp,s, Lt), then R is s-continuous on Lp,s.

(2) If R ∈ A(Lp,s, Lq), then R is p-continuous on Lp,s.

(3) If R ∈ A(L1,s, L∞
0 ), then R is 1-continuous on L1,s.

PROOF. The proofs of (1), (2) and (3) are similar. We prove

(1). For f ∈ Lp,s, g ∈ Lt,

|〈Rf, g〉| = |〈f, R′g〉| ≤ ||f ||s||R′g||t ≤ ||f ||s||R′|| ||g||t.
Taking the sup over {g ∈ Lt : ||g||t ≤ 1} we have ||Rf ||s ≤ ||R′|| ||f ||s.
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The proof of (3) uses the equality in (2.1).

4. The situation when µ is finite or special discrete. In some
important cases the algebra Bp,s can be identified with one of the algebras
A(X, Y ). We consider this situation next.

Assume Ω is the set of positive integers and μ is a positive measure
defined on the σ-algebra of all subsets of Ω. Set μk = μ({k}) for k ∈ Ω.
We call μ special discrete if the situation just described holds, μk is finite
for all k, and the set of numbers {μk : k ≥ 1} is bounded away from zero.
We write �p(μ) in place of Lp(μ) in this case. The notations c0 and �1 are
reserved for the usual classical Banach spaces of sequences. Note that
when μ is special discrete, then c0 = L∞

0 (μ).

THEOREM 4.1.

(1) Assume 1 ≤ p < s ≤ ∞. If μ is finite, then Bp,s = A(Ls, Lq).

(2) Assume 1 ≤ p < s < ∞. If μ is special discrete, then Bp,s =
A(�p(μ), �t(μ)).

(3) Assume 1 ≤ p < ∞. If μ is special discrete, then Bp,∞ =
A(�p(μ), �1).

PROOF. When μ is finite, then L∞ ⊆ Ls ⊆ Lp ⊆ L1. Thus, Lp,s = Ls.
By Proposition 3.2 Bp,s ⊆ A = A(Lp,s, Lq) = A(Ls, Lq). Now assume
T ∈ A(Ls, Lq). Certainly T is s-continuous on Lp,s = Ls. But also, from
Proposition 3.4, T is p-continuous on Ls. It follows that T ∈ Bp,s = B.
Also note, for T ∈ B,

||T ||B = max{||Ts||, ||Tp||} = max{||Ts||, ||T ′
p||} = ||T ||A.

This proves (1).

The proof of (2) is essentially the same using the fact that when μ is
special discrete and 1 ≤ p < s ≤ ∞, then �1(μ) ⊆ �p(μ) ⊆ �s(μ) ⊆ c0.

Again, the proof of (3) is similar, but we outline it. Define the natural
bilinear form on �p(μ) × �1 by

〈a, b〉 =
∞∑

k=1

akbkμk, a = {ak} ∈ �p(μ), b = {bk} ∈ �1.
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If T ∈ Bp,∞, then T∞ is defined on c0, so T ′
∞ is defined on c′0 = �1.

Setting T ′(b) = T ′
∞(b) for b ∈ �1, we have

〈Ta, b〉 = 〈a, T ′b〉, a ∈ �p(μ), b ∈ �1.

Thus, Bp,∞ ⊆ A(�p(μ), �1). If T ∈ A(�p(μ), �1), then T is p-continuous
on �p(μ). An argument similar to the proof of Proposition 3.4 shows that
T is also ∞-continuous on �p(μ). This proves Bp,∞ = A(�p(μ), �1).

Having determined in the cases under consideration that Bp,s is of
the form A(X, Y ), we can use the spectral and Fredholm theory of
these latter algebras as developed in [3]. Thus, the next theorem is
an immediate application of [3, Theorem 2.5], using Theorem 4.1 and
standard properties of the adjoint operator [16; Theorem 4.1, p. 120].

THEOREM 4.2. Assume that μ is either a finite or a special discrete
measure. Assume 1 ≤ p < s ≤ ∞ and T ∈ Bp,s.

(1) T ∈ Inv(Bp,s) if and only if Tp ∈ Inv(Lp) and Ts ∈ Inv(Ls) (Inv(c0)
when μ is special discrete and s = ∞).

(2) T ∈ Φ0(Bp,s) if and only if Tp ∈ Φ0(Lp) and Ts ∈ Φ0(Ls) (Φ0(c0)
when μ is special discrete and s = ∞).

(3) T ∈ Φ(Bp,s) if and only if Tp ∈ Φ(Lp), Ts ∈ Φ(Ls) (Φ(c0) when μ
is special discrete and s = ∞), and ind(Tp) = ind(Ts).

For an operator T ∈ B(X) let

ω(T ) = {λ ∈ C : (λI − T ) �∈ Φ(X)},

and
W (T ) = {λ ∈ C : (λI − T ) �∈ Φ0(X)}.

The set ω(T ) is the Fredholm spectrum of T , and W (T ) is the Weyl
spectrum of T .

THEOREM 4.3. Assume μ is either a finite measure or a special discrete
measure. Assume 1 ≤ p < s ≤ ∞, and p < r < s. Suppose T ∈ Bp,s.

(1) σ(Tr) ⊆ σ(Tp) ∪ σ(Ts);
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(2) W (Tr) ⊆ W (Tp) ∪ W (Ts);

(3) ω(Tr) ⊆ ω(Tp) ∪ ω(Ts) ∪ ω0

where ω0 = {λ �∈ ω(Tp) ∪ ω(Ts) : ind(λI − Tp) �= ind(λI − Ts)}.

PROOF. This result is a direct application of Theorem 4.2 and Theorem
3.3.

A much stronger conclusion than that in Theorem 4.3(1) holds in the
special case where T2 exists and is selfadjoint, T ∗

2 = T2.

THEOREM 4.4. Assume that μ is either a finite or a special discrete
measure. Suppose 2 < s ≤ ∞, T ∈ B2,s, and T2 = T ∗

2 . If 2 ≤ r ≤ v ≤ s
then σ(Tr) ⊆ σ(Tv). Suppose 1 ≤ p < 2, T ∈ Bp,2, and T2 = T ∗

2 . If
p ≤ v ≤ r ≤ 2, then σ(Tr) ⊆ σ(Tv).

PROOF. We give the proof when μ is a finite measure. The proof when
μ is special discrete is similar. Note that in the first case to prove that
σ(Tr) ⊆ σ(Tv) it suffices to prove σ(Tr) ⊆ σ(Ts) (since T ∈ B2,s ⊆ B2,v).
Similarly, in the second case it suffices to prove σ(Tr) ⊆ σ(Tp).

Assume 2 < s ≤ ∞, T ∈ B2,s, and T2 = T ∗
2 . Since μ is finite Ls ⊆ L2,

Ls is an inner product space with

|(f, g)| = |
∫

Ω

fgdμ| ≤ ||f ||2||g||2 ≤ c||f ||s||g||s

for some c > 0, for all f, g ∈ Ls. In this situation a result of P. Lax [12]
implies that σ(T2) ⊆ σ(Ts). Now suppose 2 ≤ r ≤ s. By Theorem 4.3,
σ(Tr) ⊆ σ(T2) ∪ σ(Ts) = σ(Ts).

Assume 1 ≤ p < 2, T ∈ Bp,s, and T2 = T ∗
2 . For f ∈ Lq,

||T ′
p(f)||2 = sup{|〈g, T ′

pf〉| : g ∈ Lp,2, ||g||2 ≤ 1}
= sup{|〈Tpg, f〉| : g ∈ Lp,2, ||g||2 ≤ 1} ≤ ||T2|| ||f ||2.

Thus, T ′
p is 2-continuous on Lq. This implies T ′

p ∈ B2,q.

Next we verify that T ′
2 is selfadjoint. For f, g ∈ L2,

(T ′
2(f), g) = 〈T ′

2(f), g〉 = 〈f, T2(g)〉 = (f, T2(g))− = (T2(f), g)−

= 〈T2(f), g〉− = 〈f, T ′
2(g)〉− = (f, T ′

2(g)).
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Assume p ≤ r ≤ 2. Let u be the conjugate exponent of r. Now
T ′

r coincides with T ′
p on Lq. It follows that (T ′

p)u = T ′
r. We have

2 ≤ u ≤ q, T ′
p ∈ B2,q, and T ′

2 = (T ′
p)2 is selfadjoint. This implies

by the previous case that σ((T ′
p)u) ⊆ σ(T ′

p). Thus σ(T ′
r) ⊆ σ(T ′

p), so
σ(Tr) ⊆ σ(Tp).

Next we prove a general Banach algebra result which is a small
generalization of [1; Proposition 2.2, p. 276]. Here A and B are unital
Banach algebras. It is easy to verify that when ϕ : B → A is a unital
(algebra) monomorphism, then

σA(ϕ(b)) ⊆ σB(b), b ∈ B.

THEOREM 4.5. Assume that ϕ : B → A is a continuous unital algebra
monomorphism (or anti-monomorphism). If b ∈ B and Δ is a component
of σB(b), then Δ ∩ σA(ϕ(b)) is nonempty.

PROOF. First suppose that Δ is a nonempty open and closed subset of
σB(b). If Δ ∩ σA(ϕ(b)) is empty, then σB(b) = Δ ∪ Γ where Γ is open
and closed in σB(b), Δ and Γ are disjoint, and σA(ϕ(b)) ⊆ Γ. Choose U
and V disjoint open subsets of C with Δ ⊆ V and Γ ⊆ U . Define

f(λ) =
{

1, λ ∈ U,

0, λ ∈ V,

g(λ) = 1 − f(λ), λ ∈ U ∪ V.

Using the usual operational calculus in a Banach algebra, we have
f(b), g(b) ∈ B with 1 = f(b) + g(b). Note that g(b) �= 0 since Δ is
nonempty. Also, f(ϕ(b)) ∈ A, and since ϕ is continuous, ϕ(f(b)) =
f(ϕ(b)). But as σA(ϕ(b)) ⊆ Γ and f ≡ 1 on Γ, it follows that f(ϕ(b)) is
the unit of A. Thus, f(b) = 1, a contradiction.

Now assume that Δ is a component of σB(b). Suppose Δ ∩ σA(ϕ(b))
is empty. Let ε = dist (Δ, σA(ϕ(b))) > 0. By [13, Corollary 1, p. 83]
there exists an open and closed subset Ω of σB(b) such that Δ ⊆ Ω and
dist (ω, Δ) < ε for all ω ∈ Ω. By the previous argument Ω ∩ σA(ϕ(b)) is
nonempty, a contradiction.

Now we apply Theorem 4.5 in our situation.
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THEOREM 4.6. Assume μ(Ω) < +∞ or μ is special discrete. Fix
p and s with 1 ≤ p < s ≤ ∞. Assume p ≤ r ≤ s. If T ∈ Bp,s, then
every component of σ(Tr) has nonempty intersection with both σ(Tp) and
σ(Ts). A component of either σ(Tp) or σ(Ts) has nonempty intersection
with σ(Tr).

PROOF. Assume T ∈ Bp,s. Suppose r �= s, so that T ∈ B = Br,s. By
Theorem 4.2(1), σB(T ) = σ(Tr) ∪ σ(Ts). Suppose Δ is a component of
σ(Tr). If Δ∩σ(Ts) is empty, then Δ is a component of σB(T ). But since
the embedding ϕ : B → B(Ls) (B(L∞

0 ) if s = ∞) given by ϕ(T ) = Ts

is a continuous monomorphism, this contradicts Theorem 4.4. Thus,
Δ ∩ σ(Ts) must be nonempty. Now suppose Δ is a component of σ(Ts).
The same argument as above, interchanging the roles of r and s, proves
that Δ ∩ σ(Tr) must be nonempty.

Similar arguments prove the remaining assertions of the theorem.

COROLLARY 4.7. If λ0 is an isolated point of either σ(Tp) or σ(Ts),
then λ0 ∈ σ(Tr) whenever p ≤ r ≤ s. Thus, if the isolated points of σ(Tj)
are dense in σ(Tj) for j = p and j = s, then σ(Tp) = σ(Tr) = σ(Ts)
whenever p ≤ r ≤ s.

If σ(Tp) and σ(Ts) are totally disconnected, then σ(Tp) = σ(Tr) =
σ(Ts) whenever p ≤ r ≤ s.

Results similar to Theorem 4.6 and Corollary 4.7 are proved in [2, 8,
and 15]. A stronger result than Corollary 4.7 can be derived by using
[9, Proposition 7.1].

Assume that μ is either finite or special discrete. Suppose T ∈ Bp,s.
The next result implies that ind(Tr) (for r where this makes sense) is
monotone in r on the interval [p, s].

THEOREM 4.8. Assume X and Y are Banach spaces, and X is a
dense subspace of Y with X continuously embedded in Y . Assume
T ∈ B(Y ) and T (X) ⊆ X. Denote the restriction of T to X by Tr.
Then Tr ∈ B(X). If T ∈ Φ(Y ) and Tr ∈ Φ(X), then ind(Tr) ≤ ind(T ).

PROOF. It is easy to verify that Tr is closed on X, and hence
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Tr ∈ B(X).

Since N (Tr) ⊆ N (T ), it follows that nul(Tr) ≤ nul(T ). Now assume
{α1, . . . , αn} is a linearly independent subset of N (T ′). Then

αk(T (Y )) = {0}, 1 ≤ k ≤ n.

Also, αk ∈ X ′ for all k since X is continuously embedded in Y .
Because X is dense in Y, {α1, . . . , αn} is a linearly independent subset
of X ′. Finally, αk(Tr(X)) = {0}, 1 ≤ k ≤ n, and it follows that
def(Tr) ≥ def(T ). This proves ind(Tr) ≤ ind(T ).

The following corollary is an immediate consequence of the theorem.

COROLLARY 4.9. Assume 1 ≤ p < s ≤ ∞ and T ∈ Bp,s. Suppose
p ≤ r ≤ u ≤ s and Tr ∈ Φ(Lr), Tu ∈ Φ(Lu) (Tu ∈ Φ(c0) when u = ∞
and μ is special discrete).

(1) When μ is finite, then ind(Tu) ≤ ind(Tr).

(2) When μ is special discrete, then ind(Tr) ≤ ind(Tu).

5. The general situation. In general the spectral and Fredholm
theory of an operator T ∈ Bp,s is more complicated than that presented
in §4. In fact, the properties of Tp, Ts, and also of Tp,s, are involved in
the general theory. This is already clear in the following result.

THEOREM 5.1. Assume 1 ≤ p < s ≤ ∞ and T ∈ B = Bp,s.

(1) T ∈ Inv(Bp,s) if and only if Tp ∈ Inv(Lp), Ts ∈ Inv(Ls) (Inv(L∞
0 )

when s = ∞), and Tp,s ∈ Inv(Lp,s).

(2) σB(T ) = σ(Tp) ∪ σ(Ts) ∪ σ(Tp,s).

(3) Let APσ(Tp,s) denote the approximate point spectrum of Tp,s. Then

∂σ(Tp,s) ⊆ APσ(Tp,s) ⊆ σ(Tp) ∪ σ(Ts).

(4) ∂σB(T ) ⊆ σ(Tp) ∪ σ(Ts) ⊆ σB(T ).

PROOF. The “only if” direction in (1) is easy to verify. Assume Tp, Ts,
and Tp,s are invertible. To prove that T ∈ Inv(Bp,s) it suffices to show
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that (Tp,s)−1 is p-continuous and s-continuous on Lp,s. Since Tp,s is
invertible, T maps Lp,s onto Lp,s. Then T−1

p , T−1
s and (Tp,s)−1 coincide

on Lp,s which proves the desired continuity property.

(2) follows immediately from (1).

To prove (3), assume λ ∈ APσ(Tp,s). Then ∃ {fn} ⊆ Lp,s with
||fn‖p,s = max(||fn||p||fn||s) = 1 for n ≥ 1 and ||(λI − Tp,s)fn||p,s → 0.
There is a subsequence {gn} of {fn} such that ||gn||k = 1, n ≥ 1, for
k either p or s. Suppose ||gn||p = 1 for all n. Then ||(λI − Tp)gn||p ≤
||(λI − Tp,s)gn||p,s → 0. Thus λ ∈ APσ(Tp). This proves

APσ(Tp,s) ⊆ σ(Tp) ∪ σ(Ts).

It is well-known that ∂σ(Tp,s) ⊆ APσ(Tp,s) [11, Theorem 4.1, p. 282].
This proves (3).

Finally, we prove (4). By (1) we have σB(T ) = σ(Tp)∪σ(Ts)∪σ(Tp,s).
Therefore using (3) we have ∂σB(T ) ⊆ ∂σ(Tp) ∪ ∂σ(Ts) ∪ ∂σ(Tp,s) ⊆
σ(Tp) ∪ σ(Ts).

COROLLARY 5.2. Assume 1 ≤ p < s ≤ ∞ and T ∈ Bp,s. Assume
p ≤ r ≤ s. If σ(Tp) and σ(Ts) are totally disconnected, then σ(Tr) =
σ(Tp) = σ(Ts).

PROOF. By Theorem 5.1(3) ∂σ(Tp,s) ⊆ σ(Tp) ∪ σ(Ts) which is a
totally disconnected set. Therefore ∂σ(Tp,s), and hence σ(Tp,s), is totally
disconnected. Then σB(T ) is totally disconnected by Theorem 5.1(2).
Now T → Tr is a continuous monomorphism of Bp,s into B(Lr) (B(L∞

0 )
when r = ∞). It follows from Theorem 4.5 that σ(Tr) = σB(T ) for all
r ∈ [p, s].

Corollary 5.2 also follows from results of D. Herrero [9] or H. Schaefer,
[16].

For K a compact subset of C, let K̂ denote the polynomial convex hull
of K; see [18, p. 23]. From the definition it is easy to see that when K
and J are compact subsets of C with ∂K ⊆ J ⊆ K, then K̂ = Ĵ .

We have the following corollary of Theorem 5.1.

THEOREM 5.3. Assume 1 ≤ p < s ≤ ∞ and p < r < s. Assume



374 B.A. BARNES

T ∈ Bp,s. Then

σ(Tr) ⊆ σ(Tp) ∪ σ(Ts) ∪ σ(Tp,s) and σ(Tr) ⊆ [σ(Tp) ∪ σ(Ts)]∧.

PROOF. Clearly σ(Tr) ⊆ σB(T ), so the first inclusion follows from
Theorem 5.1(2). But also, by Theorem 5.1(4),

σ(Tr) ⊆ [σB(T )]∧ = [σ(Tp) ∪ σ(Ts)]∧.

Theorem 5.3 can also be derived from [17, Lemma 1.7].

Now we prove a characterization of Φ0(Bp,s) which has as an application
(Corollary 5.5) an inclusion relation for the Weyl spectrum of Tr, r ∈
[p, s].

THEOREM 5.4. Assume 1 ≤ p < s ≤ ∞, and T ∈ Bp,s.

(1) When either p �= 1 or s �= ∞, then the following are equivalent:

(i) T ∈ Φ0(Bp,s);

(ii) Tp ∈ Φ0(Lp), Ts ∈ Φ0(Ls) (Φ0(L∞
0 ) when s = ∞), and Tp,s ∈

Φ0(Lp,s);

(iii) ∃ R ∈ Inv(Bp,s) and ∃ G ∈ Fp,s such that T = R + G.

(2) When p = 1 and s = ∞, then (i) and (iii) are equivalent to (ii)′

T1 ∈ Φ0(L1), (T ′
1|L∞

0 ) ∈ Φ0(L∞
0 ), T∞ ∈ Φ0(L∞

0 ), and T1,∞ ∈ Φ0(L1,∞).

PROOF. Assume s �= ∞. First we prove that (ii) ⇒ (iii) in this case. By
Proposition 3.2, Bp,s ⊆ A = A(Lp,s, Lt). By hypothesis, Tp,s ∈ Φ0(Lp,s)
and Ts ∈ Φ0(Ls). By [15; Theorem 4.1, p. 120], T ′

s ∈ Φ0(Lt). It
follows from [3, Corollary 2.6] that T ∈ Φ0(A) and that ∃ S ∈ Inv(A)
and ∃ F ∈ F(Lp,s, Lt) such that T = S + F . Now F has the form,
F =

∑n
k=1 hk ⊗ fk where fk ∈ Lp,s and hk ∈ Lt, 1 ≤ k ≤ n. Given

ε > 0 we can choose G of the form G =
∑n

k=1 gk ⊗ fk, where gk ∈ Lq,t

such that ||F − G||A < ε (this is possible since Lq,t is dense in Lt and
||F −G||A ≤ ∑n

k=1 ||hk −gk||t||fk||p,s). Choose such a G with ||F −G||A
sufficiently small that T − G ∈ Inv(A). Set R = T − G, so T = R + G.
Note that G ∈ Fp,s as required. Also, R is p-continuous and s-continuous
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on Lp,s. It remains to be shown that R ∈ Inv(Bp,s). Since R ∈ Inv(A),
then, by [3, Theorem 2.5], Rp,s ∈ Inv(Lp,s) and Rs ∈ Inv(Ls) (since
R′

s ∈ Inv(Lt)). Now Rp = Tp−Gp ∈ Φ0(Lp) and Rp maps Lp,s onto Lp,s.
This implies Rp ∈ Inv(Lp). Therefore, by Theorem 5.1, R ∈ Inv(Bp,s).
This completes the proof that (ii) ⇒ (iii) when s �= ∞.

Now assume p �= 1, s = ∞. Then, by Proposition 3.2, Bp,∞ ⊆ A =
A(Lp,∞, Lq). The argument proceeds just as in the previous case to
show that T ∈ Φ0(A), so that T = S + F where S ∈ Inv(A) and F ∈
F(Lp,∞, Lq). Again choose G ∈ Fp,∞ such that R = T − G ∈ Inv(A).
The proof that R ∈ Inv(Bp,∞) proceeds as in the previous argument.

Next we prove that when p = 1 and s = ∞, then (ii)′ ⇒ (iii). In
fact, the argument is similar to the two previous arguments. In this
case B1,∞ ⊆ A = A(L1,∞, L∞

0 ) by Proposition 3.2. By hypothesis
T1,∞ ∈ Φ0(L1,∞) and (T ′

1|L∞
0 ) ∈ Φ0(L∞

0 ). Thus, by [3, Corollary 2.6],
T ∈ Φ0(A) and ∃ S ∈ Inv(A) and F ∈ F(L1,∞, L∞

0 ) such that T = S+F .
Then choose G ∈ F(L1,∞, L1,∞) such that ||F −G||A is sufficiently small
that R = T − G ∈ Inv(A). Thus T = R + G and G ∈ F1,∞. By
construction R is both 1-continuous and ∞-continuous on L1,∞, and so
R ∈ B1,∞. Now R1,∞ ∈ Inv(L1,∞) (since R ∈ Inv(A)). By hypothesis
R1 = T1 − G1 ∈ Φ0(L1) and R∞ = T∞ − G∞ ∈ Φ0(L∞

0 ). Since R maps
L1,∞ onto L1,∞, we have R1 ∈ Inv(L1) and R∞ ∈ Inv(L∞

0 ). Therefore,
by Theorem 5.1, R ∈ Inv(B1,∞).

Now (i) and (iii) are equivalent by [5; Theorem F.2.11, p. 33]. Finally,
when (iii) holds, Tp = Rp + Gp where Rp ∈ Inv(Lp) and Gp has
finite dimensional range in Lp. Thus, Tp ∈ Φ0(Lp). Similarly, Ts ∈
Φ0(Ls) (Φ0(L∞

0 ) when s = ∞) and Tp,s ∈ Φ0(Lp,s).

COROLLARY 5.5. Assume 1 ≤ p < s ≤ ∞ with either p �= 1 or s �= ∞
and p < r < s. Assume T ∈ Bp,s. If Tp ∈ Φ0(Lp), Ts ∈ Φ0(Ls) (Φ0(L∞

0 )
when s = ∞) and Tp,s ∈ Φ0(Lp,s), then Tr ∈ Φ0(Lr). Thus,

W (Tr) ⊆ W (Tp) ∪ W (Ts) ∪ W (Tp,s).

Finally, we look at the general Fredholm properties of an operator
T ∈ Bp,s.

THEOREM 5.6. Assume 1 ≤ p < s ≤ ∞.
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(1) Assume either s �= ∞ or p �= 1. Then T ∈ Φ(Bp,s) if and only
if Tp ∈ Φ(Lp), Ts ∈ Φ(Ls) (Φ(L∞

0 ) if s = ∞), Tp,s ∈ Φ(Lp,s), and
ind(Tp) = ind(Ts) = ind(Tp,s).

(2) T ∈ Φ(B1,∞) if and only if T1 ∈ Φ(L1), (T ′
1|L∞

0 ) ∈ Φ(L∞
0 ), T∞ ∈

Φ(L∞
0 ), T1,∞ ∈ Φ(L1,∞) and ind(T1) = ind(T∞) = ind(T1,∞) =

−ind(T ′
1|L∞

0 ).

PROOF. Assume Tp, Ts, and Tp,s satisfy the conditions stated in (1).
We prove that T ∈ Φ(Bp,s). First assume s �= ∞. By Proposition
3.2 we have Bp,s ⊆ A = A(Lp,s, Lt) and Bp,s ⊆ Ã = A(Lp,s, Lq). By
assumption Tp,s ∈ Φ(Lp,s), Ts ∈ Φ(Ls) and ind(Tp,s) = ind(Ts). Thus,
T ′

s ∈ Φ(Lt) and ind(Tp,s) = −ind(T ′
s). Therefore, by [3, Theorem 2.5],

T ∈ Φ(A). An exactly analogous argument shows that T ∈ Φ(Ã). Since
T ∈ Φ(A), ∃ R ∈ A and ∃ F, G ∈ F(Lp,s, Lt) such that

RT = I − F and TR = I − G.

Choose E ∈ F(Lp,s, Lt,q) such that ||F − E||A < 1. Then ||I − RT −
E||A = ||F − E||A < 1. By standard Banach algebra theory, ∃ W ∈ A
such that

(3) W (RT + E) = I = (RT + E)W.

By proposition 3.4 WR is s-continuous on Lp,s. Also

(4) (WR)T = I − WE and WE ∈ F(Lp,s, Lt,q).

Since T ∈ Φ(Ã), ∃ V ∈ Ã and ∃ K ∈ F(Lp,s, Lq) with TV = I − K. By
Proposition 3.4, V is p-continuous on Lp,s. Now, by (4),

(WR)(I − K) = (WR)TV = V − WEV.

Thus,
WR = WRK + V − WEV.

Since all of the operators on the right are p-continuous, WR is p-
continuous. Therefore WR ∈ Bp,s. By (4), (WR)T = I − WE and
WE ∈ Fp,s. By (3), (RT +E)W = I. Thus, TRT (WR) = TR−TEWR.
Using the fact that TR = I − G, we have

T (WR) = I − G + GTWR − TEWR.
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Then −G + GTWR − TEWR is a finite rank operator in Bp,s. This
completes the proof that T ∈ Φ(Bp,s).

Now assume p �= 1, s = ∞. Let A = A(Lp,∞, Lq) and Ã =
A(Lp,∞, (L∞

0 )′). Then, by Proposition 3.2, Bp,∞ ⊆ A and Bp,∞ ⊆ Ã. As
in the previous case, the assumptions imply T ∈ Φ(A) and T ∈ Φ(Ã).
The argument then follows exactly the argument in the first case. This
completes the proof of the “if” direction of (1).

Now assume T1, T∞, and T1,∞ satisfy the conditions stated in (2). By
Proposition 3.2, T ∈ A = A(L1,∞, L∞

0 ) and T ∈ Ã = A(L1,∞, (L∞
0 )′).

Again, the argument proceeds just as in the proof of (1). The assump-
tions that (T ′

1|L∞
0 ) ∈ Φ(L∞

0 ) and ind(T1,∞) = −ind(T ′
1|L∞

0 ) are used to
show T ∈ Φ(A).

The “only if” assertions in (1) and (2) follow from Theorem 3.3.

COROLLARY 5.7. Assume 1 ≤ p < s ≤ ∞, with p �= 1 or s �= ∞ and
p < r < s. If T ∈ Bp,s, then

ω(Tr) ⊆ ω(Tp) ∪ ω(Ts) ∪ ω(Tp,s) ∪ ω1,

where ω1 is the set of all λ �∈ ω(Tp)∪ ω(Ts)∪ω(Tp,s) such that ind(λI −
Tp), ind(λI − Ts), and ind(λI − Tp,s) are not all three equal.
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