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NONCOMMUTATIVE RANDOM VARIABLES
AND SPECTRAL PROBLEMS IN
FREE PRODUCT C∗-ALGEBRAS

DAN VOICULESCU

ABSTRACT. This paper is a write up of the author’s lec-
tures on spectral problems in free product C∗-algebras at
GPOTS 1987 in Lawrence, Kansas. We give an overview of
our work on these questions [22, 23, 24, 25, 26] together
with the motivating analogies, examples, explicit computa-
tions and open problems.

1. Free products of C ∗-Algebras and Hilbert spaces.

1.1. We will work in the category C∗ of unital C∗-algebras and
unit-preserving ∗-homomorphisms. This is why the free products, we
consider, correspond to what are usually called free products with
amalgamation over C.

The free product of C∗-algebras Aι, ι ∈ I, is their categorical direct
sum in C∗, i.e., a C∗-algebra A with injections αι : Aι↪→A such that
every collection of ρι : Aι → B corresponds to precisely one ρ : A → B
such that ρι = ρ ◦ αι.

In practice the free product algebra A, denoted ∗ι∈IAι, can be viewed
as the algebraic free product completed with respect to the largest C∗-
seminorm which restricts on the Aι’s to their given norms.

EXAMPLE 1.2. If Gι are discrete groups, ι ∈ I, and G is their free
product ∗Gι, then C∗(G) is isomorphic to ∗C∗(Gι).

1.3. Let (Hι, ξι) be Hilbert spaces with specified unit vectors
ξι ∈ Hι, ||ξι|| = 1. We define a Hilbert space with specified unit
vector (H, ξ) = ∗ι∈I(Hι, ξι), the free product of the (Hι, ξι)’s. Let
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H0
ι = Hι � Cξι and define

H = Cξ ⊕
⊕

n

⊕
ι1 �=ι2 �=···�=ιn

H0
ι1 ⊗H0

ι2 ⊗ · · · ⊗ H0
ιn

.

EXAMPLE 1.4. If Gι are discrete groups and ξι ∈ �2(Gι), ξι(g) = δg,e,
then

∗ι∈I(�2(Gι), ξι) = (�2(G), ξ),

where G = ∗ι∈IGι and ξ(g) = δg,e.

EXAMPLE 1.5. If H is a Hilbert space let

T (H) = C1 ⊕
⊕
n≥1

H⊗n

be the Fock-space for Boltzmann statistics. Then we have

(T (H1 ⊕H2), 1) = (T (H1), 1) ∗ (T (H2), 1).

1.6. If (H, ξ) = ∗ι∈I(Hι, ξι) then there are natural isomorphisms
H 	 Hι ⊗H(ι), where

H(ι) = Cξ ⊕
⊕

n

⊕
ι1 �=ι2 �=···�=ιn

ι1 �=ι

H0
ι1 ⊗ · · · ⊗ H0

ιn

and where ξι ⊗ ξ corresponds to ξ and H0
ι ⊗ ξ to H0

ι .

1.7. Let (Aι, ϕι) be C∗-algebras with specified states. The GNS
construction yields Hilbert spaces with specified unit vectors (Hι, ξι)
and representations πι of Aι on Hι.

If (H, ξ) = ∗ι∈I(Hι, ξι),the isomorphisms H 	 Hι ⊗ H(ι) yield
representations of the Aι’s on H and hence a representation of A =
∗ι∈IAι on H. The state ϕ of A corresponding to the vector ξ in H
is called the free product of the states ϕι, ϕ = ∗ι∈Iϕι. If the ϕι’s are
traces, then ϕ is also a trace state.
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The C∗-algebra Ared generated by ∪ι∈Iπι(Aι) is called the reduced
free product of the (Aι, ϕι) and we write (Ared , ϕ) = ∗ι∈I(Aι, ϕι).

1.8. The free product state ϕ is characterized by the following
properties:

ϕ(αι1(a1)αι2(a2) · · ·αιn
(an)) = 0

whenever ι1 �= ι2 �= · · · �= ιn, aj ∈ Aιj
and ϕιj

(aj) = 0.

EXAMPLE 1.9. If Gι(ι ∈ I) are discrete groups and G = ∗ι∈IGι, let
τι and, respectively, τ be the corresponding canonical trace states on
C∗(Gι), respectively, C∗(G). Then we have C = ∗ι∈ICι.

Slightly abusing notations we shall also denote by τι and τ the
canonical traces on C∗

red (Gι) and C∗
red (G). We have (C∗

red (G), τ ) =
∗ι∈I(C∗(Gι), τι) and also (C∗

red (G), τ ) = ∗ι∈I(C∗
red (Gι), τι).

EXAMPLE 1.10. On T (H) let �(h), h ∈ H, be the operator �(h)η =
h⊗η. Let C∗(�(H)) be the C∗-algebra generated by the �(h)’s and let
ω1 be the state determined by 1 ∈ T (H). If (ej)j∈J is an orthonormal
basis in H then

∑
�(ej)�(ej)∗ ≤ I and I −

∑
�(ej)�(ej)∗ �= 0,

which shows that C∗(�(H)) is a Cuntz-algebra if H is infinite-dimen-
sional or an extension of a Cuntz-algebra if dimH < ∞. If dimH =
1, C∗(�(H)) is the C∗-algebra of a unilateral shift. If H =

⊕
ι∈I Hι

then we have

(C∗(�(H)), ω1) = ∗ι∈I(C∗(�(Hι)), ω1).

In particular C∗(�(H)) is the reduced free product of the C∗(�(Cej))
with j ∈ J .

2. Free families of noncommutative random variables and
the analogue of the Gaussian functor. There seems to be a rather
far reaching analogy between tensor products and free products, in
which independent random variables correspond to what we will call
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free random variables. To explain this, we begin with some background
on random variables, independence and the Gaussian functor.

2.1. Roughly, a random variable is a function f : Ω → C where
Ω is endowed with a probability measure ν. Hence, the well-known
generalization: a random-variable is an element f ∈ A, where A is a
unital algebra (possibly non-commutative) endowed with a state, i.e.,
a functional ϕ : A → C with ϕ(1) = 1.

2.2. If f is a random variable in (A, ϕ), its distribution is the
functional μf : C[X] → C given by μf (1) = 1, μf (Xn) = ϕ(fn). If A
is a Banach algebra and ϕ continuous, then μf extends to an analytic
functional on C so that μf (h) = ϕ(h(f)), where h is holomorphic on
C. If A is a C∗-algebra, f = f∗ and ϕ is positive, then μf extends
to a compactly supported probability measure on R . The numbers
ϕ(fn) are the moments of f .

Two subalgebras A1,A2 ⊂ A are independent if they commute and
ϕ(f1f2) = ϕ(f1)ϕ(f2) whenever fj ∈ Aj , j = 1, 2. Two random vari-
ables are independent if the algebras they generate are independent,
i.e., if ϕ(fm

1 fn
2 ) = ϕ(fm

1 )ϕ(fn
2 ), m, n ≥ 0, and f1f2 = f2f1.

Independent subalgebras arise from tensor products: if (A1, ϕ1), (A2,
ϕ2) are “non-commutative probability spaces” then, in (A1⊗A2, ϕ1⊗
ϕ2),the subalgebras A1 ⊗ 1 and 1 ⊗A2 are independent.

2.3. The Gaussian functor Γ, which is used in second quantization,
is a functor from the category of real Hilbert spaces and contractions
to operator algebras with specified trace state and state-preserving
unital completely positive maps.

Roughly speaking, Γ associates with H the von Neumann algebra
L∞(H) with respect to the Gaussian probability measure on H (i.e.,
ce−||x||2dλ(x) with dλ Lebesgue measure, if dimH < ∞), which
provides the trace state. Moreover, the Gaussian random variables
fξ(h) = 〈h, ξ〉 give a natural linear map ξ → fξ from H into the
L2-space associated with Γ(H). A basic property of Γ is

Γ(H1 ⊕H2) = Γ(H1) ⊗ Γ(H2).

We turn now to the analogues for free products of 2.2 and 2.3.

2.4. Let 1 ∈ Aj ⊂ A, j = 1, 2, be subalgebras, where (A, ϕ) is a
non-commutative probability space. We say that A1,A2 are free in
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(A, ϕ) if ϕ(a1a2 · · · an) = 0 whenever aj ∈ Aij
, 1 ≤ j ≤ n, ij ∈ {1, 2},

i1 �= i2 �= · · · �= in, and ϕ(aj) = 0, 1 ≤ j ≤ n.

If A1,A2 are free in (A, ϕ), the restrictions ϕ|Aj , j = 1, 2, completely
determine ϕ on the algebra generated by A1,A2.

Two random variables fj ∈ A , j = 1, 2, are free if the algebras
they generate are free. It follows that if {f1, f2} is a free pair, then
the distributions of f1 + f2, f1f2 and, more generally, any polynomial
expression in f1, f2, depends only on the distributions of f1, f2.

2.5. If A is the free product of A1,A2 or the reduced free product
of (A1, ϕ1), (A2, ϕ2) and ϕ = ϕ1 ∗ ϕ2, then the images of A1,A2 in A
are a free pair of subalgebras. Thus, for instance, with the notations
of 1.2, if G = G1 ∗G2 then C∗(G1) and C∗(G2) are free in (C∗(G), C)
and the same holds for the reduced C∗-algebras. Also, in the context
of 1.10, if H1,H2 are orthogonal subspaces in H, then C∗(�(H1)) and
C∗(�(H2)) are free in (C∗(�(H)), ω1).

2.6. The analogue of the Gaussian functor for free products is a
functor Φ from the category of real Hilbert spaces and contractions
to the category of unital C∗-algebras with specified trace-state and
state-preserving unital completely positive maps.

We define Φ(H) = C∗(s(H)) where, for h ∈ H, s(h) = (�(h) +
�(h)∗)/2 is an operator on T (HC) (see 1.5, 1.10), HC the complexifi-
cation of H. The trace-state εH on Φ(H) is the restriction of the state
ω1 defined by 1 ∈ T (HC).

The characteristic property of Φ is

(Φ(H), εH) = (Φ(H1), εH1) ∗ (Φ(H2), εH2)

if H = H1 ⊕H2.

The von Neumann algebra which is the weak closure of Φ(H) is
isomorphic to the type II1 factor of a free group on dimH(> 1)
generators.

2.7. The distribution of s(h) is a map C[X] → C, which, since s(h)
is a bounded self adjoint operator, extends to a compactly supported
measure on R , also denoted μs(h), so that

εH(P (s(h)) =
∫

P (t)dμs(h)(t).
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Then dμs(h)(t) = χ(t)dt, where χ(t) = (1 − t2)1/2/π if |t| ≤ 1 and
0 otherwise. Since the graph of χ is a semiellipse, we see that
the analogue of the Gaussian distribution for free products is the
semiellipse law. There is a corresponding central limit theorem for
free random variables, with limit distribution a semiellipse law.

Also, for the free analogue of the Gaussian functor, there is an
analogue of Wick powers with Hermite polynomials replaced by certain
Gegenbauer polynomials.

3. Free convolution and dual algebraic structures.

3.1. If μS , μT are the distributions of free random variables, S, T ∈
A, then (see 2.4) the distribution μS+T depends only on μS and μT .
Hence there is an operation � such that μS � μT = μS+T . Similarly,
there is an operation � such that μST = μS � μT . Both operations
are commutative and associative. In case μS , μT extend to analytic
functionals (respectively, compactly supported probability measures
on R ), the same holds for μS � μT .

If, instead of free random variables, we would have considered inde-
pendent random variables, the corresponding operations on the dis-
tributions would have been additive and, respectively, multiplicative
convolution. That is why we call the operations for the distributions
of free random variables, free convolution (� additive and � multi-
plicative). Note however that free convolution is not bilinear, it is a
highly non-linear operation.

3.2. Recall that the usual convolution on a group G naturally arises
in the Hopf-algebra approach to group-duality. Roughly, if μ1, μ2 are
measures on G, they yield functionals on some commutative algebra
F(G) of functions on G. The binary group operation G × G → G
gives a homomorphism (the Hopf-algebra comultiplication) F(G) →
F(G) ⊗F(G), and the convolution of μ1 and μ2 is the composition

F(G) → F(G) ⊗F(G)
μ1⊗μ2−→ C.

For free convolution a similar treatment is possible, after defining
appropriate group objects, and illustrates the general analogy between
free products and tensor products.



NONCOMMUTATIVE RANDOM VARIABLES 269

3.3. A dual group structure on an algebra A amounts to giving
homomorphisms A → A ∗ A ,A → A ,A → C corresponding to
the binary (i.e., multiplication), unary (i.e., inverse) and nullary (i.e.,
neutral element) operations which define a group, with the arrows
in all compatibility diagrams pointing in reverse directions. This
means that, for every algebra B, we have a natural group structure on
Hom(A, B).

In the state-space
∑

(A) = {ϕ : A → C|ϕ linear , ϕ(1)}, the free
convolution ϕ1 � ϕ2 is defined by composing the dual multiplication
with the free product state

A → A ∗ Aϕ1∗ϕ2−→ C.

Though we adopted here the algebraic context for simplicity, these
considerations fit also in the Banach algebra, C∗-algebra and, as
required by many examples, projective limits of C∗-algebras contexts.

EXAMPLE 3.4. (a) On C[X] we define a dual group structure by
the unital homomorphisms δ : C[X] → C[X] ∗ C[X], j : C[X] →
C[X], ε : C[x] → C where δ(X) = σ1(X) + σ2(X), σk being the
identifications of C[X] with the first and respectively second copy
of C[X] in C[X] ∗ C[X], j(X) = −X and ε(X) = 0. The states∑

(C[X]) are precisely the distributions of random-variables and the
free convolution on

∑
(C[X]) is precisely the additive free convolution

�.

(b) On C[X] there is a dual semigroup structure defined by δ(X) =
σ1(X)σ2(X) for which free convolution is �.

(c) On the C∗-algebra C(T) there is a dual group structure δ(u) =
σ1(u)σ2(u), j(u) = u−1, ε(u) = 1 where u is the isomorphism of T with
{z ∈ C| |z| = 1}. The free convolution is � on probability measures
on T.

(d) The free real line R free (Our initial terminology was non-
commutative analogs of various classical groups. Following a sugges-
tion of A. Ramsey we replaced non-commutative by free.) is the in-
verse limit of C∗-algebras C(K) where K are compact subsets of R
and the operations are essentially as in (a). The free convolution is �
on compactly supported measures on R .
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Using projective limits of C∗-algebras and of real C∗-algebras, there
are “free” analogues for most matrix Lie groups.

3.5. A dual group structure on A corresponds to a natural group
structure on Hom(A , B). If, roughly speaking, Hom(A , B) is some
kind of Lie group (possibly infinite-dimensional) then there is a natural
Lie algebra Lie Hom(A , B). An object Lie A such that

Hom(LieA , B) 	 LieHom(A , B)

is what should be called the Lie algebra of the dual group. Thus
we are led to consider dual Lie algebras L . The dual abelian group
structure is given by dual operations (δ, j, ε) and there is a dual bracket
b : L → L ∗ L with the usual compatibility diagrams among these
with reverted arrows. The vector space structure (over K = R or C)
is given by αλ : L → L (λ ∈ K) such that

α1 = idL , α0 = i ◦ ε

αλ ◦ αμ = αλμ, αs+t = d ◦ (αs ∗ αt) ◦ δ,

where i is the inclusion C �→ L and d : L ∗ L → L maps each of the
L ’s identically to L . The compatibility conditions are: the αλ’s are
morphisms of the dual group, i.e.,

δ ◦ αλ = (αλ ∗ αλ) ◦ δ

j ◦ αλ = αλ ◦ j, ε ◦ αλ = ε;

and the compatibility with the dual bracket,

(αλ ∗ αμ) ◦ b = b ◦ αλμ.

Note that, for dual Lie algebras, it makes sense to consider dual adjoint
actions L → L ∗ A. Also connecting the dual group and dual Lie
algebra there are dual exponential maps A → L .

EXAMPLE 3.6. For the dual group C(T) (3.4(c)) we have Hom(C(T),
B) 	 U(B) the unitary group of B. The Lie algebra of U(B) can
be identified with Bh (the Hermitian part of B) with the bracket
i(a1a2−a2a1). Therefore the dual Lie algebra of the dual group C(T) is
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R free (3.4d)) with its dual bracket b : R free → R free ∗R free such that,
on the subalgebra C[X] ⊂ R free (X is identified with the identical
function R → R ⊂ C in the projective limit defining R free), we have

b(X) = i(σ1(X)σ2(X) − σ2(X)σ2(X)).

The dual multiplications by scalars are given by αλ(X) = λX. The
dual exponential map e : C(T) → R free is such that

e(u) = exp(iX).

The dual adjoint action is trivial, i.e., Ad : L → A ∗ L maps L
identically onto the L factor in the free product.

In a similar way, there are dual Lie algebras for the dual groups
which are the free analogs of the classical matrix groups.

4. Computing free convolutions and spectral problems on
free groups.

4.1. Let G = Z ∗ · · · ∗ Z be a free group on n generators and
let uj , 1 ≤ j ≤ n, be the unitaries on �2(G) corresponding to left
translation by the n generators and consider ξ ∈ �2(G), the function
ξ(g) = δg,e. Further, let Tj be operators of the form Tj = ϕj(uj),
where the ϕj are real-valued functions, so that Tj = T ∗

j . Then,
T = T1 + · · · + Tn is a self-adjoint operator on �2(G), which is
actually in the von Neumann algebra L(G) generated by the left
regular representation of G. On L(G) the state defined by ξ is a
faithful trace-state τ . Computations of norms, spectra or of the trace
of the spectral measure for particular operators T , were performed in
connection with various problems in the work of several authors: H.
Kesten, P. Cartier, J. Cohen, S. Sawyer, C.A. Akemann-P.A. Ostrand,
A. Figa-Talamanca, M. Picardello, W. Woess, T. Steger, K. Aomoto,
T. Pytlik, J.H. Anderson-B. Blackadar-U. Haagerup and others. We
will explain how free convolution provides a general approach to these
questions.

4.2. It is sufficient to compute the measure μ on R obtained by
applying the trace τ to the spectral measure of T . Note that the
spectrum of T is the support of μ. We have∫

tndμ(t) = τ (Tn) = 〈Tnξ, ξ〉.
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Thus the measure μ can be obtained by solving a moment problem, if
we are able to compute the moments 〈Tnξ, ξ〉.

4.3. In L(G) consider the von Neumann subalgebras Aj , 1 ≤ j ≤ n,
generated by uj . Then the Aj are free in (L(G), τ ) in the sense of
2.4, and hence the Tj ’s are free n-tuples of non-commutative random
variables. The measure μ is the distribution of T and

μ = μ1 � μ2 � · · · � μn,

where μj is the distribution of Tj . Since Tj = ϕj(μj), μj is the image
of Haar measure on {z ∈ C| |z| = 1} via ϕj . Remark also that in fact
we could have taken, more generally, G = G1 ∗ G2 ∗ · · · ∗ Gn and Tj

self-adjoint convolution operators in L(Gj) viewed as subalgebras of
L(G), and assume we know their distributions μj .

Thus the problem reduces to the computation of the operation �.

4.4. The computation of � is based on the following simple fact.

FACT. Let C∗(�(C2)) be the C∗-algebra acting on T (C2) (see 1.10)
with the state ω1. Let T = �(e1)∗ +

∑
k≥0 αk�(e1)k, S = �(e2)∗ +∑

k≥0 βk�(e2)k and R = �(e1)∗ +
∑

k≥0(αk +βk)�(e1)k, where e1, e2 is
the canonical basis of C2. Then we have

〈(T + S)n1, 1〉 = 〈Rn1, 1〉

and hence μT+S = μR. Since T and S are a free pair of random
variables this means

μT � μS = μR.

Thus, for the distributions of random variables of the form �(e1)∗ +∑
k≥0 αk+1�(e1)k in (C∗(�(C)), ω1) additive free convolution is lin-

earized by the coefficients αk. Hence the computation of � amounts to
finding, for every distribution μ, a random variable of the special form
�(e1)∗ +

∑
k≥0 αk+1�(e1)k with distribution the given distribution μ.

Note that T (C) 	 H2 (the Hardy space) and �(e1)∗+
∑

k≥0 αk+1�(e1)k

is precisely the Toeplitz operator with symbol z−1 +
∑

k≥0 αk+1z
k or,
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equivalently, the Toeplitz matrix

⎛
⎜⎜⎜⎜⎜⎝

α1 α2 α3 · · · · · · · · · · · · · · ·
1 α1 α2 α3 · · · · · · · · · · · ·
0 1 α1 α2 α3 · · · · · · · · ·
0 0 1 α1 α2 α3 . . . · · ·
0 0 0 1 α1 α2 α3 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎠ .

4.5. The following theorem, which computes �, is obtained using
the idea outlined in 4.4.

THEOREM. If μ is the distribution of a random variable let Gμ(z) be
the generating series

Gμ(z) = z−1 +
∑
n≥1

μ(Xn)z−n−1.

Let further K(z) be such that

K(Gμ(z)) = Gμ(K(z)) = z

and define
R μ(z) =

∑
k≥0

Rk+1(μ)zk

by
R μ(z) + z−1 = K(z).

If μ1, μ2, μ3 are distributions of random variables and μ3 = μ1 � μ2,
then we have

R μ3 = R μ1 + R μ2 .

Remark that if μ is a measure or an analytic functional, then Gμ(z)
is precisely the Cauchy transform

Gμ(z) =
∫

dμ(ζ)
z − ζ

.
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The map μ→R μ linearizes additive free convolution as does the
logarithm of the Fourier transform log μ̂ for usual additive convolution.

EXAMPLE 4.6. Returning to the context of 4.1, let G = Z ∗ · · · ∗ Z
and Tj = uj + u−1

j . The operator T = (u1 + u−1
1 ) + · · · + (un + u−1

n )
is up to constants the discrete Laplacian on G. If ν is the distribution
of Tj then μ = ν � · · · � ν. Since Tj is given by the image via the
function z + z−1 of Haar measure dλ on {z ∈ C| |z| = 1}, we have

Gν(z) =
∫
|ζ|=1

(z − ζ − ζ−1)−1dλ(ζ)

= (2πi)−1

∫
|ζ|=1

(z − ζ − ζ−1)−1ζ−1dζ

= −(2πi)−1

∫
|ζ|=1

(ζ − ζ1)−1(ζ − ζ2)−1dζ

= (ζ1 − ζ2)−1 = (z2 − 4)−1/2,

where ζk = 1
2 (z ±

√
z2 − 4) are the roots of ζ2 − zζ + 1 = 0. (Note

that ζ1ζ2 = 1.)

Then Gν(K(z)) = z gives K2−4 = z−2 and hence K = (z−2 +4)1/2

and R ν = (z−2 +4)1/2−z−1 so that R μ = nR ν . It follows for μ that

K = z−1 + R μ = z−1 + nR ν = n(z−2 + 4)1/2 − (n − 1)z−1.

Hence Gμ is obtained by solving

n(G−2 + 4)1/2 − (n − 1)G−1 = z.

This gives

Gμ(z) =
(n − 1)z − n

√
z2 − 4(2n − 1)

4n2 − z2
.

The choice of the branch of the square root is determined by the fact
that Gμ(z) = z−1 + · · · at ∞. Since this branch of Gμ(z) in the upper
half plane has no poles on the real line and is algebraic, the theory of
the moment problem gives that μ is absolutely continuous with respect
to Lebesgue measure and has density

− 1
π

Im Gμ(t) for t ∈ R .
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4.7. As for usual convolution, there are semigroups and infinitely
divisible measures for free convolution. Let P denote the compactly
supported probability measures on R . We call μ ∈ P F -infinitely
divisible (F stands for free) if, for every n ∈ N, there is μ1/n ∈ P
such that μ1/n � · · · � μ1/n︸ ︷︷ ︸

n−times

= μ. A family (μt)t≥0 ⊂ P is an F -

convolution semigroup if μt+s = μt � μs and μt depends continuously
on t. F -convolution semigroups are in 1-1 correspondence with F -
infinitely divisible measures. Every F -convolution semigroup is of the
form R μt

= tR μ1 where μ1 is F -infinitely divisible.

If (μt)t≥0 is an F -convolution semigroup and G(t, z) = Gμt�ν(z)
where ν ∈ P , then G(t, z) satisfies the complex quasilinear equation

∂G

∂t
(z, t) +

∂G

∂z
(z, t)ϕ(G(z, t)) = 0

where ϕ(z) = R μ1(z).

Note that, in this context, the analogue of the heat equation, which
corresponds to convolution by the normal distribution, is given by the
equation

∂G

∂t
+ αG

∂G

∂z
= 0

since R μ(z) = αz if μ is a centered semiellipse law.

4.8. F -infinitely divisible measures are characterized by the following
theorem.

THEOREM. Let ϕ(z) =
∑

n≥0 an+1z
n be a power series. The follow-

ing conditions are then equivalent:

(i) ϕ(z) = R μ(z) where μ ∈ P is F -infinitely divisible.

(ii) ϕ is the Taylor series of a holomorphic function in some neigh-
borhood of (C\R ) ∪ {0} such that ϕ(z) = ϕ(z) and Im z > 0 ⇒
Im ϕ(z) ≥ 0.

The proof of the theorem is based on the theory of the Navenlinna-
Pick problem and on a careful study of univalence for solutions of the
differential equation satisfied by the Cauchy-transform of the μt’s.
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4.9. We pass now to multiplicative free convolution �. Note that

(μ1 � μ2)(X) = μ1(X)μ2(X)

if μj ∈
∑

(C[X]) (see 3.4(a)) are distributions of random variables.
Hence the set of distributions of random variables with non-zero first
moment. ∑ ∗

= {μ ∈
∑

(C[X])|μ(X) �= 0}

is a semigroup for �.

THEOREM. If μ ∈
∑∗ let Ψμ(z) be the generating series

Ψμ(z) =
∑
n≥1

μ(Xn)zn.

Let further χ(z) be such that

χ(Ψμ(z)) = z

and define
Sμ(z) = χ(z)z−1(1 + z).

If μ1, μ2 ∈
∑∗ and μ3 = μ1 � μ2 then we have

Sμ3(z) = Sμ1(z)Sμ2(z).

Thus the map μ→Sμ plays in the free context the same role as the
Mellin transform and gives a way for computing free convolution.

The proof of the preceding theorem rests on the following idea,
roughly: (

∑∗, �) is an infinite-dimensional Lie group whose Lie
algebra is (

∑
, �) with the trivial bracket, and the computation of �

is done via the exponential map
∑

→
∑∗, also called free-exponential

(not to be confused with the dual exponential).

Note also, the following concerning �:

(a) If μ1, μ2 are probability measures on {z ∈ C| |z| = 1} then so is
μ1 � μ2.
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(b) If μ1, μ2 are compactly supported probability measures on {t ∈
R | t > 0} then so is μ1 � μ2.

Assertion (a) is related to 3.4(c) whereas (b) follows from the fact
that if A is a C∗-algebra with trace-state τ and {a, b} a free pair
in (A, τ ) with a ≥ 0 and b ≥ 0, then we have for the distributions
μa,b = μa1/2ba1/2 and a1/2ba1/2 ≥ 0.

EXAMPLE 4.10. Let e, f be a free pair of self-adjoint idempotents
in (A, τ ) where τ is a trace-state on the C∗-algebra A. Then, by the
above, the trace of the spectral measure of efe is the distribution of
efe and equals μ3�μf . If α = τ (e), β = τ (f) then μe = (1−α)δ0+αδ1

and μf = (1 − β)δ0 + βδ1 so that our problem is the computation of
((1 − α)δ0 + αδ1) � ((1 − β)δ0 + βδ1), where δt is the Dirac measure
at t. A straightforward application of 4.9 and of the solution of the
moment problem gives

μefe =
(
− 1

π
Im G

)
λ + c0δ0 + c1δ1,

where

G(z) =
1
z

+
z − (α + β) +

√
(z − a)(z − b)

2(1 − z)z

a, b = α + β − 2αβ ±
√

4(α − α2)(β − β2)
λ = Lebesgue measure on R ,

c0 = 1 − min(α, β), c1 = max(α + β − 1, 0).

In particular τ (e ∧ f) = c1 = max{α + β − 1, 0}.

4.11. In the study of � an important role is played by the equation
of a semigroup. If (μt)t≥0 is a semigroup for �, and if

Ψ(z, t) = Ψμt�ν(z),

then we have

∂

∂t
Ψ(z, t) + ϕ(Ψ(z, t))z

∂

∂z
Ψ(z, t) = 0,
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where ϕ(z) = log Sμ1(z).

4.12. In connection with 4.11 we would like to draw attention to the
fact that, for multiplicative free convolution, the analogue of Theorem
4.8 is open.

PROBLEM (a) Characterize the probability measures on {z ∈
C| |z| = 1} which are infinitely divisible under �.

(b) Characterize the compactly supported probability measures on
{t ∈ R | t > 0} which are infinitely divisible under �.

5. Free products with amalgamation. A large part of the
material in the previous sections can be extended to the context of
free products with amalgamation. Roughly speaking this will mean
replacing the complex field Cby an algebra B. Since this extension is
rather technical our brief presentation will be somewhat vague about
details and sketchy.

5.1. The general idea being to replace C by some unital algebra B
(over C) the natural category is that of algebras over B, i.e., A ⊃ B.
The free product with amalgamation over B

A1 ∗B A2

is defined as the categorical direct sum.

States will be linear maps A ϕ→B which are B − B-bimodule maps
and such that ϕ|B = idB. For C∗-algebras we require, additionally,
that ϕ be completely positive.

Let (A, ϕ) be an algebra over B with specified state and let B ⊂
Aj ⊂ A, j = 1, 2, be subalgebras. Then the pair A1,A2 is free in
(A, ϕ) if

ϕ(a1a2 · · · an) = 0

whenever aj ∈ Aij
with i1 �= i2 �= · · · �= in and ϕ(aj) = 0 for

1 ≤ j ≤ n. A pair of random variables a1, a2 ∈ A is called free if
the subalgebras of A generated by B ∪ {a1} and B ∪ {a2} form a free
pair of subalgebras in (A, ϕ).

Examples 5.2. (a) Let Gj ⊃ H, j = 1, 2, be groups and let
G = G1 ∗H G2. If B = C∗

red (H),A = C∗
red (G) and Aj = C∗

red (Gj) we
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have B ⊂ Aj ⊂ A and there is a canonical conditional expectation ϕ
of A onto B. The pair A1,A2 is free in (A, ϕ).

(b) Let G1, G2 be groups and G = G1 ∗ G2. Let A = C∗
red (G) ⊗

B,Aj = bfC∗
red (Gj)⊗B where the tensor products are spatial tensor

products, and let ϕ = τ ⊗ idB where τ is the canonical trace on
C∗

red (G). Then A1,A2 is a free pair of subalgebras in (A, ϕ).

5.3. In the context of algebras over B, let (A, ϕ) be an algebra
with specified state, and let a ∈ A be a random variable. Quantities
of the form ϕ(ab1ab2 · · · bn−1a), bj ∈ B, are called moments of a.
Correspondingly the distribution of a is a state μa : B〈X〉 → B defined
by μa = ϕ ◦ χa, where B〈X〉 is the algebra freely generated by B and
an indeterminate X and χa : B〈X〉 → A is the unique homomorphism
such that χa(b) = b for b ∈ B and χa(X) = a.

Moments of the form ϕ(abab · · · ba) = μa(XbX · · · bX) are called
symmetric moments. The B − B-submodule of B〈X〉 generated
by the symmetric monomials XbX · · · bX and 1 will be denoted by
SB〈X〉. The restriction Sμa

of μa to SB〈X〉 is called the symmetric
distribution of a. The set of states of B〈X〉 is denoted by

∑
B, and

the set of B − B-bimodule maps SB〈X〉 → B, the identities on B, is
denoted by S

∑
B .

5.4. As in the scalar case, and also the “B-valued” situation, if
B ⊂ Aj ⊂ A, j = 1, 2, is a free pair of subalgebras in (A, ϕ)
then ϕ is completely determined by its restrictions ϕ|Aj , j = 1, 2.
As in the scalar case there are operations �, � on

∑
B so that

μa1 � μa2 = μa1+a2 , μa1 � μa2 = μa1a2 if a1, a2 is a pair of free
random variables in (A, ϕ). An important feature of these operations
is that the symmetric parts of μ1 �μ2 and μ1 �μ2 depend only on the
symmetric parts of μ1 and μ2. Hence there are also operations � and
� on S

∑
B and the canonical map

∑
B → S

∑
B is a homomorphism

both for � and �.

5.5. There is an analogue of Theorem 4.5 for the operation �
in the B-valued case on symmetric distributions. In order to avoid
complications with formal power series we will assume we are working
with Banach algebras and continuous states. Roughly, the theorem
computing � looks just like Theorem 4.5 with complex functions on
C replaced by B-valued functions on B.
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THEOREM. If μ is the symmetric distribution of a random variable
a in (A, ϕ) let

Gμ(b−1) = ϕ((b − a)−1) = b−1 +
∑
n≥1

μ(b−1(Xb−1)n)

defined for b ∈ B invertible and ||b−1|| sufficiently small. Let further
L be such that

Gμ(L(b)) = L(Gμ(b)) = b

and define R μ(b) by

(L(b))−1 = b−1 + R μ(b)

if b is invertible and ||b|| sufficiently small. If μ1, μ2, μ3 are symmetric
distributions of random variables and μ3 = μ1 � μ2 then we have

R μ3 = R μ1 + R μ2 .

5.6. The operation � is not commutative in general. It can be
computed using differential equations.

5.7. The framework of dual algebraic structures has a natural
extension to the case of free products with amalgamation over B.

5.8. Theorem 5.5 is a quite general device for computations of
spectra in reduced free products. As an example we shall sketch the
application to convolution operators on free groups. Let G = Z ∗ Z
and let ρ be the regular representation of G on �2(G) and

T =
∑

cgρ(g) ∈ C∗
red (G)

where the sum is finite. The computation of spectra of such opera-
tors is equivalent to deciding whether such an operator is invertible.
By a simple matrix trick the invertibility of T is equivalent to the
invertibility of an operator of the form

Y = α−1 ⊗ ρ(g−1
1 ) + α1 ⊗ ρ(g1) + ν ⊗ 1

+ β−1 ⊗ ρ(g−1
2 ) + β1 ⊗ ρ(g1) ∈ Mn ⊗ C∗

red (G),
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where Mn denotes the n × n complex matrices and g1, g2 are the
generators. Replacing Y by

(
0 Y ∗

Y 0

)
,

we may actually assume that Y is self-adjoint at the expense of
replacing n× n matrices by 2n× 2n matrices. If Y is self-adjoint, the
invertibility of Y is equivalent to the fact that ϕ((zI − Y )−1), where
ϕ : Mn ⊗C∗

red (G) → Mn is as in 5.2(b), can be analytically continued
from the upper half-plane to a neighborhood of 0. In turn this can be
decided using Theorem 5.5 which computes ϕ((b ⊗ I − Y )−1), where
b ∈ Mn (this is the function G for Y ).

NOTES. §1 is based on [22]. For Cuntz algebras and their extensions,
in connection with 1.10, see [9, 16, 17, 10].

§2 is based on material in [22]. For the usual Gaussian functor in
2.3 see, for instance, [21].

§3 is based on [22] and [25]. For the analogues of the classical matrix
groups see [25] (the C∗-algebra for the analogue of the unitary group,
without the dual group structure, first appears in [6]).

§4 is based on [22, 23, 24]. For other work related to spectral
computations referred to in 4.1 see [1, 3, 4, 7, 8, 11, 12, 13, 14,
18, 19, 20]. Example 4.6 has been computed with other methods by
several authors, the first such computation seems to be in [14]. For
complete details in the computation in 4.10 see [24] (for a different
approach see [3]). A reference for the moment problem is [2].

§5 is based on [26]. For free products of Hilbert modules over C∗-
algebras see [22]. Concerning 5.8 we would like to mention a different
general approach to computations of spectra of convolution operators
on free groups in [4].
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