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ON MINIMAL UPPER SEMICONTINUOUS
COMPACT-VALUED MAPS

LECH DREWNOWSKI AND IWO LABUDA

1. Introduction. In what follows, X and Y are Hausdorff topological
spaces, and the term map is reserved for set-valued mappings. Also, for
z € Xandy €Y, U(z) and V(y) are always used to denote a base of
neighborhoods of z in X and y in Y, respectively. If FF : X — Y is a
(set-valued!) map, then

Gr(F)={(z,y) e X xY :y€ F(z)}

is the graph of F.

Given two maps F,G : X — Y, we write G C F and say that G
is contained in F if G(z) C F(z) for every z in X; equivalently, if
Gr(G) C Gr(F). The relation of containment being a partial order in
the family of all maps (with domain X and range Y), if a set F of maps
is specified, we can look for maps which are minimal elements of (F, C).

A map F : X — Y is upper semincontinuous at a point z € X (usc at
x) if, for every open set V containing F'(z), there exists U € U(z) such
that

FU)=U{F(u):ueU}CW.

F is upper semicontinuous (usc) if it is usc at each point of X. We say,
shortly, that a map F' is usco if it is usc and takes nonempty compact
values. Finally, a map F' is said to be minimal usco if it is a minimal
element in the family of all usco maps (with domain X and range Y);
that is, if it is usco and does not contain properly any other usco map
from X into Y. (See [5] for references.)

Historically, minimal usco maps seem to have appeared first in complex
analysis (in the second half of the 19th century), in the form of a bounded
holomorphic function and its “cluster sets,” see, e.g., [3]. Starting
with a 1982 paper of Christensen [2], a series of “multi-valued Namioka
theorems” has been discovered (see [9, 4]). These theorems tell us that,
under unexpectedly general assumptions about X and Y, a minimal
usco map F : X — Y reduces to a (point-valued) function f on a
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738 L. DREWNOWSKI AND I. LABUDA

dense subset D of X ,i.e., F(z) is a singleton, {f(z)}, for all z € D. It
turns out that, then F is determined uniquely by its restriction f = F|D:
for z € X \ D, F(z) is nothing else but the cluster set fp(z) of f at ;
thus F' is the cluster-set extension of f (see Corollary 4.9 below). This
simple result was the origin of our research presented here; it is now a
consequence of a more general (but still quite simple) result, Theorem
4.7, which characterizes a minimal usco map F' in terms of its restriction
F|D to a dense subset D of X, and the cluster set extension of F|D to
the whole of X. In some cases, for instance when X is metrizable and Y
is a Banach space in its weak topology, these cluster sets, Fp (z), admit
a “sequential” representation. We state this explicitly in Corollary 4.9
when F|D = f, but a similar result holds also without the assumption
that F'|D is single-valued. This result requires some work, and we found it
convenient to start, in §2, with two results about cluster sets of filterbases.
In particular, we give some denumerability conditions under which such
a cluster set has a sequential description (Proposition 2.2). Then, in
83, we use this last result to show that, under the same conditions, the
graph of a compact-valued usc map has a very nice topological property:
The sequential (or countable) closure of any of its subsets is a closed
set (Proposition 3.5). From this our “sequential representation result,”
Corollary 4.9, follows directly.

Finally, although the existence of a minimal usco map contained in
a given usco map follows by an application of the Kuratowski-Zorn
Principle, something can be said about its size; this is done in the last
part of the paper, §5.

2. Cluster sets of filterbases. Throughout this section Y stands for
a Hausdorff space.

Let B be a filtering (= downward directed) family of subsets of Y. Then
the cluster set of B is defined by
Cs(B)=(\{B: B € B}.
If (Yo) = (Ya)aca is a net in Y, its set of cluster points is
Wa) = () {va:B<ac A}
BeA

Writing (y,) < B to denote that, for every B € B, there is 8 such that
Yo € B for all a > 3, it is easily seen that

Cs(B) = {y € Y : y is a cluster point of a net (y,) < B}.
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Finally, we will say that B is aimed at a set S C Y and write
B~ S,

provided that every open set V' O S contains some B € B.

PROPOSITION 2.1. Let B be a filtering family of subsets of Y aimed at a
compact set. Then Ly = Cs (B) is the smallest compact set at which B is
aimed; moreover, Ly # @ when B is a filterbase, and Ly = & otherwise.

ProoF. We consider only the nontrivial case when B is a filterbase.
Let L C Y be compact and suppose B~ L. If y € Y\ L, then there exist
disjoint open sets V O L and W € y. Since B~+ L, B C V for some
B € B;theny ¢ Bandsoy ¢ Ly. Thus Ly C L, and Ly is obviously
compact.

Suppose Ly = @&. Then, for every y € L, there is B, € B with y ¢ Ey,
so V, N B, = @ for some V, € V(y). As L is compact, there exist
Yi,---+Yn € Lsuchthat LCV =V, U---UV, ,and then VNB =g
for all B € B contained in By, N---N B, . However, B is a filterbase and
B ~~ L, and we quickly arrive at a contradiction.

Thus it remains to show that B~ Ly. Suppose it is not so; then there
is an open set W D Lj such that B\ W # & for all B € B. It follows
that B’ = {B\ W : B € B} is a filterbase and, clearly, B’ ~~ L. Applying
to B’ what we have proved above for B, we now have

o#(WB\W:BeB}C[{B\W:BeB}=Lo\W = 2;
a contradiction.

In the proposition below we show that when B is countable and Y
satisfies some appropriate topological countability requirements, Cs (B)
admits also a sequential description.

Given a set B C Y, let *B (respectively °B) denote the sequential
(countable) closure of B, consisting of all points y in Y such that y is
the limit (a cluster point) of a sequence (y,) in B; B is sequentially
(countably) closed if *B = B(°B = B). We say that the space Y has
sequentially (countably) determined closure for relatively compact sets if
the following condition (A;) ((Asg)) is satisfied.
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(A1) *K = K for every relatively compact set K in Y.
(Az) °K = K for every relatively compact set K in Y.

Evidently, if the space Y satisfies (A1) ((Az)), then its sequentially
(countably) closed relatively compact subsets are compact.

PROPOSITION 2.2. Let B = (B,,) be a decreasing sequence of nonempty
subsets of Y aimed at a compact set, and define

L =Cs(B)=n,By;

L. ={y:y is a cluster point of a sequence (y,) < B};

Ls ={y : y is the limit of a sequence (y,) such that y, € B, for all n}
= {y:y = limy, for some sequence (y,) < B}.

Then Ly C L, C Lo and
(a) Lo # @ and Ly is the smallest compact set with B~ Ly;

(b) for every sequence (y,) < B, the set (yn) of its cluster points is a
nonempty compact subset of Ly, and the set {y, : n € N} is relatively
compact;

(c) L. is a countably closed, dense subset of Lo and B~ Lg;
(d) i Y satisfies (Az), then L. = Lo;
(e) if Y satisfies (Ay), then Ls = Lyg.

PROOF. (a) is a particular case of Proposition 2.1.

(b) Let (y,) < B and set H, = {ym : m > n}, n = 1,2,....
Then B, ~ Ly implies H,, ~> Lo and, applying (a) to (H,), we get that
C = (yn) is a nonempty compact subset of Ly and H,, ~ C. To verify that
H = {y, : n € N} is relatively compact, first observe that H = H U C.
Now, if V is an open covering of H, first choose a finite cover V' C V of
C, next an n so that H, C UV’ (which is possible as H,, ~» C), and finally
a finite cover V'’ C V of {y1,... ,yn}- Then V' UV" is a finite cover of H.

(c) Suppose it is not true that B, ~» L.. Then there is an open set
V D L. and a sequence (y,) such that y, € B, \ V for each n. Hence
(yn) C Y\ V and (y,) C L., which is impossible because (y,) # @ by
(b).

Now, By, ~» L. implies B,, ~ L. C Ly, so L. = Lg by (a).
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Finally, in order to show that L. is countably closed, let Z = {z* : k €
N} be a countable subset of L.. For each k choose a sequence (y%) < B
so that z* € (y¥) and, as we may, (y¥) C Bj. Arrange the elements
y*(k,n € N) in a single sequence (y,,). Then (y,) < B and

(ya) 2 Jwh) 2 2.

k

Hence L. O (yn) D Z, which proves L, is countably closed.
(d) is an obvious consequence of (c) and (As).

(e) Since (A1)=-(Asz) so that L. = Ly by (d), and, since Ly C Le, it
remains to be shown that L. C Ls. Let y € (y,,) where (y,) < B. In view
of (b) the set {y, : n € N} is relatively compact, hence, by (Ay), y is the
limit of a subsequence (y,, ) of (yn). Since (yr,) < B, y € Ls.

3. Compact-valued upper semicontinuous maps. In this section
we apply the results of the preceding section to use maps. (As before, X
and Y are two Hausdorff spaces.) This approach is quite natural because
amap F': X — Y is usc at a point « of X if and only if F(U(z)) ~ F(z),
where

FU(z))={F({U):U eU(x)}.
We will also need the following lemma whose straightforward proof is

omitted.

LEMMA 3.1. Givenamap F : X - Y and a setD C X, let Fp: X Y
be the map defined by

Fp(x)=({F{UUD):U € U(x)}.

Then

Gr (FD) = Gr (F|D),
where F|D is the restriction of F' to D and the closure is taken in X xY .

If D = X, we write F:' = Fx. Note that F has a closed graph if and
only if ' = F, that is, F(z) = F(z) for all z in X.

The following useful result appears explicitly in Christensen [2].
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PROPOSITION 3.2. Let a map F : X — Y be usc and compact-valued.
Then:

(a) Gr (F) is closed in X x Y.
(b) If G: X =Y is a map such that G C F and Gr (G) is closed, then

G 1is usc and compact-valued.

PROOF. (a) For any z € X, F(U(x))~ F(x) because F is usc at
x. Since F(z), moreover, is compact, F'(z) = Cs (F(U(z))) C F(z) by
Proposition 2.1; in fact F(z) = F(x). Thus the graph of F is closed.

(b) Fix an # € X. Then G(U(z))~> F(z) because G C F and F is
usc at z. By Proposition 2.1, G(U(z))~ Cs (G(U(z))) = G(z), and
G(z) = G(z) because G has a closed graph. Hence G is usc at z and
G(z) is compact.

COROLLARY 3.3. Let a map F : X — Y be usc and compact-valued. If
amap G : X =Y 1is contained in F' and is usc and compact-valued when
Y is equipped with a weaker Hausdorff topology, then it is also usc and
compact-valued for the original topology of Y.

COROLLARY 34. If F : X — Y is a compact-valued usc map, then
the topology of Gr (F) (induced from X x Y ) does not change when the
topology of Y is replaced by any weaker Hausdorff topology.

PrOOF. Let p be the original topology of Y, and T any weaker Hausdorff
topology on Y. Let C be a closed subset of Gr (F) C X x (Y, p). Then
C = Gr(G) for some map G : X - Y, and G : X — (Y, p) is usc and
compact-valued by Proposition 3.1(b). Clearly, also G : X — (Y, ) is usc
and compact-valued, hence C' = Gr(G) is closed in Gr (F) C X x (Y, 1)
by Proposition 3.1(a).

PROPOSITION 3.5. Let a map F': X — Y be usc and compact-valued,
and assume that X satisfied the first axiom of countability. If Y has
sequentially (countably) determined closure for relatively compact sets,
then the sequential (countable) closure of any subset of Gr (F') is closed.
Equivalently, given any map G : X — Y such that G C F, then, for every
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zeX,

G(x) = {y : there exist sequences x, — =

*
(*) and y, — y such that y, € G(z,,),V}

(respectively

G(z) = {y : there exist sequences x,, —
and yn, € G(zy) such that yn, € (yn)})-

(2)

PROOF. We give a proof of the “sequential” part of the proposition.
Fix an z in X and a decreasing countable base (U,,) of neighborhoods of
z. Then G(U,,) ~» F(z) and F(z) is compact. From Proposition 2.2 and
Lemma 3.1 it now follows that G(z) = {y : y = limy, for some sequence
(yn) < (G(Uy))}, and this last set is easily seen to coincide with the set
on the right-hand side of (x).

The following result (needed in Example 4.1) is probably well-known;
anyway, for finite products, it can be found in [1, p. 114].

PROPOSITION 3.6. For each t € T (an indez set), let F; : X = Y; (a
Hausdorff space) be a compact-valued usc map. Then the product map

F:X—>Y:HYt
teT

defined by
F(z) = H Fy(z)

teT

s also compact-valued and usc.

PROOF. F' is compact-valued by Tychonoff’s theorem. To prove that
F is usc, fix an z € X and denote K; = Fi(z), K = F(x). Let V be an
open set in Y containing K. Since K is compact, an easy argument shows
that there is an open set W such that K C W C V and W is a finite
union of open sets of the form [[ W;, where W; = Y; except for a finite
number of indices t. It follows that, for some finite set S C T we have
W = (Il;er\s Yt) x W', where W’ is an open set in [[,cY; containing
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K' = [[;cs K¢ Finally, by [6, 3.2.10], there exist open sets W] C Y; for
t € S such that K’ C [[,c4 W/ C W'. Now, since the maps F;(t € S) are
usc at x, we can find U € U(z) for which F;(U) C W/ for t € S, and we
conclude easily that F(U) C W.

Given a subset D of X, we make the following definitions.

A map F : X — Y is D-usc at a point x € X if, for every open set
V D F(z), there exists U € U(z) such that F(UND) C V. F is D-usc
if it is D-usc at each point of X. F is D-usco if it is D-usc and assumes
nonempty compact values.

Note that F' is D-usc if and only if all its restrictions F|D U {z}(z € X)
are usc.

PROPOSITION 3.7. Let F : X — Y be a map, and let D C X.

(a) If F' is D-usc and compact-valued, then so is FD; moreover, FpCF
and Fp|D = F|D.

(b) If D is dense in X and F is D-usco, so is Fp.

ProoOF. (a) Since F|D is usc, its graph is a closed subset of D x YV
by Proposition 3.2(a); hence Fp|D = F|D. Now fix an z € X. Since
F|D U {z} is usc and compact-valued, it has a closed graph and hence
Fp|D U {z} C F|D U {z}; in particular, Fp(z) is a (compact) subset
of F(x). Moreover, as the graph of Fp|D U {z} is obviously closed,
Proposition 3.2(b) applies to show that this map is usc. In consequence,
Fp is D-usc and compact-valued.

(b) In view of (a), we only have to check that Fp assumes nonempty
values. If, for some z € X, Fp(z) = @, then, since Fp is usc, there is
U € U(z) such that Fp(U N D) = &, which is impossible.

4. Characterizations of minimal usco maps. Recall that a map
F: X — Y is said to be minimal usco if it is usco and does not contain
properly any other usco map defined on X and with values in Y. Of
course, any (point-valued) continuous function f : X — Y, more precisely
the map F(z) = {f(z)}, is minimal usco; but it is also easy to find
examples of genuine minimal usco maps. A standard one is the map
F :[0,1] - R, where F(z) = {sin(1/z)} for z # 0 and F(0) = [-1,1].
Or take any function f : R — R that has finite left- and right-sided
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limits f(z—) and f(z+) at each point z, and set F(x) = {f(z—), f(z+)}.
Here F(x) is a singleton if f is continuous at z, and it is well known that
this happens everywhere except for a countable number of points. The
Namioka type theorems mentioned in the Introduction provide us with
surprisingly general situations where a minimal usco map is single-valued
on a large subset of its domain. In general, however, a minimal usco map
need not be single-valued even at one point of its domain. An example to
this effect can be found in [2]; the following example is slightly simpler.

ExXAMPLE 4.1. A nowhere single-valued minimal usco map. For each
t € T = [0, 1], the map F; : [0,1] — [0, 1] defined by

{0} for0<z <t
Fi(z) =< {0,1} forz=t
{1} fort <z <1

is evidently minimal usco. By Proposition 3.6 the corresponding product
map

F:[0,1] —[0,1)F

is usco. Suppose G : [0,1] — [0,1]7 is usco, G C F, and G(s) # F(s)
for some s in [0,1]. Let p, be the projection of [0,1]7 onto the sth copy
of [0,1] in this product. Then the map G : [0,1] — [0,1], defined by
Gs(z) = ps[G(z)], is easily seen to be usco. Moreover, G; C F, and
Gs(s) # Fs(s), where the latter follows from the fact that Fy(s) is a
singleton for ¢ # s. Since Fy is minimal usco, we must have G5 = Fj; a
contradiction.

REMARK 4.2. Despite the product form of the minimal usco map
F in the above example, even the product of two minimal usco maps
need not be minimal (though it is usco by Proposition 3.6). A suitable
counterexample can be obtained by a slight modification of Example
4.4 in [4]. In fact, define F : [0,00] — R? as therein, but with
F() = L = [-1,1] x [-1,1]. Since the functionals y; = (1,0) and
y3 = (0,1) can be identified with the projections p; and p» of R? onto
its first and second axis, respectively, the argument used in that example
shows that the maps F; = p;F from [0, 00| into R, i = 1,2, are minimal
usco. However, the map F' = F; x F5 is not minimal usco because
F(o)=L>C.



746 L. DREWNOWSKI AND I. LABUDA

We now turn to the general theory of minimal usco maps. The following
basic result (cf. [2, 5, 8]) follows from Proposition 3.2 by an easy
application of the Kuratowski-Zorn Principle.

PROPOSITION 4.3. Every usco map F : X — Y contains a minimal
usco map (defined on X).

The next result can be readily deduced from Corollary 3.3.

PROPOSITION 4.4. Let F : X — Y be a usco map. Then F is minimal
usco iff it is minimal usco when Y is equipped with a weaker Hausdorff
topology.

We now give some characterizations (and representations) of minimal
usco maps.

We start with a result which is essentially known: The fact that (b),
(c) and (d) below are implied by (a) has been observed and employed by
various authors.

PROPOSITION 4.5. For any usco map F : X — Y, the following are
equivalent.

(a) F is minimal usco.

(b) F|U is minimal usco for every open subset U of X.

(c) Whenever U is an open subset of X and C is a closed subset of Y
such that F(x) NC # @ for all  in U, then F(U) C C.

(d) Given z € X, U € U(z) and an open subset V of Y, if F(x)NV # @
then F(u) C V for some u in U.

(e) For each x in X, the map F is minimal usco at x; that is, for every
usc at * map G : X — Y such that G assumes nonempty values in a
neighborhood of © and G(z) is compact, if G C F, then G(x) = F(z).

PrOOF. We omit the proofs of implications (a) = (b) = (¢) = (d)
and (e) = (a) (cf. [4, Proposition 4.1]), and show only how (d) implies
(e): For a map G as specified in (e), suppose that G(z) # F(z), and let
y € F(x)\ G(z). Then there exist disjoint open sets V and W in Y such
that G(z) C W and y € V. Since G is usc at x, we can find U € U(z) so
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that @ # G(u) C W for all w € U. But G C F, so there is no u in U for
which F(u) C V, contradicting (d).

REMARK 4.6. The implications (a) = (b) = (c¢) = (d) and (e) = (a)
and, for Y regular, (d) = (e), hold also for the class of usc maps assuming
nonempty closed values. (Note that minimal maps in this case need not
be minimal usco.)

We say that a map F' : X — Y is minimal D-usco, where D C X, if it
is D-usco (see §3) and does not contain properly any other D-usco map
defined on X; we say F is D-reqular if F = Fp. Note that for every map
F,Fpis always D-regular.

THEOREM 4.7. For any usco map F : X —'Y and any dense subset D
of X, the following are equivalent:

(a) F is minimal usco.
(b) F is minimal D-usco.

(c) F|D is minimal usco and F is D-regular.

PROOF. (a) = (b) Suppose G : X — Y is D-usco and G C F. Then, by
Proposition 3.7, Gp C G and GD is D-usco. On the other hand, GD has
a closed graph and Gp C G C F, so Gp is usco by Proposition 3.2(b). It

follows that Gp = G = F and thus F is minimal D-usco.
(b) = (¢) If H C F|D is usco, then the map G such that G|D = H and

G|(X\D) = F|(X\D) is D-usco. Since G C F, we must have G = F and,
in consequence, H = F|D. Thus F|D is minimal usco. By Proposition
3.7, FD is D-usco and FD C F', hence FD = F,ie., F is D-regular.

(c) = (a) Suppose G C F' and G is usco. Then G|D = F|D so that
GD—FD,and FD—FbecauseFlsDregular Now F=Gp Cc GCF,
so G = F', which proves that F' is minimal usco.

COROLLARY 48. If F': X — Y is usco and F|D is minimal usco
for some dense subset D of X, then Fp is a unique minimal usco map
contained in F. In particular, if F' is minimal usco, then F = Fp.

PROOF. Fp is of course usco and D-regular, and Fp|D = F|D is
minimal usco. Hence Fp is minimal usco, by the implication (c) = (a)
of the above theorem. If G is a minimal usco map contained in F', then
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we must have G|D = F|D. Hence Gp = Fp, Gp is usco and Gp C G, so
G = Fp.

COROLLARY 4.9. Let F : X — Y be a minimal usco map and suppose
F is single-valued on a dense subset D of X; that is, there is a function
f:D =Y such that F(z) = {f(z)} for x in X. Then F = fp, i.e., for
every x € X,

Fl)=n{f(UND):U e€U(x)}.

Moreover, if X is 1st countable (in particular, metrizable) and Y has
sequentially determined closured for relatively compact sets, then

F(z) ={y:y =lim f(zn)
for some sequence (z,,) in D converging to x}.

PRrROOF. The first assertion is immediate from the preceding corollary;
the second follows from the first by an easy application of Proposition
3.5.

Here is a typical situation in which the last result can be applied. Let
X be a metric Baire space, Y a Banach space, and F' : X — Y a minimal
weakly usco map (i.e., F is usco into (Y, weak)). Then, thanks to the
results of Christensen [2] and Saint-Raymond [11], F' reduces to a point-
valued function f on a dense Gs-set D in X. Further, (Y, weak) is an
angelic space (see [7]); thus, in particular, it has sequentially determined
closure for relatively weakly compact sets. Hence, by the above corollary,
for each z in X, F(z) = {y € Y : y = weak-limf(x,) for some sequence
() in D converging to x}.

REMARK 4.10. We may treat the equality F = Fp in 4.8 (and F = fp
in 4.9) as sort of a representation result for a minimal usco map F' in terms
of its restriction F|D. In general, however, given a dense subset D of X
and a continuous function f : D — Y, the map F defined by F = fp
need not be usc or compact-valued; see Levi [10] for more information
about such extensions.

5. Some estimates of minimal usco maps. In what follows we
intend to give some (lower and upper) “estimates” of the size of the mini-
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mal usco maps contained in a given usco map F’; recall that the existence
of such minimal maps is established, ineffectively, in Proposition 4.3.

A usco map F may contain many minimal usco maps and so, in general,
will not have the smallest usco map contained in it. However, the infimum
of all usco maps contained in F' always exist as a compact-valued (the
value @ not excluded) usc map from X into Y, and its value at a point
z € X is given as N{G(z) : G C F, G usco}.

Given amap F : X — Y, we define, for every z € X, F,(z) to be the
set of all points y € Y which are “minimal for F' at ” (cf. Proposition
4.5(d)), that is, satisfy the following condition:

(u) For every V € V(y) and U € U(zx), there exists u € U such that
F(u)CV.

ProproSITION 5.1. If F: X — Y 14s a usco map, then, for every x € X,

Fi(z) = ﬂ{G(x) : G C F,G usco}.

PROOF. Given a usco map G : X — Y contained in F', we first prove
that F, C G. Suppose that, for some z in X, there is y € Fi(z) \ G(z).
Then we can find disjoint open sets W O G(z) and V € Y. Next, since G
is usc at x, we find U € U(z) such that G(U) C W. Now (u) implies that,
for some u € U, F(u) C V. But G(u) C F(u), so we have G(u) C W and
G(u) C V, which is impossible because G(u) # @ and VNW = @&. Thus
the inclusion “C” holds.

Now, let y ¢ F.(z) so that there exist U € U(z) and V € V(y) such
that F(u) ¢ V for all u € U. Consider the map G : X — Y such that
G(z) =F(z) for z€ X \U and G(z) = F(2)N (Y \ V) for z € U. Then
G is usco, G C F, and y ¢ G(x). We have thus shown that the inclusion
“C” cannot be proper.

PROPOSITION 5.2. Let F': X — Y be a usco map, where 'Y is a uniform
space with a base V for its uniformity. Then the following are equivalent
for every x in X.

(a) Fo(z) £ 2.
(b) For every U € U(z) and V € V, there exists u € U such that F(u)
is V-small (i.e., F(u) x F(u) C V).
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PROOF. We can assume that V consists of sets open in ¥ x Y. (a) =
(b) is obvious.

(b) = (a) Suppose Fi(z) = &. Then, for every y € F(z) there exist
uy € U(z) and V,, € V such that F(u) ¢ V,(y) for all U € U,. By
compactness, there exist a finite number of points yi,...,y, in F(z)
such that F(z) C Ul-,Vi(y;), where V; = V,,. Then U; = N}_,U,, is a
neighborhood of z, and F(u) ¢ Vi(y;) for I =1,... ,nand allu € U;. By
the compactness of F(z), there is V € V such that, for every y € F(x), we
can find 7 for which V(y) C V;(y;); clearly, we then have F(u) ¢ V(y) for
all u € Uy and y € F(x). Since F is usc at z, there is U € U(z),U C Uy
such that F(U) C W(F(z)), where W € ¥V and W - W C V. From the
above,

(%) Flu)gV(y) forallueU and ye€ F(z).
Now we claim that

Vu € U : F(u) is not W-small.

Suppose that F'(u)Xx F(u) C W for some u € U. Since F'(u) C W(F(z)),
taking any z € F(u) we can find y € F(z) such that (z,y) € W. But
F(u) is W-small, hence F(u) C V(y), which contradicts (x).

We have thus found U € U(z) and W € V such that F'(u) is not W-small
for any u € U, contrary to our assumption (b).

5.3. Let F': X — Y be usco. From Corollary 4.8 it follows easily that
if we define 5
(R1F)(z) =NpFp(z) for z € X,

where the intersection is taken over all dense subsets D of X, then, for
every minimal usco map G C F', one has

G C RF CF.

Clearly, R; F : X — Y is a usco map.

Suppose R, F has already been defined for all ordinals a < 8. Then we
define RgF as follows:

If 8 has a predecessor ¢, then RgF = R1(RoF).

If 5 is a limit ordinal, then RgF(z) = Na<pRaF(z) for all z € X. We
also set RoF = F.
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Let vy be the first ordinal for which R,;; = R,F, and set
F*=R,F.

The map F* : X — Y thus obtained may be called “the dense regqulariza-
tion” of F': it is D-regular for every dense subset D of X.

The following facts are easily verified.
(a) If G is a usco map contained in F, then G* C F*.

(b) F* is the largest usco map contained in F' that is regular with respect
to all dense subsets of X.

(c) If G is any minimal usco map contained in F, then G = G* C F*.
Thus, if F' is a usco map and G is a minimal usco map contained in F,

then
F, C GCF7

these are the “estimates” we alluded to at the beginning of this section.
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