ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 21, Number 3, Summer 1991

FOCAL SUBFUNCTIONS AND SECOND ORDER
DIFFERENTIAL INEQUALITIES
S. UMAMAHESWARAM AND M. VENKATA RAMAT

1. Introduction. In this paper we are interested in the differential
equation

(1.1) y" = flz,5,9),

along with the “right focal” and “conjugate” boundary conditions
(BC’s), denoted respectively by

(1.2R) y(w1) = Y1, y'(wz) =2
and
(1.20) y(z1) = y1, y(z2) = y2,

where 1 < 2,271,292 € I, aninterval in R, and y;,y2 € R are arbitrary.

The BC’s of the above type for equation (1.1) have been considered by
several authors and for a variety of results concerning these problems,
reference may be made to the papers [1-10] and to some of the other
references contained therein.

For the sake of convenience we label the hypotheses that we use as
follows:

A. f is continuous on I x R2.

UC. Solutions of conjugate boundary value problems (BVP’s) of
(1.1), if they exist, are unique on I (that is, y(z), z(x) are solutions of
the BVP (1.1), (1.2C) for arbitrary x;,z2 in I, 7 < 2 and y;,y2 € R
implies y(x) = z(z) on [z1, z2)]).
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E. All solutions of (1.1) exist on I.

It is well known [9, Theorem 1] that, under hypotheses A, UC and E,
if u(z) is a “lower solution” equation (1.1) on I (that is, u(x) € C?(I)
and u"’(z) > f(z,u(z),u'(z)) for all z in I) then u(z) is a conjugate
subfunction with respect to solutions of (1.1) on I (that is, u(z) satisfies
the inequality

(1.3) u(z) < y(z)
on [z1,x2] whenever
(1.4C) u(zy) <y, u(zz) <o

holds and y(x) is a solution of the BVP (1.1), (1.2C) for arbitrary
z1, 22 € I, 1 < z9 and y1,y2 € R).

In order to motivate further discussion and state our main result we
need the following definitions:

Definition 1.1. u(z) € C'(I) is a “right focal subfunction” with
respect to solutions of (1.1) on I if the inequality (1.3) holds on [z, 2]
whenever

(14R) u(z1) <y, u'(z2) < yo

holds and y(z) is a solution of the BVP (1.1), (1.2R) for arbitrary
x1,22 € I, 1 < x9 and y1,y2 € R.

Hereafter, we shall simply use the term lower solution (right focal
subfunction) omitting the words with respect to (with respect to
solutions of) equation (1.1) since it is always meant that way.

It follows (Lemma 2.2) from the above definition that a right focal
subfunction on an interval I is necessarily a conjugate subfunction on
I, and hence a C%-right focal subfunction on I is a lower solution on
I by [5, Theorem 3.2]. However, the example given in Section 2 shows
that, even in the case of a linear differential equation with hypotheses,
A, UC, E, a lower solution need not be a right focal subfunction.
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It also follows easily from the definitions of lower solution and right
focal subfunction that if lower solutions on an interval I are right focal
subfunctions on I, then UR holds on I where UR stands for

UR. Solutions of right focal BVP’s of (1.1) if they exist are unique
on I (that is, if y(z), z(z) are solutions of the BVP (1.1), (1.2R), then
y(z) = z(x) on [z1, x2] for arbitrary z1,z2in I, 1 < z2 and y1,y2 € R).

So now one can raise the question whether, under the stronger
hypotheses A, UR (for the result UR implies UC refer to Lemma 2.6),
and E lower solutions on an interval I, are right focal subfunctions on
I. We answer this question in the affirmative in our main theorem
(Theorem 4.1).

This theorem is proved by means of a “local existence” theorem
(Theorem 3.1) for focal BVP’s, the result (Corollary 3.2) that lower
solutions under the hypothesis UR are right focal subfunctions in the
“small,” and an induction argument similar to that used in the proof
of Theorem 1 of [9] but using hypothesis UR rather than UC.

We also show in Theorem 5.1 that if I is an interval which is open
at the left end point, then, under hypotheses A, UR and E, the BVP
(1.1), (1.2R) has a solution for z,z9 € I, z; < z2 and y1,y2 € R
arbitrary. This theorem removes the restrictions of I being open at the
right end point and the uniqueness of solutions of initial value problems
but yields the same conclusion as that of the theorem in [8] and the
theorem with n = 2 of [2].

Finally we show, by means of an example, that the above stated
theorem is not true if I is a closed interval. However, it remains an
open question whether the theorem is true or not if I is closed at the
left end point, but open at the right end point.

It will be assumed that hypothesis A holds through the remaining
sections of this paper.

2. Preliminary results.

Lemma 2.1. Suppose u € C[c,d], u(c) >0, u(d) > 0 and u(z) < 0
for some x, ¢ < x < d. Then there exists an interval [z1,x2] C [c,d)
such that u(xz1) =0, u'(z2) = 0 and u(z) < 0 on (x1,z2).
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Proof. By hypotheses, u(z) attains its negative minimum at some
point, say z3 € (¢,d). Let 21 = Sup{c < z < x2 : u(z) = 0}. Then
[z1,22] C [¢,d) and u(z) satisfies u(z1) = 0, v/(z2) = 0 and u(z) < 0
on (z1,z3). O

Lemma 2.2. If u € C*(I) is a right focal subfunction on I, then u
18 a conjugate subfunction on I.

Proof. Suppose u(z) satisfies the condition (1.4C) for some z1, x5 € I,
z1 < z2 and y1,y2 € R and y(z) is a solution of the BVP (1.1),
(1.2C). If u(z) < y(z) does not hold on [z1, 2], then there exists z’,
x1 < 2’ < x5 such that u(z") > y(z') and consequently, by Lemma 2.1,
an interval [z3,z4] C [21, 22) such that u(zs) = y(z3), ' (24) = ¥ (24)
and u(z) > y(z) on (x3,x4). This contradicts the hypothesis that u(z)
is a right focal subfunction on I. O

Corollary 2.3. If u € C*(I) is a right focal subfunction on I, then
u 15 a lower solution on I.

Proof. This is a consequence of Lemma 2.2 above and Theorem 3.2
[5]. O

However, the converse of Corollary 2.3 need not be true even in the
case of linear differential equations satisfying hypotheses A, UC and E
as shown by the following example.

Example. Consider the equation y' +y =0, 0 < z < 37/4. Then
y(x) = Sinz and z(z) = 0 are both solutions satisfying the same right
focal BC’s, y(0) = 0, y'(w/2) = 0, and hence not all lower solutions are
right focal subfunctions on [0, 37/4].

Lemma 2.4. Ifu € C'z1,z2] and attains a minimum at a point o,
z1 < g < Ta, then (i) u'(zp) =0 if ©1 < o < 22 and (ii) u'(zo) <0
Zf g = I2.
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Lemma 2.5. Suppose u € Ctle,d], u(c) > 0 and u(x) < 0 for some
z in (c,d]. Then there exists a subinterval [c1,d1] C [c,d] such that
u(e1) =0, v'(d1) <0 and u(z) <0 on (c1,dy).

Proof. To see this, let ¢ < di < d be such that u(z) attains its
negative minimum on [¢, d] at dy and ¢; = Sup{c < z < d; : u(z) = 0}.
Now the conclusion is obvious by virtue of Lemma 2.4. O

Lemma 2.6. UR implies UC.
Proof. This is a consequence of Rolle’s theorem. 0O

In the following three lemmas, too, we assume hypothesis UR holds.
In addition, assume hypothesis E holds in Lemmas 2.7 and 2.8. These
lemmas are easy consequences of these hypotheses and other assump-
tions made therein. Hence their proofs are omitted.

Lemma 2.7. Suppose y(z),z(z) are solutions of (1.1) satisfying
y(z1) = z(z1), y'(z2) > 2/ (x2) for some x1,z2 in I and ©1 < x3. Then
y'(z) > 2'(z) for allx > x4, x € I.

Lemma 2.8. Suppose y(z),z(z) are solutions of (1.1) such that
y(z1) = z(z1) and y(z2) > z(x2) for some x1,z2 in I and 1 < 2.
Then y'(x) > 2'(x) for all x > 9,z € I.

Lemma 2.9. Suppose y(z),z(z) are solutions of (1.1) satisfying
y(z1) = z(z1), y(x2) > z(x2) and y'(z2) < 2'(z2) for some z1,x2 in
I and 1 < z3. Then y(z2) = z(x2) holds, and hence y(z) = z(x) on
[Il,Ig].

3. Local existence theorem and consequences for focal
BVP’s.

Theorem 3.1. Let M > 0, N > 0 be given. Let q be the maximum
of |£(w,y,4")| on the compact set {(z,y,4") : a < z < b, Jy| < 2M,
ly'| < 2N}. Assume g > 0 and 6 = Min{\/(2M/q), N/q}. Then
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(i) The BVP (1.1), (1.2R) with [z1,22] C [a,b], 22 — 21 < 6,
ly1] < M, |y2| < N, |y1 +y2(z2 — 21)| < M has a solution y(zx).

(il) Ife > 0 is given, 6* = Min{d,e/q,/(2¢/9)}, [z1,22] C [a,b],
x2 —x1 < 0* and w(x) is the unique linear function satisfying w(z1) =
y1, w'(z2) = ya, then the BVP (1.1), (1.2R) has a solution y(z)

satisfying |y(z) — w(z)| < e and |y'(z) — w'(z)| < € on [z1,x2].

Remark. The proof of this theorem is a standard application of
Schauder’s fixed point theorem and, hence, is not given here. However,
we remark that the estimate for d, given in the theorem, is arrived
at by using the following estimates of Green’s function and integrals
involving the Green’s function, namely,

|G(z,t)] < (x2 — ml),/z2 |G (z,t)| dt < (x5 — x1)2/2

Z1

and

T2
| Gula 0]t < (w2 ).
z1

Note. If, in the above theorem, ¢ = 0, that is, f(z,y,y’) = 0 for
a<z<b, |yl <2M, |y| < 2N, then y(z) = w(z) is the solution of the
BVP (1.1) and (1.2R) for arbitrary 1,22, y1, Yo-

The following corollary is the analogue to right focal BVP’s of a
similar result for conjugate BVP’s which is contained in the proof of
Lemma 1 in [9]. This corollary which implies that lower solutions
under hypothesis UR are right focal subfunctions “in the small” is used
frequently in the proof of Theorem 4.1.

Corollary 3.2. Let u € C'[a,b] be given. Then

(i) There exists a & > 0 such that, for [z1,z2] C [a,b] and x2 —x1 <
d, there exists a solution y(z) of the BVP (1.1) and y(z1) = u(z1),
y'(z2) = u'(x2).

(ii) Givene >0, [z1,x2] C [a,b], and w(x) the unique linear function
satisfying w(zy) = u(z1), W' (z2) = u'(x2), there exists 6*, 0 < §* < §
such that o — x1 < §* implies the BVP (1. 1) and y(ml) = u(zy),
Y (z2) = u'(x2) has a solution y(z) satisfying |yV (z) —w®(z)| < € on
[x1, 23] fori=0,1.
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(iil) If, in addition, u(x) is a lower solution of (1.1) on [a,b], then
there exists a 6**, 0 < 0** < § such that the BVP in (i) has a solution
y(x) satisfying u(z) < y(x) on [z1,xs], provided zo — x1 < §**.

Proof. (i) and (ii) follow from Theorem 3.1 if we choose

M = Max{|u(z)| : a <z < b} + (b — a)Max{|u'(z)| : a < z < b},
N = Max{|u'(z)| : a < x < b},

u(x1) =y1 and o' (z2) = yo.

(iii). If we define

f(z,9,9), y > u(z)

F(z,y,y') = esesh
T f(@,u(z),y’) — (u(@) —y), y<u(z) ’
a<z<b

then the proof is the same as that of [9, Lemma 1], except, in showing
y(xz) > u(x) on [z1,z3], we have to note that, when we assume the
opposite inequality in the proof of our theorem, the positive maximum
of u(z) — y(z) can occur at the end point zo; if it does we use the
boundary condition y'(z2) = u'(z2) to continue the proof along the
same lines as that of [9, Lemma 1]. O

Corollary 3.3. (Global existence theorem for right focal BVP’s).
Let f(z,y,y') be such that |f(x,y,y")| < h+ k|y|* for some constants
h>0,k>0and0<a<1. Then the BVP (1.1), (1.2R) for arbitrary
z1,22 € I, 11 < x2 and y1,y2 € R has a solution y(z).

Proof. This is along the same lines as that of [6, Lemma 2.2]. 0O

It may be remarked that the above corollary is the same as Corollary
3.2 of [1] with n = 2, ap = «, and a; = 0, but in [1] its proof was based
on the topological transversality method.
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4. Focal subfunctions.

Theorem 4.1. Assume hypotheses A, UR, E. Then lower solutions
on I are right focal subfunctions on I.

Proof. Suppose u(z) is a lower solution on I, but not a right focal
subfunction on I. Then, by Lemmas 2.4, 2.5, and Definition 1.1, there
exists an interval [¢,d] C I and a solution y;(z) of (1.1) such that
y1(c) = u(e), y1(d) = u'(d) and y1(z) < u(z) on (¢, d).

Since u € Cc,d] is a lower solution on [¢,d], by Corollary 3.2(iii)
there exists a §, 0 < § < d — ¢ such that, for [z1,z2] C [¢,d] and
zo —x1 < 4, the BVP (1.1) and y(z1) = u(x1), ¢'(x2) = v'(x2) has a
solution y(z) satisfying u(z) < y(z) on [z1,za] (that is, u(x) is a right
focal subfunction “in the small”).

For each positive integer n, let P(n) be the proposition that there
exists an interval [c,,, d,| C [¢,d] with 0 < d,,—¢, < d—c—(n—1)d and a
solution y, (z) with y,(cn) = u(en), v, (dn) = v/ (dy) and y,(z) < u(z)
on (¢p,d,). Obviously P(n) cannot be true for all n > 1. However,
assuming that u(z) is not a right focal subfunction on I, we will show
by an induction argument that P(n) is true for all n, thereby proving
that u(x) must be a right local subfunction on I.

P(1) is true since we can choose [c1,d;] = [¢,d] with y;(z) same as
above.

Assume P(k) is true, that is, there exists an interval [ck, d] C [c, d],
with 0 < dp — ¢ < d—c— (k— 1) and a solution yi(z), with
yk(cr) = ulck), yp(de) = v'(dy) and y(z) < u(z) on (ck,dk). Now
di, — ¢ > ¢ since, otherwise, by Corollary 3.2(iii), there exists a
solution distinct from yi(z) for the BVP (1.1) and y(cx) = u(ck),
y'(di) = u'(dk)-

Let zi(x) be the solution of the BVP (1.1) and y(ck) = u(ck),
y'(ck +0) = u'(ck + 9) so that, by Corollary 3.2(iii), u(z) < z1(z)
on [ck, ¢ + 6] and, hence, yx(x) < z1(z) on (e, cx +6]. By Lemma 2.8,
hypotheses UR and E, we have z{(z) > y,.(z) for all z > ¢ and, hence,
21(dk) > yp(di) = u'(dg)-

Now, assuming P(k + 1) not true, we first prove

Claim (i). z1(z) > u(z) on [ci + I, dg].
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For, if not, there exists 2/, ¢, + 0 < @’ < dj such that Min{z;(z) —
u(x) e +0 <z < di} = z(a") —u(z') < 0. However, if 2’ = dy,
then 2{(dx) — v/ (dx) < 0 by (ii) of Lemma 2.4, a contradiction. Hence
¢k + 6 < 2’ < dj, which in turn implies, by (i) of Lemma 2.4, that
P(k + 1) is true with yg11(z) = 21(2) and [cky1,drt1] G [cr + 9, di],
an interval of length dy — ¢y, —§ < d — ¢ — k. Hence the claim is true.
|

Claim (ii). dy — (cr + ) > 4.

For, if otherwise, the focal BVP (1.1) and y(c; + 0) = u(ck + 9),
y'(di) = u/'(dk), by Corollary 3.2(iii) will have a solution z3(z) with
u(z) < zo(x) on [cx + 6,d], and consequently u'(c + &) < 25(ex + 9).
By hypothesis E, z2(x) exists on I, and hence either (a) there exists ',
¢ < @' < cg + 0 such that za(z") = yx(a’) or (b) there exists a largest
z", ¢ < 2" < ¢k + § such that z9(z") = 2z (z").

If case (a) occurs, then, by Lemmas 2.7 and 2.8, we must have
z5(di) > yp.(di) = v/(dg), a contradiction.

On the other hand, if case (b) occurs again there are two possibilities,
namely, 2"/ < ¢t + 6 and =" = ¢, + 0. If 2”7 < ¢ + 0, then, since
z1(ck + 68) > zo(ek + 6) and 27(ck + ) = u'(ck + 6) < Z5(ck + 6), we
have, by Lemma 2.9, that

<z< 6
wo(m):{zl(x)v ck ST < ¢+ 0,

zo(z), cx+0 <z <d,

and yi(x) are two distinct solutions of the same right focal BVP, a
contradiction to UR. If 2" = ¢, + §, then zj(ck + 6) = v/ (¢ + ) <
zh(ck, + §). However, the strict inequality in the above statement is
ruled out by virtue of the fact that 2] (dy) > z5(dk) and by Lemma 2.7.
Hence, 2{(cx + 0) = z4(ck + 0), and consequently,

(@) z1(x), cx<x<cp+0,
Z\T) =
22(37), Ck+(5§l‘§dk,

and yi(x) are two distinct (distinct since yi(z) < u(z) < 2z(z) on
(ck,ck + 6)) solutions of the same right focal BVP, a contradiction to
UR. Hence, claim (ii) is true. W
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Now there exists, by Corollary 3.2(iii), a solution zz(z) of (1.1) such
that z9(ck +0) = u(ex +6), 25(ck +26) = v/ (cx + 26) and u(z) < 29(z)
on [cx + 6, ¢k + 20]. Consequently, z5(ck +0) > u'(ck +0) = 21 (ck + ).
By hypothesis E, z3(x) exists on I and hence either (a) there exists an
2’y e < o' < ¢+ 0 such that z1(2') = 2z2(2') or (b) there exists a
largest ", ¢, < 2" < ¢x + 0 such that zz(z") = yx(z').

If case (a) occurs let

(2) = zi(z), @ <cp+0,
YT sae), e+,

so that, by Lemma 2.9, wy(z) is a solution of (1.1) satisfying wi(ci) =
u(cr) and wi (cx+28) = u'(ck+29). If case (b) occurs let wy(z) = 2z2(z),
for z > z".

Claim (iii). dp — (ck + 20) > 6.

Suppose di, — (ci + 2§) < §. Then, by Corollary 3.2(iii), there exists
a solution z3(z) of equation (1.1) satisfying z3(cx + 28) = u(cx + 26),
25(dy) = u'(dg) and z3(x) > u(z) on [cr + 26,d], and, consequently,
25(ck +20) > v/ (cx + 20) = wi(ck + 26) and z3(ck + 26) > yr(ck + 26).
By hypothesis E, z3(z) exists on I, and, hence, either (a) there exists
an 7', ¢ < @’ < ¢k + 26 such that z3(z') = wi(z’) or (b) there exists a
largest 2", ¢, < 2" < ¢ + 20 such that z3(z"") = yr(2").

If (a) occurs, we can consider, as in the proof of Claim (ii), the two
possibilities &' < ¢ + 2§ and z’' = ¢ + 26. In either case, by using an
argument identical to that in Claim (ii), we can arrive at a contradiction

to UR.

If (b) occurs, choose wa(x) =
2.8, wy(dy) > v, (di) = u'(di)

z3(z) for © > z"". Then, by Lemma
wh(dy), a contradiction. M

Let j > 0 be the unique integer such that ¢ +jd < di, < cp+(j+1)0.
Now, repeating the above steps a finite number of times, we arrive at
a solution w;(z) of equation (1.1) satisfying w;(cx + jo) = u(ck + jo),
wi(dg) = u'(dx) and wj(x) > u(z) on [cx + jo,di]. Consequently,
wi(er + j6) > u'(ek + j6) = wj_y(cx + j0), where w;_1(z) is the
solution obtained in the previous step of the proof. (Note that w;_;(z)
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satisfies w;_1(z*) = yg(z*) for some ¢ < z* < ¢ + (j — 1)4,
wj—1(ckx+ (J —1)0) = u(er + (j — 1)9), w;;l(ck +38) =/ (cr + jo) and
wj—1(z) > u(z) on [cx+(j—1)d, ck+70].) Since w;(z) extends to I by E,
either (a) there exists ', ¢y < 2’ < ¢+ 0 such that w;(z’) = w;_1(z'),
or (b) there exists a largest **, * < &** < ¢ + (j — 1)d such that
w; () = y(z™").

If case (a) occurs, considering the two possibilities ' < ¢, + 7§ and
z' = ¢+ jd, one can arrive at a contradiction to UR by using Lemmas
2.7 and 2.9 as in the proof of Claim (ii).

If case (b) occurs, then the function wjq(z) defined by wj;i1(z) =
w;(x), r > z** must satisfy, by Lemmas 2.7, 2.8, w’; {(dx) > y;(dx) =
u'(dy) = w,,(dg), a contradiction. This contradiction shows that
P(k-+1) must be true, and hence P(n) is true for all n. This completes
the proof of the theorem. 0O

5. An existence theorem.

Theorem 5.1. Let I be an interval open at the left end point.
Assume hypotheses A, UR, E hold on I. Then the BVP (1.1), (1.2R)
has a solution where x1 < x2, x1,x2 € I and y1,y2 € R are arbitrary.

Proof. Let z1,z2 € I and y; € R be arbitrary but fixed. Let

S={veR:y(x) =y1,y (z2) =
and y(z) is a solution of (1.1)}.

Clearly S is nonempty by hypothesis E. Now, to prove the theorem
it suffices to show S = R. We do this through the following claims.

Claim 1. S is connected.

For suppose 71,72 € S, 71 < 72 and 71 < 7' < 79 is arbitrary. Let
zi(z) be the solution of (1.1), (1.2R) with y = 7;, ¢ = 1,2. Then, by
Lemma 2.8, we have z3(z) > zi(x) for all z > z1, © € I. Applying
Theorem 5 of [7] with ® = 2z; and ¥ = 2z, we obtain that there exists
a solution of the BVP (1.1), (1.2R) with y» = %', so 7' € S and, hence,
the claim. W
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Let Bp = Sup S and 79 = Inf S. To show § = R it suffices to show
Bo = +o0 and 79 = —oo. We will only prove By = +00, since the other
proof is similar.

Claim 2. By ¢ S.

For, if not, suppose yo(x) is the solution of (1.1) and (1.2R) with
y2 = Bo- Then the solution z(z) of the IVP (1.1) and

y(z1) = y1, ¥'(z1) = yo(z1) + 1

satisfies, by Lemma 2.7, that 2'(z2) > yj(z2) = Bo, a contradiction
and, hence, the claim. W

Now let yo(z) be the solution of the IVP (1.1) and

y(x1) = y1, Y (z1) =1,

and let zo(z) be the solution of the IVP (1.1) and

y(x2) = yo(w2) + 1, y' (z2) = Bo.

Now yo(z) and zp(x) exist on I, zo(z1) # y1 and y,(z2) < Bo-
Claim 3. zo(z1) < y1.

Suppose, if possible, zo(z1) > y1. This implies zo(z) > yo(z) for
x > zp. If, otherwise, there exists z’, 1 < 2’ < @ such that zp(z') <
yo(z'), and then yo(z) — zo(x) will have at least one zero on each of
the intervals (z1,2') and (2, z2), a contradiction to the conclusion of
Lemma 2.6. Now yo(z) < zo(z) on [z1, z2], with yo(z1) = y1 < 20(x1)
and yj(z2) < Bo = z,(x2). So choosing ® = yp and ¥ = 2 in Theorem
5 of [7], we obtain that there exists a solution w(z) of the BVP (1.1),
(1.2R), with yo = [y satisfying yo(z) < w(x) < 2¢(z) on [z1,x2]. This
implies By € S, a contradiction to Claim 2. H

By Claim 3, the fact that zo(z2) > yo(z2) and hypothesis UC, it
follows that there exists =/, 1 < 2’ < z3 such that zo(z') = yo(z'),
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zo(z) <yo(x) for z < 2', z € I, with zo(x) < yo(x) for 21 —e <z <
where € > 0 is sufficiently small. By Theorem 3.1 of [10] and Lemma
2.6, the BVP (1.1) and

y(z1 —e) = zo(z1 — €)
y(z1) =1

has a solution w(z) satisfying zo(z) < w(z) < yo(z) on [z1 — &, 21],
and hence, by Lemma 2.8, w'(z) > zy(z) for all z > 1, x € I. In
particular, w'(x2) > z{(z2) = Bo. This contradicts the definition of Sy
since w’(z3) € S. This completes the proof of the theorem. O

The conclusion of Theorem 5.1 need not hold if I is a closed interval,
as shown by the following example. We now state a lemma which is
used in the example.

Lemma 5.2. The equation y"’ = —y is right disfocal on the interval
[0,7/2) ((0,7/2]) (that is, y(xz1) =0, y'(z2) =0, 0 < 2y < 2y < /2
(0 < 1 < 29 < 7/2), and y(z) is a solution of the above equation
imply y(z) = 0), and hence UR holds for the above equation on [0,7/2)

((0,7/2]).

Example. Consider the differential equation
(5.1) y' = —y+arctan y

with —7/2 < arctan y < n/2 and I = [0,7/2].

The hypotheses A, UC and E hold for equation (5.1) on [0,7] as
shown on page 347 of [5].

We first claim that UR holds for (5.1) on [0,7/2) and (0,7/2]. If it
does not hold on [0, 7/2), suppose y(z), z(x) are two distinct solutions
of (5.1) satisfying y(z1) = z(z1), y'(z2) = 2'(z2) for some z1,x2,
0 < 21 < z3 < m/2. Since UC holds for (5.1) on [0,7/2], we can
assume without loss of generality that y(z) > z(z) on (x1,7/2]. Now
let w(z) = y(z) — 2(z) so that we have w(zy) = 0, w'(z2) = 0,
w(z) > 0 and w'(z) > —w(z) on (x1,7/2] as shown on page 347
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of [5]. Consequently, by Theorem 4.1 and Lemma 5.2, w(z) is a right
focal subfunction with respect to solutions of the equation

(5.2) y'=—y
<

on [z1,7/2] and hence w(z) < 0 on [z1,23], a contradiction. This
proves that UR holds for (5.1) on [0,7/2). The proof for (0,7/2] is
analogous.

Now, to show that UR holds for (5.1) on [0,7/2], we only need to
show that if y(z), z(z) are solutions of (5.1) satisfying y(0) = z(0),
y'(m/2) = 2/ (7 /2), then y(z) = z(x) on [0,7/2]. If the above assertion
is not true, then, since UR holds on [0,7/2), we can suppose without
loss of generality that ¢'(z) > Z/(z) for 0 < & < 7/2 and hence
w(z) = y(x) — 2(x) > 0 on (0,7/2]. Thus, w(z) attains its positive
maximum on [0,7/2] only at z = w/2, yielding w(n/2) > 0 and
w'(7/2) = 0. Further, w'”’(z) > —w(z) on (0,7/2].

Now let u(z) be the solution of the IVP (5.2) and y(7/2) = w(w/2),
y'(r/2) = w'(7/2) = 0. Since w'(7/2) > —w(r/2) = —u(r/2) =
u'’(7/2), it follows that (w — u) has a relative minimum at z = /2,
that is, (w — u)(z) > 0 for =, 0 < 7/2 — = < m/2, sufficiently small.
Since, by Theorem 1 of [9], w(z) is a conjugate subfunction with respect
to solutions of (5.2) on [0,7/2], we must have (w — u)(z) # 0 for
0 <z < 7/2, and hence (w —u)(x) > 0 for 0 < x < 7/2. In particular,
u(0) < w(0) = 0, whereas u(m/2) = w(w/2) > 0. Therefore, u(z’') =0
for some z’, 0 < =’ < ©/2. This, together with '(7w/2) = 0, implies,
by Lemma 5.2, that u(z) =0 on [z, 7/2]. In particular, u(mw/2) =0, a
contradiction. This shows that UR holds on [0, 7/2].

Claim. The BVP (5.1) and y(0) =0, y'(7/2) = 37 has no solution.

Suppose, on the contrary, that the above BVP has a solution y(z)
and y'(0) = m. Let v(z) be the solution of the IVP

V' =—v+7

v(0) =0, v'(0) =m+ 1.

As shown on page 347 of [5], v(z) is a lower solution of equation (5.1)
on [0,7/2], satisfying v(0) = y(0), v(z) > y(z) for 0 < z sufficiently
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small. Consequently, by Theorem 4.1, v(z) is a right focal subfunction
of (5.1) on [0, 7/2]. This, together with the fact v(0) = y(0), must imply
v'(z) > y'(z) on (0,7/2] and, in particular, v'(7/2) > y'(7w/2) = 3.

However, an easy computation yields v(z) = (m+1) sinz—m cosz+,
whereby we get 37 < v'(7/2) = 7, a contradiction. W
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