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FULL 2-CONVEXITY IN BOCHNER LP-SPACES

PEI-KEE LIN

ABSTRACT. We prove that LP(u, X), 1 < p < oo, is 2R
whenever X is 2R.

1. Introduction. Let k& > 2 be an integer. A Banach space X
is said to be fully k-convex (kR) if for every sequence {z,} in X,
Bmy,, ny . ng—o0 ||Bng &0y ++ - -+ &0, || /k = 1 implies {z,, } is a Cauchy
sequence in X. X is said to be fully convez if X is kR for some k > 2.
It is known [1,4] that if X is uniformly convex, then X is kR for all
k> 2, and LP(u,Q,X), 1 < p < 00, is uniformly convex. One natural
question arises as to whether LP(u,Q,X), 1 < p < oo, is kR when X
is kR. The main result of this article is the following theorem.

Main Theorem. LP(u,Q,X), 1 <p < oo, is 2R if X is 2R.

The above question is still open if £ > 3. (Note: the techniques in
this paper do not work when k > 3.)

2. The ideas of the proof of Theorem. First, we need the
following characterization of kR spaces.

Theorem. [7, also see 4, 5]. A Banach space X is kR if and only if
X satisfies the following properties:

(1) X is reflexive and strictly convex;

(2) X has the Kadec-Klee property (known also as Property H), i.e.,
if {zn} converges weakly to x and lim, , ||zn|| = ||z||, then {z,}
converges to x in norm, (3) Let {z,} be a sequence in X. If
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(*) "17"271-1--{1}%%00 k 1
and {z,} converges weakly to x, then ||z|| = 1.

It is known that if X is reflexive and strictly convex, then LP(u, 2, X),
1 < p < o0, is reflexive and strictly convex. It is also known [8] that if
X is a strictly convex Banach space with the Kadec-Klee property and
X contains no copy ¢1, then LP(u,Q, X) has the Kadec-Klee property.
Hence, if X is kR, then LP(u, (), X) satisfies conditions (1) and (2) in
the above Theorem. So we only need to verify whether LP(u, 2, X)
satisfies condition (3) when X is kR. Let us assume that X is 2R and
{fn} is a sequence in LP(u,), X) which satisfies (x) for k¥ = 2 and
which converges to f weakly. Since LP(u,Q), 1 < p < 00, is uniformly
convex, by a standard perturbation argument (see [8]) we may assume
that [|f.(t)|] = ||fi(t)|| for all n € N and all t € Q. (So we can
assume that Q is o-finite.) It is easy to verify the following fact: for
any measurable set A of €2,

timsup [ 1o+ Fua@Pdn < [ @IA@I du
o\A Q\A

ny,n2 —>o0

and so

ni,n2—>00

(%) lim /Allfm(t)Jrfm(t)deu:/A(2Hf1(t)|\)pdu-

So, if {f,} satisfies condition (x), then {f, - [4} satisfies condition (x)
where 1 is replaced by || f1-14|| (and f,,-I4 converges to f-I4 weakly).

Lemma 1. Assume {f,} satisfies the above conditions. Moreover,
assume there exists C > 0 such that for any t € supp(||f1(¢)|]),

O> 1RO > &

Then there is a subsequence of {f,} which converges to f.

Assume Lemma 1 were proved. Then for any m € N, there is a
subsequence of {f,} such that {fn - Ity 1/m<||f,(¢)]|<m}} cOnVerges to
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{f  Itt: 1 /m<|f1(¢)]]<m} }- So by the diagonal method, {f,} contains a
subsequence which converges to f (therefore, ||f|| = 1). Since for any
m € N,

u{t NG m} < o0,

we may assume that p is a probability and supp(f) = Q.

Remark 1. The above arguments except for the conclusion of Lemma
1 are still true when £ > 3.

Remark 2. Using the above arguments, we can show that {f,} sat-
isfies the assumption (respectively, conclusion) of Lemma 1 if and only
if {f.(t)/]|f1(t)||} satisfies the assumption (respectively, conclusion) of
Lemma 1. So we may assume that ||f1(¢)|| = 1 for all ¢ € Q. But in
Lemma 2, we give a proof without assuming that ||fi(¢)|| = 1 for all
teq.

Assume that there is a subsequence {h,} of {f,} such that, for all
t € Q, imp, ny—soo ||An, () + hn,(t)|| = 2. Since X is 2R, {h,(t)} is a
Cauchy sequence, say it converges to f(t). By the Lebesgue Dominated
Theorem, {h,} converges to {f} in L?(u, X). In this article we prove
the fact indirectly. Up to now, we do not know any simple direct proof.
Before giving the proofs, we explain our ideas.

It is known that if {f,} converges to f in LP(u,X), then there is a
subsequence of {f,} which converges to f almost everywhere. Hence,
the first step we need to show is that for almost all ¢t € 2, the set

F(t) = {z : there is a subsequence of {f,(¢t)} which converges to =}

is nonempty. Assume we have done the first step. Then we may have
a selection (for a definition, see Section 3) g of F'. It is known that f is
measurable. But we do not know g is measurable. So in the second step,
we will use the function g to show that F' has a measurable selection
h. In the third step, we will show that there is a subsequence {h,}
of {fn} such that for almost all ¢ € Q, lim,_,c ||hn(t) + h(2)|| = 2.
Finally, we show that {h,,} converges to h. Clearly, to prove the above
statements, we need to have the sequence {f,} satisfy the following
strong property.
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Lemma 2. For any N > 0, there exists n > N such that if m > n,
then the set

1
Sp = {t hn(t) + hm ()] <2 (1 — 2—N>}
. 1
<respectwely, Sy = {t hn(8) + b (B)]] < 2 (1 - 2—N> |f1(t)|}>
has measure at most 1/2V. Hence, there is a subsequence {h,} which

satisfies the property
(% * %)

w{es i@+ mon <2 (1- 5) b o
1

<respectively, L {t N hn () +hn ()] < 2(1 - 2%) |f1(t)|} < 2m+1>

for all m < n.

Proof. Since limy, n,—00 || fry + fra|| = 2, there exists M > N such
that if n,m > M, then

2> [+ mmoranz 2 [(1- 5 ) g+ (155 )]

(We leave it to the reader to figure out the right inequality when
we do not assume that |[f1(¢)|] = 1 for all t € Q.) So the set
{t  ||fam(t) + fm(®)]] < 2(1 — 1/2¥)} has measure less than 1/2V for
any m > M, and there is a subsequence {hy} of {f,} which satisfies
(x%%). O

From now on, we will assume that {f,,} satisfies (x x %) of Lemma 2.

3. Some lemmas. Assume {f,} satisfies the assumptions in the
last section and X is 2R.

Lemma 3. For almost all t € Q, F(t) # @.

Proof. 1t is enough to show that for any N > 0 and for any
measurable set E with pu(FE) > 1/2Y > 0, there is a measurable subset
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E' of E such that pu(E’) > 0 and for all t € E', {f.(t)} contains
a Cauchy subsequence. By Lemma 2, for any n > m > N, the set
{t || £u() + fm(®)]] < 2(1—1/2™)} has measure less than 1/2™*!. So
for any n > N, the set

Sn:{teE: fora11N<m<n||fn(t)+fm(t)|22<1—2im>}

has measure at least 1/2V*1, Thus, there exists a subset E' C E such
that u(E') > 0 and for each t € E’, t € S,, infinitely many times, say
t € Sp,. (Note: {n;} depends on ¢.) Then we have

Um || fn, (8) + foi, (] = 2.

k:l,k:z—)oo

By the assumption, X is 2R. So {f,,(t)} is a Cauchy sequence and
F(t) # @ for almost all t € Q. O

Remark 3. We do not know whether there is a result similar to Lemma
3 when X is 3R.

Lemma 3 has shown that for almost all ¢ € Q, F(t) # @. So we may
assume that F(t) # @ for all ¢ € . A function g : @ — X is said to
be a selection of F if g(t) € F(¢) for all t € Q. If g is measurable, then
we say g is a measurable selection.

Lemma 4. There is a measurable selection of F'.

Proof. Let g be a selection of F'. g is not necessarily measurable. Our
idea to prove this Lemma is to construct a sequence of functions {h,}
which satisfies the following conditions:

(1) for any ¢ € Q and any 7, there is an m such that hy, (t) = fy (£);
(2) there is a sequence of sets {S,,} such that for all n

~ 1
p*(Sy) =1 and ||h,(t) — g(t)]| < o fort € Sp.

So, if m < n and t € S,,, then

1 (t) = B ()] < 11 () = g(OI] + 9(8) = R (D] < 2n3;1'
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Since h,, and h,, are measurable and w*(Sm) =1,

1
mel

Hﬁn(t) - Em(t)H <

for almost all ¢ € Q. This implies {h,} is a Cauchy sequence in
LP(u, X), say it converges to h. Then for almost all t € Q, h(t) € F(¢)
and h is a measurable selection of F'.

Let g be a selection of F. We claim that
(1) there exist S; €S2 C -+ such that p*(S;) =1 for all k;

(2) there exist an increasing sequence {Ny} and a sequence of
measurable sets {E, } such that

(i) {Em}%ifl are pairwise disjoint and p (Q\ Uzk:]{,kﬂ Em) < .
(ii) if t € Ep NSk (Nk < m < Nig), then || fm(t) — g(t)]] < 3.
Suppose the claim was proved. Let

Nyy1

Bk = Z fm

m=Np+1

Em

IfK > kand t € (Up" 8 1 Em) 0 (UMY 1 Em) N Sk, then

~ ~ 1 1 2
e (0) = )l < 5 + 57 < 55

Since the functions h, are measurable and

Nprga Niya
RN 0
m=N/+1 m=Ng+1
Nprga Niy1
(U m)N( U &),
m=Ny/+1 m=Np+1

Ny N,
for almost all ¢ € [(U, "\ Em) N (Up, N, 41 Em)] we have

e (1) = (0} < o
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Since p[ﬂg?zk(UZ’iﬁkIHEm)] >1-2/2% {h;} is a Cauchy sequence in

LP(u, 2, X), say it converges to f. So f(t) € F(t) for almost all t € Q
and F' has a measurable selection.

Now, we prove our claim. Let S; be any subset with p*(S1) =1 and
suppose S, C S1 and Ngy1 > Ny, are given. Since Sy = {t € S, : In >
Nit1 st |[fa(t) — h(t)|| < 5}, there exists Niy2 > Niy1 such that
the set S,

1
{t €S,:dn Nk+2 >n> Nk+1, s.t. an(t) — h(t)” < W}

has outer measure greater than 1 — 1/2'“1. For Ni+1 < n < Nigo,
let F), = {t € S, : ||fu(t) — h(t)|| < 1/2%+1}, and let the F,’s be
measurable sets such that F), C F,, and p*(F)) = u(F,). Finally, let

En:Fn—( Dl Fm>

m=Ng41+1

and

Sk+1=<5k— NUZ Em>U NUZ (Em () Fp)-

m=Ng41+1 m=Ng41+1

The verification is left to the reader. O

Lemma 5. Let h be a measurable selection of F. Thenlim, o ||hn+
k|| = 2, and so there exists a subsequence {h,} of {fn} such that
[|hn(t) + h(t)|| converges to 2 almost everywhere.

Proof. Since for every t €  there is a subsequence of {f,(¢)}
which converges to h(t), for any ¢ > 0 and N > 0 there exist
NE > Ng—1 > - > Ny >NandEnj CQ, 1< j <k, such that

(1) the E, ’s are pairwise disjoint measurable sets,
(2) u(@\Uf_y By, <e,
(3) ift € By, then ||h(t) — fn, (t)]| <e.
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If n > ng, then for each 1 < j < k, the set {t : [[fu(t) + fn, (D)|| <
2(1 — 1/n;)} has measure less than 1/2"7. Hence, there is a subset
E C Q such that

(1) u(E) <e+1/2V,
(2) ift € Q\E, then ||h(t) + fn(t)|| > 2(1 — ¢ — 1/2V).
This implies lim, , ||k + fn]| = 2.
For each m € N, there is N,;, (> N,,,_1) such that if n > N,,, then

w{es i)+ pol<2(1- 2) < g

So for almost all ¢ € 2,

lim ||y, (t) +R(D)]|=2. O

m—» 00

Assume {h,} satisfies the conclusions of Lemma 5. Let F(t) denote
the set

{z : there is a subsequence of h, (t) which converges to z}.

Lemma 6. Let h be a measurable selection of F(t), then h = h

(a.e.).
Proof. Clearly, for almost all ¢ € 2,
@I = [IR@)] = 1= lim ||£(0)]).

r each t € Q there

(So ||k|| =1 = ||R||.) Since h is a selection of F, fo
h(t). By Lemma 5, for

is a sequence {ny} such that limg_,o0 hp, (£) =

almost all t € Q, }
|[R(t) + R()|] = 2.

By the Lebesgue Dominated Convergence Theorem, Hl~1 + k|| = 2. But
since LP(u, X) is strictly convex, we must have h =h. 0O
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4. The proof of Main Theorem. Suppose {h,} satisfies the
conclusion of Lemma 5. We claim that {h,} converges to h. If this
is not true, by passing to a subsequence of {h,} we may assume that
there is an € > 0 such that for every n, the set

{t:[|hna(t) = F(O)I] > €}
has measure at least €. By induction, we will construct a sequence {g,, }
which satisfies the following conditions:
(i) {gn} satisfies (x) for k = 2,
(ii) for every n and t € Q, g,(t) = h(t) or h,,(t) for some m,
(iii) there is an S C Q, such that p(S) > /2 and if t € S, then

|lgn(t) — h(t)|| > for all n.

Suppose {gn} were constructed. Then by (iii), for every ¢ € S, any
subsequences of {g,(¢)} do not converge to h(t). On the other hand,
let

F(t) = {z : z is a limit point of {g,(t)}}.

By (i) and Lemma 4, there is a measurable selection h of F. By (ii)
and Lemma 6, F(t) C F(t) and h = h. So we get a contradiction.

Let N; be a natural number such that € > 27V113 and let
Ty = {t : there exists n > Ny such that ||k, (¢) — h(t)|| > e}.

Since p{t : ||hn(t) — h(t)|| > €} > € for each n, u(T1) > . We will

use the induction to construct {N}, {En}, {Sk = UTNn’Z’J{,kHEm}, {9}
and

{Tk41={t € Sk : In > Nit1 s.t. ||hn(t) — h(t)]| > € and
hn(8) + qu(t)| > 20— 1/N;) for 1 = 1,...., K},

such that

(iv) {Em x:fl are pairwise disjoint measurable subsets of T} and

Ni41 c

m=Np+1
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(v) If t € E,p, then ||hy,(t) — h(t)|| > «.
(vi) p(Sk) >¢e/2+¢/2k+2 4 ¢/2k+1 (for m > Ng iy, let

Frg = {t € Sk : [|m(t) — h(t)|| > ¢ and
hm () + g (8)]] > 2(1 — 1/my) for [ =1,...,k}.

Ifm > Nk+1, then Fm,k: - Tk+1 and /,L(Tk+1) > ,u,(Fch) > §+ 2’“%)

(vii) {gn} and S =N Sy satisfy (i), (ii) and (iii).
Suppose that {N,}¥*1 {S,}5, {g.}%, and {T,,}**! have been con-
structed. By the definition of Tj1, there exist Ngi2 > Ngy1 and
Niy2 — Ni41 disjoint measurable sets E,, C Ti11, Ngy1 < m < Niya,
such that

(a) if t € E,, then ||hy,(t) — h(¢)|| > € and ||hn(t) + gi(t)]] >
2(1—1/N,) for 1 <1 <k,

N
(0) p(Tier\ UmZn, 1 Bm) < &/2572.

So
g e g g
w(Sk1) = (Tes1) = 5553 2 5 + 592 T 355
Let
Niy2
Jk+1 = h|Q\Sk+1 + Z hm|Em'
m=Ng1+1

By Lemma 2, if m > Ngi2 > j > Ngy1, then

w{esiso+ mon<2 (-3 < g

So, if m > N2, then

Ngyo2
1
(Fm 1) = w(Fnp) = (L1 \Sk1) — Y CYES)
J=Ng41+1
Nit2—Niy1

€ € €

9t oer2 T oRes 2j+k+3
j=1

€ €

> -+

=9 ok+2°
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Clearly, {gn} and S satisfy (ii) and (iii). By Lemma 6, there is a null
set N such that Ve > 0 Vt ¢ N3 M > 0 such that

if n > M then ||ho(t) + A(t)]| > 2 — ¢.

So by (a), if n,m > M, then

n

19(8) + g (®)]] = min (z o2 (1 _ l)) .

And so {g,} satisfies (%), for k=2. O
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