ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 22, Number 1, Winter 1992

ON MAPS WITH DENSE ORBITS
AND THE DEFINITION OF CHAOS

STEPHEN SILVERMAN

1. Introduction and definitions. Though the concept of chaos in
dynamics goes back to at least Poincaré, it has only been during the
flood of activity of the past decade that precise definitions of chaotic
behavior have come forth [2,3,8,18]. The object of this article is to
examine the relationship between the axioms for the most popular
definition of chaos in discrete systems. The focus will be on a definitive
analysis in the case of one-dimensional manifolds.

Let M be a metric space and let the distance between two points
z,y € M be denoted |z—y|. A discrete dynamical system at its simplest
is the set of iterates of a map Q : M — M, i.e., {Q° Q,Q% Q> ...},
where @ is the identity function and Q™ denotes Q) composed with
itself n times.

The orbit of a point z € M is the set {z,Q(z), Q*(x), Q*(z),...}
and will often be written {x,}5°, or {z,} when there is no ambiguity
about which map @ is being used. A point z is said to be periodic
if @"(xz) = z for some positive n. The minimum such n is called the
period of x.

Frequently, the map () depends on further parameters ¢ in an index
set X, and one studies the behavior of the orbits obtained from Q, as
o is varied. The definition of chaos that we will use can be motivated
by the following standard example. Let M be the closed interval [0, 1].
For every number o € [0, 4], define

Qo(z) =0x(l—2z) =x€l0,1].

When o € [0,1] the orbit of any point converges to the fixed point
0; hence, the set {0} is called an attractor. For o € (1,3] the orbit
of z # 0,1 converges to (¢ — 1)/o. As o increases to 4, @, undergoes
bifurcations and many periodic orbits emerge and higher periods occur.
For o = 4, there are no longer any attractors. In fact, for any point x
there are points arbitrarily close to x whose orbits drift far away from
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the orbit of x. There are even points whose orbits are dense in M and
the set of periodic points is dense as well (see Section 4).

With this in mind, we make the following definition.

A continuous mapping f taking a metric space M to itself is chaotic
if
SIC. f is sensitive to initial conditions, i.e., there is a § > 0 so that for

any € M and any neighborhood IV of z there is a point y € N and a
positive integer n satisfying

[f"(z) = f*(y)l = 6.
DO. f has a dense orbit, i.e., there is a point zg € M whose orbit
{fn(20)}52y = {zn} is dense in M.
DPP. f has a dense set of periodic points, i.e., {z|f™(z) = z for some
n > 0} is dense in M.

This is essentially the definition given by Devaney [8] and Barnsley
[2] with two minor differences. First off, for DO they say

TT. f is topologically transitive, i.e., if U and V are nonempty open
subsets of M there exists n > 0 such that f*(U)NV # @.

The following proposition binds the two.

Proposition (1.1). Let M be a perfect (has no isolated points).
Then DO implies TT. Furthermore, if M 1is separable and second
category, then TT implies DO.

Proof. If M is perfect and {x,} is a dense orbit, then there is
some z € U and some z,, € V\{zo,1,...,zr} which is open and
nonempty. But m >k and fm*(U)NV # 2.

For the second half, suppose that f has no dense orbit and {V,,}5° ;
is a countable base. For each z € M there is some V,,(,) such that

f¥(x) ¢ V() for all k > 0. But

U f_k(Vn(z))
k=0

is open and meets every open set since f is topologically transitive.
If we let A,(,) be the complement of this union, then A,(,) contains
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z and is closed and nowhere dense. However, M = UzcmAp(y) is a
countable union, contradicting the fact that M is of second category.
O

The main idea here is known, e.g., see [9]. To see that separability
and second category are necessary, check the end of Section 4.

This also shows that if M is perfect, and U and V are open, and n is
positive, then there is g € U with dense orbit and x,, € V for some
m > n.

The second difference between the two definitions is that we assume
continuity. Essentially all maps in the realm of dynamics meet that
condition. However, if f is not continuous, so that f is divorced from
the topology of M, then the axioms are independent. Henceforth, all
maps are continuous.

Also note that SIC and DPP can never imply DO. Indeed, if f; is
chaotic on M, fo is chaotic on Ms, and M; N My = @ then fi U fo
satisfies SIC and DPP but not DO.

2. Sensitivity to initial conditions is redundant.
Theorem (2.1). If M is infinite, then DO and DPP imply SIC.

Proof. It is not hard to check that if M is infinite, then DO and
DPP imply that M is perfect so f is topologically transitive. Let p be
a periodic point. Choose a point ¢ that is not in the orbit of p (this
choice is possible since M is infinite). Let p’ be the point in the orbit
of p that is closest to ¢ and set d = [p’ — q|.

Assume that SIC does not hold. Then there exists an = and a
neighborhood N(z) of x such that for all n > 0, diam f™(N(z)) < d/4.
Let y € N(x) be periodic with period Y. Because f is continuous,
there is N(p) such that if z € N(p), then

I£5(2) — fE(p)| < d/4, for0<k<Y —1.
Finally, let diam (N(q)) < d/4.

Now there exists m such that f™(N(z)) N N(p) is nonempty and
there exists j such that f/(N(z)) N N(q) is nonempty. By the triangle
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inequality,
[f™ ()~ ) < dj2 for0<k<Y -1

and of course |f7(y) — q| < d/2.

But since
W), ), T T ()

exhausts the orbit of y there must be some k, 0 < k < Y, such that
f™t*(y) = f7(y). Another application of the triangle inequality shows
that |f*(p) — q| < d which contradicts the definition of d. O

The proof of (2.1) implies that if f is chaotic then the § in SIC can
be chosen at least as large as

(1/4) sup minn € Z*{|p, — q||po periodic }.
q,po€M
For example, in the case f = Q4 = 42(1 — z), § can be 3/16 by letting
po = 3/4 (a fixed point so {p,} = {po}) and ¢ = 0. A more general
conjecture at the end of Section 4 will improve on this.

Two maps f : A — A and g : B — B are said to be conjugate if
there exists a homeomorphism h : A — B such that ho foh™! = g.
When this holds, we write f ~ g. For example, if T'(z) = 1-2|z—1/2|,
z € [0,1], then T' ~ Q4 as can be verified by a trigonometric calculation
using the conjugating homeomorphism h(z) = (1 — cos(wz))/2.

Since DO and DPP are preserved under conjugacy, the preceding
theorem immediately implies that ~ is a chaos-preserving equivalence
relation:

Corollary (2.2). If f ~ g and f is chaotic, then g is chaotic.

The metric on the metric space M plays a role in definition SIC,
but definitions DO and DPP depend only on the underlying topology
and not on the metric that induces that topology. Thus, the following
corollary also follows immediately from the Theorem.

Corollary (2.3). The determination of whether f is chaotic or not
depends only on the topology of M and not on the metric.
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3. On intervals a dense orbit implies chaos. The theorem of
this section relies heavily on the following feature of the unit interval:
given any two points there is a unique minimal connected set containing
them. If this fails, for instance in the case of the circle (Section 7), the
Cantor set (Section 5), or higher dimensions (Section 9), then the class
of maps with dense orbits widens considerably.

Lemma (3.1). Let M be an arbitrary subinterval of R and let
f: M — M have a dense orbit. If (a,b) C M is free of periodic
points, then so is f7(a,b) for all j > 0.

Proof. Suppose the conclusion is false, i.e., there exists r € (a, b) with
f™(r) a periodic point and consequently fi(r) ¢ (a,b) for all i > n.

There exists « with dense orbit, in (a,r) and m > n such that
z < f™(z) < r and there exists y, with dense orbit, in (r,b) and
k > n such that y > f*(y) > 7.

Now u < f™(u) for all u € (a,b) for otherwise there would exist a
fixed point ¢ € (a,b) for f™, contradicting the lack of periodic points
in (a,b). Similarly, f*(u) < u, u € (a,b). Because of continuity and
F(r) 2 b, f*(r) < a, we have

Ay o lzr] so fEH([ry)) D f7([z,7]) € [yl
This guarantees a fixed point for f**™ in [r,y] C (a,b), again a

contradiction. O

Convention. (a,3) is one of the four intervals of R with endpoints
a and S.

Theorem (3.2). If M is a subinterval of R, then DO implies DPP
and SIC.

Proof. By (2.1) all we need to show is that f has a dense set of periodic
points. Assume otherwise, i.e., there is an interval (a,b) C M free of
periodic points. Then there is a maximum such interval {(«, 3) D (a,b).

Casel. avor B € M. Say a € M for definiteness. There is zy € (o, )
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with dense orbit and m > 0 such that

a < Ty = fM™(z) < mo.

Then f™(a, 8)N (e, B) # &, but due to Lemma (3.1) f™(a, B) is free
of periodic points, and, hence, by the maximality of («, 3),

(%) (e, 8) C (a, B).

Since f™(xg) < Ty, we must have f™(z) < z for all z € (a, ) to
avoid a periodic point in («,3). This implies f™(a) < « and, along
with (%), we get f™([a, 8)) C [e, B) which means f™(a) = a so (a, 3)
and ™ (a, ) C (o, B).

Therefore, g > Ty > f™(Tm) = T2m > a. Continuing this in vain
we get

Xy > Tyy > T2 > XT3y > "7 > O

so there is a = such that g, \ v > a as k — oo. Continuity implies

Y < Thtrym = [ (@km) = [7(y) or v =f"(v).

Again (a, 8) periodic point free implies v = a.

The continuity of f yields

f(Zkm) = Thoms1 — f(a) and  Zgmes — fi(a).

But fi(a), i =0,1,...,m — 1 exhausts the orbit of o and thus a tail
of {z,} stays arbitrarily close to the finite “attractor” {a, f(a),...,
f™ )} and therefore cannot be dense. This contradiction estab-
lishes Case 1.

Case 2. o ¢ M and 8 ¢ M. Then M = (o, 8) so M has no periodic
points and consequently f(z) > z for all z or f(z) < z for all z. In
either case, there can be no dense orbit since all orbits are monotone.
o

This generalizes results in [1, 14, 16]; the compact case was handled
by [1].
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4. A chaotic map on R. The last theorem (3.2) can provide a fast
track to showing maps to be chaotic. In particular, the introduction of
symbolic dynamics is unnecessary in what follows.

For example, to see that Q4(z) = 4z(1 — ) is chaotic, it is sufficient
to show that
T(z)=1-2]z—1/2]

is chaotic (since they are conjugate by the map given in Section 2). If

Z = .aiagas ... is the binary expansion of z € [0,1] and @; = 1 — a;,
then ” 0
.asasay4 ... ifa; =
T(z) = 727374 : 1 )
.a20asaq4 . . . if al; = 1.

So if z = ajaz...a,000... then f"(z) = 0 for n > m + 1 and if
' = ayas...a,,1000 then fm+i(z) = 1.

Now any open U C [0,1] contains an interval of the form [z,a’]
and since T™%! is continuous, 7™ ([z,zP]) = [0,1]. Thus 7T is
topologically transitive and, by (1.1) and (3.4), T is chaotic.

It is harder to exhibit chaotic maps on the whole real line. The
function (v/2e°"/4)sin(log |z|) is chaotic on R, but the proof is quite
messy. The following function, due to Ray Meyer, is chaotic, as can be
verified as follows.

Let W : [0,00) — [0, 00) with

W(2"z) =2""*T(z - 1), =z€[l,2],neZ,W(0)=0.
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Then 5 -~
2% —2° i 1,3/2
2* — 2%z ifz€[3/2,2)
or, in binary,
lasas.agas ... — 1000 ifa; =0
W(2"m):2”{ 203.0405 1
10000 — lalagag.a4a5 oo if ay = 1

_on { asas.agas ... ifa; =0

G203.0405 ... if ap = 1.

It is easy to check that if o = 2" - l.ajaz...an,, then W?"(a) = 0 if
r>m/2, and if 8 =2"-1l.a1a3...a,,010101..., then

W2 () = 2% . 1.010101...
for » > m/2 and some k € Z, since

W2(2527.1.01010101 ... ) = 2F+2'+1) . 1 01010101 . ... .

Any open subset U of [0,00) contains an interval of the form [«, 3]
and for r large enough

W2 ([, 8]) D [0, 25727, keZ.

Hence, given any open V C RT there is an r large enough so that
W2 (U)NV # @. Thus, W2 is topologically transitive on [0, 00).

Let
W) >0

f(m)_{W(a:) z < 0.

So f2|[0700) = W? and thus f is topologically transitive on R and is
thus chaotic.

We know of no other examples in the literature of maps on R with
dense orbits.

The above “uniform expanding” property of T, namely, given € > 0
there is n. satisfying

T"((a —e,a+¢)NJ[0,1]) = [0,1],



MAPS WITH DENSE ORBITS 361

has another nice application. It will provide us with an example
of a nonseparable complete metric space M supporting a continuous
topologically transitive function. Clearly, such a function cannot have
a dense orbit since M is not separable (see Proposition (1.1)).

Indeed, suppose M = [0,1]1 = all functions from [0,1] to [0,1]
with the uniform metric, i.e.,

f —gl= sup |f(z)—g(z)].

z€[0,1]

Let 7: M — M be defined by

T(f)(z) = T(f(2))-

Finally, let U be open in M; then there exists f € M and ¢ > 0 such
that

{9:19(z) - f(z)] <e Ve el0,1]} CU.

Hence, 7" (U) = M and thus 7 is an expanding topologically transitive
map as well.

Also note that if M’ = {z|x is a periodic point of T}, then M is not
second category. Furthermore, T is topologically transitive on M’ but
there is no dense orbit.

It would be interesting to know what conditions to place on a chaotic
map f on an interval J to insure that: If U is open in J and C is
compact then there is an m such that f™(U) D C.

This would generalize the phenomena we witnessed in the above
examples and aid in finding the largest ¢ in the definition of sensitivity
to initial conditions; e.e., § = 3/4 for Q4. Demanding that f have a
periodic point with odd period does insure that U,,cz+ f™(U) D J° by
the dazzling theorem of Sarkovskii [8]. Is this part of the condition we
are looking for? Note Preston’s notion of “exact” [16].

5. On the Cantor set a dense orbit does not imply chaos.
The Cantor set can be represented as all sequences (ay, as, .. .) of zeros
and ones with the metric

‘an *bn|

|(a17a27"') - (b17b2,...)| = 22—11
n=1
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We now introduce the “adding machine” of Misiurewicz (see [14, p.
14)).

Motivated by addition in the two-adic field we define (again following
an idea of Mayer)

f(al,ag,...) =1 + (alagag...).

This “Hebrew binary addition” map is best understood by seeing
examples:

1+ (000...) = (1000...) and 1+ (110001000...) = (001001000...).

The orbit of a = (000...) is dense, but if
B—a] <27% then |f"(8) — fM(a)| < 27FF

Thus f is not sensitive to initial conditions and hence is not chaotic.
Thus by (2.1) f cannot have a dense set of periodic points. This
illustrates the essential nature of connectedness in (3.2).

6. Observations about the circle. The theorems of Section
3 cannot be totally carried over to the circle. Rotation through an
irrational angle (setting the total angle of the circle S! to 1) is an
isometry and thus certainly not sensitive to initial conditions. There
are no periodic points, but every point has a dense orbit [8].

The main obstruction is that there is more than one minimal con-
nected set containing two points. However, if we restrict ourselves to
a subarc or interval of S' then a unique minimal connected set does
exist. In fact, if we think of S* as [0,1] with 0 and 1 identified, then
(0,1) has the desired property.

When thinking of S! as [0,1] and we wish to draw the graph of a
continuous function g, it may appear to be discontinuous as a function
on R. For example:
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If, on the other hand, we restrict our attention to an interval (a,b) C
[0, 1] for which the range of g|(, sy is contained in (0,1), then g|i,
can be drawn to appear continuous (in the real sense) by omitting
superfluous points. For example, let (a,b) = (1/4,1/2); then gf /4,1/2)
looks like the figure below, a pleasant enough continuous function on
an interval. However, g itself, though continuous on S, does not
have a fixed point in [0,1] and this deficiency can be overcome if we
make the above restriction. The key is that the order topology on a
proper subinterval (a, b) of [0, 1] agrees with the circle topology on (a, b)
whereas the order topology on [0, 1] (we will drop the mod 1) is not the
circle topology.

1
T
We now do (3.1) for the circle.

ST

Lemma (6.1). Let f: S — S* have a dense orbit. If (a,b) C S* is
free of periodic points so is f7(a,b) for all j > 0.
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Proof. If (a,b) = S, then all is trivial so from now on we will assume
that (a,b) C S! means 0 < a < b < 1 so (a,b) is a proper subset of
[0,1] = S'. Now suppose that the conclusion is false, i.e., there exists
r € (a,b) with f*(r) a periodic point. Hence, fi(r) ¢ (a,b) for all
1> n.

There exists x, with dense orbit, in (a,r) and m > n such that

x < f™(z) < r and there exists y, with dense orbit, in (r,b) and k£ > n
such that y > f*(y) > r. Note that neither f™(r) nor f*(r) is in (a, b).

1 e
e
4 1
T, — '
1 T L o)
1
1
1
1
:
1
el ---o -
: 2
. ! !
s 1 ! 1 1
7’ 1
e : ! : :
0 a «x r y b 1

Let T be the trapezoid determined by (z, z), (r,7), (r,y), and (z,y),
and let 75 be the trapezoid determined by (y, y), (r,7), (r, z), and (y, z).

Since (r, f™(r)) ¢ Ty the graph of f™ must be on the boundary of T}
for some o € (z,7). It cannot be on the identity line for in that case
f™(a) = @ and a would be a periodic point in (a,b). Hence, f™(a) =y
and so there is a least s € (z,r) with f™(s) = y.

By the same argument, there is a greatest ¢t € (r,y) with f*(¢t) = z

and consequently the graph of f k|[t’y} C Ty. Also there exists a greatest
v € (z,s) with f™(v) =t.
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/ o,
[
1
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/' 1 1 :
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! 1 1
0 a «x u s r

Now f™([v, s]) = [t,y] and f*([t,y]) C [x,y]. Hence,
fm+k([v, s])Clz,y] and fm+k(v) =zr<wv, fm+k(s) :fk(y) > s.

Thus, there exists z € (v, s) such that f™*¥(z) = 2. This contradicts
the fact that there are no periodic points in (a, b). o

Another idea that will prove useful is that of a lift. G is a lift of g if

(1) G: R — R is continuous and the function G(z) — x is periodic
with period 1.

(2) G(z) mod 1= g(xz mod 1).

Note that if G is a lift then G + k, k € Z is also a lift. Following is a
picture of a lift for the g at the beginning of this section.

N
[ p
N

T T U |
AR T i

N
[ S,
N

S T
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Lemma (6.2). If f: St — S! has a dense orbit and F is a lift of f
with F(c) = F(d), 0 < ¢ < d <1, then f has a periodic point in [c,d].

Proof. F cannot be constant on [c, d], for otherwise f could not have
a dense orbit, and without loss of generality we will suppose F' has a
maximum on [c¢,d] at e with F(e) > F(c). Choose the lift F' so that
F(e) € (0,1] and let

w = max{0, F(c)}.

The continuity of F' allows us to find
d €le,e) and d € (e, d]

with F(c') = F(d') = w. Now let s be the maximum of all such ¢
and let ¢ be the minimum of all such d’ so the graph of F on [s,t] is
identical to the graph of f and f(z) > f(t) for = € (s,t).

Choose zg € (s,e) with dense orbit under f and close to s so that
f(zo) is close to f(s). There is an m > 0 such that z,, = f™(z0) is
close to e so

To < Ty <t and f(zo) < f(zm).

Let o = sup{z|z € [zo,t] and = < f™(x) < t}. Now either a < ¢
or a = t and in either case @ < f™(a) < ¢ with at least one of the
inequalities being equality. If & = ¢ then a = f™(«) is a periodic point
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in [c,d]. The same holds if @ < t and @ = f™(«) so the only case
remaining is a < ¢, and a < f™(a) =t, a € (s,t).

Consider the function

g(x) = f(f™(x)) — f(z),  x€[xo,al
Note that g(z¢) > 0 and g(a) < 0 so that there exists 8 € (zo, )

with g(8) = 0. This implies f™™(8) = f™(f(8)) = f(B) is a periodic
point. Hence, we have a periodic point in f((c,d)) and thus by (6.1),
(c,d) must contain a periodic point as well. O

One further notion is that if A is a homeomorphism on S! then either
h is orientation-preserving, i.e., a lift of h is monotone increasing, or h
is orientation-reversing, i.e., a lift of A is monotone decreasing.

We now turn to the main theorem of the paper.
7. A dense orbit almost implies chaos on the circle.

Theorem (7.1). If f : S' — S has a dense orbit, then any of the
following are equivalent to f being chaotic:
(a) f has a periodic point

b) f is not one-to-one

(
(c) f is sensitive to initial conditions
(d) f has a nondense orbit

(

e) f is not conjugate to an irrational rotation.

Proof of (a). Proceed as in the proof of (3.2) letting M = [0,1] in
Case 1. In order to make the correspondence between [0,1] and S!
function in the proof, it is necessary to restrict to a proper subinterval
of [0,1]. But (e, ) # [0, 1] since by hypothesis f has a periodic point.
Of course, one must also use Lemma (6.1) rather than Lemma (3.1)
whose proof does not adapt to S' but was included by virtue of its
brevity on the line. O

Proof of (b). First we show that if f is chaotic then f is not one-to-
one or, which is the same, we will show that if f is one-to-one and has
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at least two periodic points then there is no dense orbit.

If f has two periodic points 0 < a < b < 1, then a and b are fixed
points for f™ where n is the product of the periods. If the set of fixed
points for f™ is dense in (a,b), then f"(z) = z on [a, ] and thus there
cannot be a dense orbit (any dense orbit must land in (a,b) and hence
becomes a periodic point). So in order to continue there must exist a
maximum open interval free of fixed points in (a,b), say (a, 3) with «
and (3 fixed points of f™. If f is orientation-preserving the graph of the
homeomorphism f™ looks like the following figure.

o B o B

Without loss of generality, we assume the left picture which implies
that if zg € (a, 8) then zg, zp, zapn ... 7 B, and the same argument as
at the end of the proof of (3.2) shows that a tail of {z;} is arbitrarily
close to {8, f(B),..., f**(B)} so {z;} is not dense. Thus, f has no
dense orbit.

If f is orientation-reversing, then it automatically has two fixed points
and hence so does f? which is orientation-preserving.

We now show that if f is not one-to-one then f is chaotic. Let
f(a) = f(b), a # b and with no loss of generality, we may also let a = 0
and b < 1. Let F be that lift of f with 0 < F(0) < 1.

If we can show that f has a periodic point we will be done by part
(a). So assume not. Thus, 0 < F(0) < 1 and F(b) = F(0) + k. We will
now find two points where F' has the same value.

Case 1. If F(0) = b, then F(b) = b+ k implies that f(b) = b which
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is a periodic point.

Case 2. If F(0) > b, then k = 0. For if k < 0 there exists z € (0,b)
with F(z) = z (draw a picture) and thus z is a fixed point for f. If
k > 0, then F(b) > F(0)4+1 > b+ 1 implies that there exists = € (0,b)
such that F(z) = z + 1 which is again a fixed point of f. Hence,
F(0) = F(b).

Case 3. If F(0) < b, then k = 1. If k <0, then there exists « € (0, b)
with F(z) =z so f(z) ==z. If k > 2, then F(b) > 2 > b+ 1 and there
exists z € (0,b) with F(z) =2+ 1 so f(z) = z. Since f is continuous,
F(1) = F(0) + m and m = 1 for the same reason that k£ = 1. Hence,
F(b) =F(1).

So in any case there exists 0 < ¢ < d < 1, with not both ¢ = 0 and
d=1, and F(c) = F(d).

Now use Lemma (6.2) to obtain a periodic point for f. o
It should be pointed out that by modifying an example due to Denjoy

[8, p. 107] one can find continuous maps on the circle that are not one-
to-one and have no periodic points.

Proof of (c). We first note the following combinatorial fact: Let
I,={0,1,...n— 1}, S cI,xI,.

If (,I,)NS # @& for all j and whenever (z,y),(y,z) € S, then
(, z) € S, then there exists a point (z,z) in S.
Assume otherwise. Then S must contain
(0,n1) with n; ¢ {0}
(n1,ne2) with ne ¢ {0,n4}
(n2,n3) with ng ¢ {0,n1,n2}

(np—1,mn) with n, ¢ {0,n1,n92,... ,np_1} = I,

which is a contradiction. Thus the fact is established.
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Now f being sensitive to initial conditions implies that there exists
d > 0 such that for  and N(z) there is y € N(z) and n = ng, such
that

1" (z) — f"(y)| > o.
Choose m € Z™ so that § > 2/m and set
z; = (i/m)+ (1/2m), i=0,1,..., m—1.

Let
N(z;) = (x; — 1/2m,z; + 1/2m) = (i/m, (i + 1)/m).

There exists y; € N(z;) and n; such that
| (@) — f™ ()| = 6.
This implies there exists k& € I,,, such that
i ([i/m, (14 1)/m]) > [k/m, (k +1)/m].
Let
M; = (k1 ([i/m, (i + 1) /m]) > [k/m, (k + 1)/m] for some s},

so that M; is nonempty.

Let S = {(i,k)|k € M;,i =0,1,... ,m —1}. Then (;,I,,) NS # @
for all i € I,,,. Also, if (¢,7) and (j,k) are in S then

frtnalifm, (i+1)/m]) O [k/m, (k +1)/m]

so (4,k) is in S. Hence, by the combinatorial fact above we have k such
that (k,k) € S, i.e., there exists s with

Fo((k/m, (k +1)/m]) > [k/m, (k + 1) /m]).

Now either
(1) f* has a fixed point in [k/m, (k 4+ 1)/m], or
(2) f* has no fixed point in [k/m, (k 4+ 1)/m)].



MAPS WITH DENSE ORBITS 371

If (1), then f has a periodic point and thus by part (a) f is chaotic.
If (2), then f*([k/m, (k + 1)/m]) must be equal to S! to avoid a fixed
point (see Section 6). Now f° cannot be a homeomorphism for that
would say that the closed interval and the circle are homeomorphic
which is false. But if f° is not a homeomorphism then neither is f
which implies that f is chaotic by part (b). O

Henceforth o will denote an irrational number.

Proof of (e). We know that a rotation, R,, where R,(z) = x +
a mod 1, has a dense orbit and no periodic points so the same is true
for any conjugate of R,. So what remains to be shown is that if f is
not chaotic then f ~ R,.

However, if f is not chaotic, it is a homeomorphism (part (b)) with
no periodic points (part (a)). So we will be done with part (e) if we
can show

Proposition (7.2). A homeomorphism with a dense orbit and no
periodic points is conjugate to R,,.

This result was known to Poincaré [15]. Improved proofs were given
by Kneser [11], Nielson [13], and van Kampen [17]. A number of more
modern books contain versions of this result, e.g., [5,6,10,11,18]. For
completeness we will sketch a proof of (7.2).

Since an orientation-reversing homeomorphism has a periodic point
we know that the map f is orientation-preserving. The rotation number
of f,p(f), is defined as follows. If F is a lift of f, then

p(F) = lim L)

n—00 n

exists, is independent of z, and is irrational if and only if f has no
periodic points. Then p(f) = the fractional part of p(F) = .

To see why f ~ R,, let o € S* have dense orbit and let F"(zo) =
X,,. Now let

A = {na+m|n,m e Z}, B = {X,, +m|n,m € Z},
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and define H : A — B by
H(na+m) =X, +m.

It is not difficult to show that A and B are dense in R and H is one-
to-one. More difficult is that H is monotone increasing (this uses the
definition of p(f)). Thus, H has a unique extension H to R that is an
increasing homeomorphism. Because

Hna+m+1)=X,+m+1=H(na+m)+1

we have

H(y+1)=H(y) + 1.
Thus, we can unlift H to obtain a homeomorphism h on S*.
Also,

H 'F(Xp+m)=H "(Xns1+m)=(n+La+m
:na—i—m—}—a:Fil(Xn—l-m)—i—a

implies H 1(F(y)) = H '(y) + a and hence

R lfh(y) =y +a, ie, f~R,. O

Proof of (d). If f has a nondense orbit, it cannot be a conjugate of
an irrational rotation R, which has nothing but dense orbits. Thus, by
part (e) f is chaotic. If all orbits of f are dense, then f is not chaotic,
so f ~ R,. |

8. Further observations on S! and applications of (7.1). In
the literature cited above a more common way of expressing (7.2) is:

(8.1) Let g be a homeomorphism with p(g) = a. If g has a dense
orbit, then g ~ R,,.

Along with this one finds:

(8.2) If g is a homeomorphism with p(g) = @ and E = E, = the set
of limit points of the orbit of z, then
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(1) E is independent of z and invariant, i.e., g(E) = E.
(2) E = S! (ergodic, transitive, or minimal case) or

(3) E is perfect and nowhere dense.

Thus one sees

(8.1)" Let g be a homeomorphism with p(g) = a. If g is ergodic,
then g ~ R,.

From (7.1)(a) a map with a dense orbit and a periodic point is chaotic,
but (7.1)(b) says a homeomorphism is not chaotic so

(8.3) A homeomorphism with a periodic point cannot have a dense
orbit.

Also (7.1)(a),(b), and (e) give stronger versions of (7.2).

(8.4) A map with a dense orbit and no periodic points is conjugate
to Rq.

(8.5) A homeomorphism with a dense orbit is conjugate to R, which
implies
(8.6) A homeomorphism cannot have both dense and nondense

orbits.

In the spirit of this section, we must include a statement of Denjoy’s
[7] elegant sufficient condition guaranteeing the ergodic case in (8.2).

(8.7) If f is a C? diffeomorphism (f and its inverse are twice
continuously differentiable) with no periodic points, then f ~ R,.

9. Higher dimensions. A few examples due to Ray Mayer will
show that no results as striking as those of Sections 3 and 7 will be
revealed for dimensions larger than 1.

Let f be chaotic on [0,1] and ro have a dense orbit. Let
D ={(r,0)|r € [0,1],0 € S*}
be the unit disc and G : D — D be defined by
G(r,0) = (f(r), Ra(0)), « irrational.

Then (rp,0) has a dense orbit, (0,0) is the only periodic point and G
is sensitive to initial conditions.
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The latter two statements are clear enough. To show that (rg,0) has
a dense orbit let y € [0, 1] be periodic with respect to f with period YV
and let € be positive. Now let K be large enough to guarantee that the
set

{RaY (0)}iZo = {kY @ mod 1},

is within /2 of any point in S* (notice that Y « is just another irrational
number).

There is a neighborhood of y, N(y) C [0,1], such that z € N(y)
implies that
[f"(2) = " (y)l <e/2

for 0 <n < KY. Now choose m so that r,, € N(y). Hence the set
{G™"(ry,0)]0 < n < KY}

is within ¢ of any point in {(y,6)|0 € S'}. But the set {(y,0)|y is
periodic, § € S} is dense in D so (g, 0) has dense orbit.

Lest one may wonder that demanding a few more periodic points
along with a dense orbit might imply chaos in two dimensions, the

next example has a continuum of periodic points and a dense orbit and
does not satisfy DPP.

Again, let D be the unit disc and H : D — D by
H(r,0) = (47(1 — 7),0 + a(r — 3/4)%).

The set of periodic points of H is {(0,0)} U {(3/4,60)|0 € S'}, and H
has a dense orbit for reasons similar to the above argument for G.

Acknowledgments. My thanks to Joe Buhler. The closure of his
assistance is this entire paper.
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