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FUCHS’ PROBLEM 43

H. PAT GOETERS

What is the relationship between the abelian groups A and C, if
Ext (A, B) = Ext (C, B) for every abelian group B? This is problem
43 in [3]. In this note we give a complete solution to this problem
when A, B and C are torsion-free abelian groups of finite rank. Our
approach is to show that numerical invariants considered in [5] actually
characterize the reduced finite rank torsion-free groups up to quasi-
isomorphism.

This paper is essentially self-contained; however, the reader may wish
to refer to [1, 3, and 4]. For B < A, we say that B is a quasi-summand
of Aif for somen #0and A’ <A, nA<B® A <A, and A is called
strongly indecomposable in case A has no nontrivial quasi-summands.
IfC = Band nA < B <A, then A and C are called quasi-isomorphic.
As usual, set QA = Q ® zA and regard A < QA.

Let S4(C) be the subgroup of C' generated by f(A) for all f €
Hom (A, C). A subgroup B of C will be said to be full in C' if (B), = C
where (B), denotes the pure subgroup of C' generated by B.

Below all groups are torsion-free. The quasi-endomorphism ring of
A is QE(A) where E(A) is the endomorphism ring of A. By the well-
known result of J. Reid, QE(A) is left Artinian if and only if A is quasi-
isomorphic to a finite direct sum A; & -+ $ A, with each A; strongly
indecomposable. Moreover, if a € QE(A;), then « is invertible or « is
nilpotent [7]. The proof of the main theorem will rest upon the

Lemma. Let A and C be torsion-free groups with left Artinian quasi-
endomorphism rings. If S4(C) is full in C' and Sc(A) is full in A, then
A and C have an isomorphic nonzero quasi-summand.

Proof. Let E = E(A) and let R denote the nilradical of E. For
J = Jacobson radical of QF, R = JN E, and since QF is left Artinian,
J (hence R) is nilpotent. Call N = (RA), which is the pure subgroup
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of A generated by g(A) for all g € R. If R* = 0 and R™ ! # 0, then
R" 1N = 0 which proves that A/N # 0. Since A/N is torsion-free and
(Sc(A) + N)/N is full in A/N by the hypothesis, Sc(4) € N. This
implies that there is an f: C' — A with f(C) € N.

We may write mC < Cy & -+ @ Cr < C with each C; strongly
indecomposable and m # 0. It is easy to see that mSs(C) <
Sa(CL) @ -+ ® Sa(Cr) < Sa(C). It must be that f(Sa(Ci)) € N
for some i. Otherwise, Zle f(Sa(C;)) € N which implies that
mf(Sa(C)) € N, and since N is pure in A, f(Sa(C)) C N. But,
for any v € C, there is an [ > 0 with lv € S4(C) by the hypothesis,
so that f(lv) = If(v) € N which implies that f(v) € N by the purity
of N. This contradicts f(C) € N. We may assume there is a map
g: A — Cy such that fg(A) € N.

From the definition of N, R < Hom (A4, N), so that fg ¢ R. Now E/R
is a full subring of the semi-simple ring QE/J so there are h,h’ € E
such that for e = (hf)(gh’), e is not nilpotent mod R (QE/J is a direct
product of matrix rings). Relabel hf and gh' as f and g, respectively,
and restrict f: C1 — A.

We now have gf € End (C}). By the previously mentioned results of
J. Reid, and by virtue of the fact that Cj is strongly indecomposable,
either @« = g¢f is invertible in QE(Ci) or else a is nilpotent. If
(gf)* = 0, then e = f(gf)"g = 0, a contradiction. So «
must be invertible. Consequently, there is an integer s # 0 so that
sa~l € E(Cy) and slg, = sa tgf. Call ¢’ = sa™1g.

For K = Kerg' and A’ = f(Cy) any a € A satisfies sa = sa —
f(d'(a))+ f(4'(a)), and because sa — f(g'(a)) € K, sA< A @ K < A.
Since f is a monomorphism, A’ = C;. o

For the remainder of the paper, assume A and C have finite rank.
The p-rank of A, r,(A), is the Z/pZ-dimension of A/pA. Since
A/pA = Z, ® zA,if 0 = A - B — C — 0 is pure exact,
then 0 — Z;,) ® A = Z;) ® B = Zp) ® C — 0 is exact so
rp(B) = rp(A) + rp(C). Also, 7,(A) = 0 for all p if and only if
A is divisible. Let u(A,C) denote the maximum rank of a strongly
indecomposable quasi-summand of A @ C. By the Krull-Schmidt
theorem, p(A, C') = max{u(4,0),u(C,0)}. A reduced group is a group
which contains no copies of Q.
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Theorem. Let A and C be reduced torsion-free groups of finite rank.
The following are equivalent:

(a) A is quasi-isomorphic to C.

(b) rp(Hom (A, B)) = r,(Hom (C, B)) for all p and finite rank groups
B.

(c) rp(Hom(A,B)) = rp(Hom (C,B)) for all p and all B of rank
< (4, 0).

Proof. (a) — (b) Since, in this case, Hom (4, B) is quasi-isomorphic
to Hom (C, B), and rp, is a quasi-isomorphism invariant (Theorem 0.2
n [1]), (b) follows.

( ) = (c) Clear.

(c) — (a) We will show that S4(C) is full in C; (a) will follow by the
lemma and induction.

Let C; be a pure strongly indecomposable quasi-summand of C' and
S1 = (S4(C1))«. To simplify the argument, assume C; is a summand
of C. Consider

0 — Hom (4, S;) — Hom (4, C;) = Hom (4, Cy/S1)

and
0 — Hom (C, $1) — Hom (C, C1) 2 Hom (C, C1/8)).

By the definition of S4(Ci), Ima = 0. By the hypothesis,
rp(Hom (C, C4)) — rp(Hom (C, 51)) = rp(ImB) = rp(Ima) = 0 for all
p, so Im 3 is divisible.

Write C' = Cy @ K. Then Ker 8 = Hom (C1, S1) @ Hom (K, S;) is a
pure subgroup of Hom (C,C1) = Hom (Cq,C41) @ Hom (K, C;) with a
divisible cokernel. Hence, Hom (C1, C1)/Hom (C4, S1) is a summand of
a divisible group and is therefore divisible.

Let R; denote the nilradical of End (C}) and Ny = (R1C4), < Cy. As
in the lemma, Ny # C1. By the theorem of J. Reid, any endomorphism
of (1 is either in R; or else is a monomorphism. Hence, Ry =
Hom (C1, N1). By Reid’s theorem, if Hom (C1,S1) € Hom (Cy, N1) =
R;, then there is a monomorphism f : C; — C; with Im f < S;. In
this case, rank C; = rank.S; implies S; = C since S7 is pure in C.
We will show that Hom (Cy,S1) C Ry is not possible.
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Suppose I = Hom (Cy,S1) € Hom (Cyi,N1) = R;. From above,
End (C4)/I is divisible, so End (C})/R; is divisible. The Beaumont-
Pierce principal theorem asserts that End (C1)/R; is a (group) quasi-
summand of End (C) [2, Theorem 1.4]. But End (C}) is reduced so
I ¢ R,.

IfmC < Ci1®---@Cy < C for strongly indecomposable groups C; and
some m # 0, then (S4(C;))x = C; implies (S4(C)). = C. Therefore,
S4(C) is full in C and by the symmetry Sc(A) is full in A.

From the lemma, A and C have an isomorphic quasi-summand. If A
is quasi-isomorphic to G® A’ and C is quasi-isomorphic to G & C’ with
G # 0, then r,(Hom (A, B)) = r,(Hom (G, B)) + rp(Hom (A, B)) =
rp(Hom (G, B)) + rp(Hom (C’, B)) = rp(Hom (C, B)) for all p and B
of rank < p(A4,C). Clearly, u(A’,0) < u(A,0) and p(C’,0) < u(C,0),
so that r,(Hom (4’, B)) = r,(Hom (C’, B)) for all p and all B of rank
< max{pu(4’,0), u(C",0)} = p(A’,C"). The result follows by induction
on rank A. O

Recall that the outer type of A, OT(A), is the supremum of the types
of the rank-1 quotients of A. If OT(A) = type Q, then Ext (A®Q, B) &
Ext (A, B) for all B [9, Theorem 2.3].

Corollary. Let A and C be torsion-free of finite rank. The following
are equivalent:

(a) Ext(A,B) = Ext(C,B) for all torsion-free groups B of finite
rank.

(b) A=F®A'®D and C = F' & C' @D’ with A" quasi-isomorphic
to C', F and F' free, D and D' divisible, and the restriction that
OT(A) = OT(C).

Proof. (a) — (b) Write A= F A @D and C = FFaC' @D
with F and F’ free, D and D’ divisible, and A’ and C’ reduced with
Hom (A’,Z) = Hom (C’,Z) = 0. By Theorem 1,3 in [5], OT(A) =
OT(C) and r,(Hom (A’, B)) = r,(Hom (C’, B)) for all p and B. By
our theorem, A’ is quasi-isomorphic to C’.

(b) — (a) Clearly, Ext (A’, B) = Ext (C', B) for every B. If OT'(A) =
OT(C) = type@, then Ext (A’ ® D, B) = Ext (C' @ D', B) for all B
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by Theorems 2 and 3 in [9]. Otherwise, D = D’ = 0. In either case,
Ext (A, B) = Ext (C, B) for all B. o

As indicated by the referee, a similar problem was considered in
[6]. Although their paper has a more general setting, in our context
they show that two extension functors on the category of abelian
groups, Ext (4, ) and Ext (C,-) are naturally equivalent if and only
if A@ F = C @ F' for some free groups F and F’. They impose no
restrictions on A and C although they do require the isomorphishm
Ext (4, B) = Ext (C, B) to be natural.
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