FUCHS' PROBLEM 43

H. PAT GOETERS

What is the relationship between the abelian groups A and C, if $\operatorname{Ext}(A,B)\cong\operatorname{Ext}(C,B)$ for every abelian group B? This is problem 43 in [3]. In this note we give a complete solution to this problem when A,B and C are torsion-free abelian groups of finite rank. Our approach is to show that numerical invariants considered in [5] actually characterize the reduced finite rank torsion-free groups up to quasi-isomorphism.

This paper is essentially self-contained; however, the reader may wish to refer to $[\mathbf{1}, \mathbf{3}, \text{ and } \mathbf{4}]$. For $B \leq A$, we say that B is a quasi-summand of A if for some $n \neq 0$ and $A' \leq A$, $nA \leq B \oplus A' \leq A$, and A is called strongly indecomposable in case A has no nontrivial quasi-summands. If $C \cong B$ and $nA \leq B \leq A$, then A and C are called quasi-isomorphic. As usual, set $QA = Q \otimes_Z A$ and regard $A \leq QA$.

Let $S_A(C)$ be the subgroup of C generated by f(A) for all $f \in \text{Hom } (A,C)$. A subgroup B of C will be said to be full in C if $\langle B \rangle_* = C$ where $\langle B \rangle_*$ denotes the pure subgroup of C generated by B.

Below all groups are torsion-free. The quasi-endomorphism ring of A is QE(A) where E(A) is the endomorphism ring of A. By the well-known result of J. Reid, QE(A) is left Artinian if and only if A is quasi-isomorphic to a finite direct sum $A_1 \oplus \cdots \oplus A_n$ with each A_i strongly indecomposable. Moreover, if $\alpha \in QE(A_i)$, then α is invertible or α is nilpotent [7]. The proof of the main theorem will rest upon the

Lemma. Let A and C be torsion-free groups with left Artinian quasiendomorphism rings. If $S_A(C)$ is full in C and $S_C(A)$ is full in A, then A and C have an isomorphic nonzero quasi-summand.

Proof. Let E = E(A) and let R denote the nilradical of E. For J = Jacobson radical of QE, $R = J \cap E$, and since QE is left Artinian, J (hence R) is nilpotent. Call $N = \langle RA \rangle_*$ which is the pure subgroup

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on September 15, 1988, and in revised form on February 28, 1989.

of A generated by g(A) for all $g \in R$. If $R^n = 0$ and $R^{n-1} \neq 0$, then $R^{n-1}N = 0$ which proves that $A/N \neq 0$. Since A/N is torsion-free and $(S_C(A) + N)/N$ is full in A/N by the hypothesis, $S_C(A) \nsubseteq N$. This implies that there is an $f: C \to A$ with $f(C) \nsubseteq N$.

We may write $mC \leq C_1 \oplus \cdots \oplus C_k \leq C$ with each C_i strongly indecomposable and $m \neq 0$. It is easy to see that $mS_A(C) \leq S_A(C_1) \oplus \cdots \oplus S_A(C_k) \leq S_A(C)$. It must be that $f(S_A(C_1)) \not\subseteq N$ for some i. Otherwise, $\sum_{i=1}^k f(S_A(C_i)) \subseteq N$ which implies that $mf(S_A(C)) \subseteq N$, and since N is pure in A, $f(S_A(C)) \subseteq N$. But, for any $v \in C$, there is an l > 0 with $lv \in S_A(C)$ by the hypothesis, so that $f(lv) = lf(v) \in N$ which implies that $f(v) \in N$ by the purity of N. This contradicts $f(C) \not\subseteq N$. We may assume there is a map $g: A \to C_1$ such that $fg(A) \not\subseteq N$.

From the definition of N, $R ext{ } ext{ } ext{Hom } (A,N)$, so that $fg \notin R$. Now E/R is a full subring of the semi-simple ring QE/J so there are $h,h' \in E$ such that for e = (hf)(gh'), e is not nilpotent mod R (QE/J is a direct product of matrix rings). Relabel hf and gh' as f and g, respectively, and restrict $f: C_1 \to A$.

We now have $gf \in \operatorname{End}(C_1)$. By the previously mentioned results of J. Reid, and by virtue of the fact that C_1 is strongly indecomposable, either $\alpha = gf$ is invertible in $QE(C_1)$ or else α is nilpotent. If $(gf)^n = 0$, then $e^{n+1} = f(gf)^ng = 0$, a contradiction. So α must be invertible. Consequently, there is an integer $s \neq 0$ so that $s\alpha^{-1} \in E(C_1)$ and $s1_{C_1} = s\alpha^{-1}gf$. Call $g' = s\alpha^{-1}g$.

For K = Ker g' and $A' = f(C_1)$ any $a \in A$ satisfies sa = sa - f(g'(a)) + f(g'(a)), and because $sa - f(g'(a)) \in K$, $sA \leq A' \oplus K \leq A$. Since f is a monomorphism, $A' \cong C_1$. \square

For the remainder of the paper, assume A and C have finite rank. The p-rank of A, $r_p(A)$, is the Z/pZ-dimension of A/pA. Since $A/pA = Z_{(p)} \otimes {}_ZA$, if $0 \to A \to B \to C \to 0$ is pure exact, then $0 \to Z_{(p)} \otimes A \to Z_{(p)} \otimes B \to Z_{(p)} \otimes C \to 0$ is exact so $r_p(B) = r_p(A) + r_p(C)$. Also, $r_p(A) = 0$ for all p if and only if A is divisible. Let $\mu(A,C)$ denote the maximum rank of a strongly indecomposable quasi-summand of $A \oplus C$. By the Krull-Schmidt theorem, $\mu(A,C) = \max\{\mu(A,0),\mu(C,0)\}$. A reduced group is a group which contains no copies of Q.

Theorem. Let A and C be reduced torsion-free groups of finite rank. The following are equivalent:

- (a) A is quasi-isomorphic to C.
- (b) $r_p(\text{Hom }(A,B)) = r_p(\text{Hom }(C,B))$ for all p and finite rank groups B.
- (c) $r_p(\operatorname{Hom}(A, B)) = r_p(\operatorname{Hom}(C, B))$ for all p and all B of rank $\leq \mu(A, C)$.

Proof. (a) \rightarrow (b) Since, in this case, Hom (A, B) is quasi-isomorphic to Hom (C, B), and r_p is a quasi-isomorphism invariant (Theorem 0.2 in [1]), (b) follows.

- (b) \rightarrow (c) Clear.
- (c) \rightarrow (a) We will show that $S_A(C)$ is full in C; (a) will follow by the lemma and induction.

Let C_1 be a pure strongly indecomposable quasi-summand of C and $S_1 = \langle S_A(C_1) \rangle_*$. To simplify the argument, assume C_1 is a summand of C. Consider

$$0 \to \operatorname{Hom}(A, S_1) \to \operatorname{Hom}(A, C_1) \stackrel{\alpha}{\to} \operatorname{Hom}(A, C_1/S_1)$$

and

$$0 \to \operatorname{Hom}(C, S_1) \to \operatorname{Hom}(C, C_1) \stackrel{\beta}{\to} \operatorname{Hom}(C, C_1/S_1).$$

By the definition of $S_A(C_1)$, $\operatorname{Im} \alpha = 0$. By the hypothesis, $r_p(\operatorname{Hom}(C, C_1)) - r_p(\operatorname{Hom}(C, S_1)) = r_p(\operatorname{Im} \beta) = r_p(\operatorname{Im} \alpha) = 0$ for all p, so $\operatorname{Im} \beta$ is divisible.

Write $C = C_1 \oplus K$. Then $\operatorname{Ker} \beta = \operatorname{Hom} (C_1, S_1) \oplus \operatorname{Hom} (K, S_1)$ is a pure subgroup of $\operatorname{Hom} (C, C_1) = \operatorname{Hom} (C_1, C_1) \oplus \operatorname{Hom} (K, C_1)$ with a divisible cokernel. Hence, $\operatorname{Hom} (C_1, C_1)/\operatorname{Hom} (C_1, S_1)$ is a summand of a divisible group and is therefore divisible.

Let R_1 denote the nilradical of End (C_1) and $N_1 = \langle R_1 C_1 \rangle_* \leq C_1$. As in the lemma, $N_1 \neq C_1$. By the theorem of J. Reid, any endomorphism of C_1 is either in R_1 or else is a monomorphism. Hence, $R_1 = \text{Hom } (C_1, N_1)$. By Reid's theorem, if $\text{Hom } (C_1, S_1) \not\subseteq \text{Hom } (C_1, N_1) = R_1$, then there is a monomorphism $f: C_1 \to C_1$ with $\text{Im } f \leq S_1$. In this case, $\text{rank } C_1 = \text{rank } S_1$ implies $S_1 = C_1$ since S_1 is pure in C_1 . We will show that $\text{Hom } (C_1, S_1) \subseteq R_1$ is not possible.

Suppose $I = \operatorname{Hom}(C_1, S_1) \subseteq \operatorname{Hom}(C_1, N_1) = R_1$. From above, $\operatorname{End}(C_1)/I$ is divisible, so $\operatorname{End}(C_1)/R_1$ is divisible. The Beaumont-Pierce principal theorem asserts that $\operatorname{End}(C_1)/R_1$ is a (group) quasi-summand of $\operatorname{End}(C_1)$ [2, Theorem 1.4]. But $\operatorname{End}(C_1)$ is reduced so $I \not\subseteq R_1$.

If $mC \leq C_1 \oplus \cdots \oplus C_k \leq C$ for strongly indecomposable groups C_i and some $m \neq 0$, then $\langle S_A(C_i) \rangle_* = C_i$ implies $\langle S_A(C) \rangle_* = C$. Therefore, $S_A(C)$ is full in C and by the symmetry $S_C(A)$ is full in A.

From the lemma, A and C have an isomorphic quasi-summand. If A is quasi-isomorphic to $G \oplus A'$ and C is quasi-isomorphic to $G \oplus C'$ with $G \neq 0$, then $r_p(\operatorname{Hom}(A,B)) = r_p(\operatorname{Hom}(G,B)) + r_p(\operatorname{Hom}(A',B)) = r_p(\operatorname{Hom}(C,B)) + r_p(\operatorname{Hom}(C',B)) = r_p(\operatorname{Hom}(C,B))$ for all p and p of rank p of rank p (p (p (p (p)) p (p) p (p) and p (p) p

Recall that the outer type of A, OT(A), is the supremum of the types of the rank-1 quotients of A. If OT(A) = type Q, then $\text{Ext } (A \oplus Q, B) \cong \text{Ext } (A, B)$ for all B [9, Theorem 2.3].

Corollary. Let A and C be torsion-free of finite rank. The following are equivalent:

- (a) Ext $(A, B) \cong$ Ext (C, B) for all torsion-free groups B of finite rank.
- (b) $A = F \oplus A' \oplus D$ and $C = F' \oplus C' \oplus D'$ with A' quasi-isomorphic to C', F and F' free, D and D' divisible, and the restriction that OT(A) = OT(C).
- *Proof.* (a) \rightarrow (b) Write $A = F \oplus A' \oplus D$ and $C = F' \oplus C' \oplus D'$ with F and F' free, D and D' divisible, and A' and C' reduced with Hom (A', Z) = Hom (C', Z) = 0. By Theorem 1,3 in [5], OT(A) = OT(C) and $r_p(\text{Hom } (A', B)) = r_p(\text{Hom } (C', B))$ for all p and B. By our theorem, A' is quasi-isomorphic to C'.
- (b) \rightarrow (a) Clearly, Ext $(A', B) \cong \operatorname{Ext}(C', B)$ for every B. If $OT(A) = OT(C) = \operatorname{type} Q$, then Ext $(A' \oplus D, B) \cong \operatorname{Ext}(C' \oplus D', B)$ for all B

by Theorems 2 and 3 in [9]. Otherwise, D = D' = 0. In either case, $\operatorname{Ext}(A, B) \cong \operatorname{Ext}(C, B)$ for all B.

As indicated by the referee, a similar problem was considered in [6]. Although their paper has a more general setting, in our context they show that two extension functors on the category of abelian groups, $\operatorname{Ext}(A,\cdot)$ and $\operatorname{Ext}(C,\cdot)$ are naturally equivalent if and only if $A \oplus F \cong C \oplus F'$ for some free groups F and F'. They impose no restrictions on A and C although they do require the isomorphishm $\operatorname{Ext}(A,B) \cong \operatorname{Ext}(C,B)$ to be natural.

Acknowledgments. The author expresses thanks to Professors W. Wickless and C. Vinsonhaler for their helpful comments concerning the proof of the theorem.

REFERENCES

- 1. D. Arnold, Finite rank torsion-free groups and rings, Springer-Verlag, LNM 931, New York, 1982.
- 2. R.A. Beaumont and R.S. Pierce, *Torsion-free rings*, Illinois Journal of Mathematics 5, No. 1 (March 1961) 61–98.
- ${\bf 3.}$ L. Fuchs, Infinite~Abelian~groups, Academic Press, New York, San Francisco, London, 1970.
 - 4. ——, Infinite Abelian groups, Academic Press, New York and London, 1973.
- $\bf 5.~H.~Pat~Goeters,~\it When~\it do~\it two~\it groups~\it always~\it have~\it isomorphic~\it extension~\it groups?, Rocky~\it Mountain~\it J.~\it Mathematics, to~\it appear.$
- 6. P.J. Hilton and D. Rees, Natural maps of extension functors and a theorem of R.G. Swan, Proc. Cambridge Phil. Soc. 57 (1961), 489-502.
- 7. J.D. Reid, On the ring of quasi-endomorphisms of a torsion-free group, in Topics in Abelian Groups, Scott, Foresman and Company, 1963.
- 8. W.J. Wickless, Projective classes of torsion-free Abelian groups, II, Acta Mathematica Hungarica 44 (1984), 13–20.
- 9. R.B. Warfield, Extensions of torsion-free Abelian groups of finite rank, Archiv der Mathematick 23 (1972), 145–150.

Algebra, Combinatorics and Analysis, Auburn University, Alabama 36849