AN EXISTENCE THEOREM FOR QUASILINEAR ELLIPTIC EQUATIONS ON THE N-TORUS

JOHN C. FAY

1. Introduction. Let $\Omega = \{x : -\pi \leq x_j < \pi, j = 1, 2, ..., N\}$ be the N-torus, $N \geq 2$. Also let $\phi \in C^{\infty}(\Omega)$ mean that $\phi \in C^{\infty}(\mathbf{R}^N)$ and is periodic of period 2π in each variable. $W^{m,2}(\Omega)$ will be

 $\{m \text{ times weakly differentiable } u: D^{\alpha}u \in L^2(\Omega) \text{ for all } |\alpha| \leq m\},$

where the α -th weak derivative of u is v such that $\int_{\Omega} \phi v \, dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \phi \, dx$ for all $\phi \in C^{|\alpha|}(\Omega)$. $W^{m,2}(\Omega)$ will also be denoted $H^m(\Omega)$.

Let M be the number of all derivatives D^{α} , for $0 \leq |\alpha| \leq m-1$. Let Du stand for the M-vector whose components are $D^{\alpha}u$, for all $0 \leq |\alpha| \leq m-1$. That is, for m=1, Du=(u); for m=2, $Du=\{u,D_1u,D_2u,\ldots,D_Nu\}$; and so on.

With

$$(1.1) Qu = (-1)^{|\beta|} D^{\beta} [a_{\alpha\beta}(x, Du) D^{\alpha} u],$$

we shall study the equation

$$(1.2) Qu = g(x, u) - h.$$

(In (1.1) we use the summation convention for $1 \leq |\alpha|, |\beta| \leq m$.) h is a distribution in $H^{-m}(\Omega)$, where $H^{-m}(\Omega) = [H^m(\Omega)]^*$.

We introduce some notions concerning the g given in (1.2). In particular, we shall assume

- (g-1) g(x,s) meets the usual Caratheodory conditions: For each fixed $s \in \mathbf{R}$, g(x,s) is measurable on Ω ; for a.e. $x \in \Omega$, g(x,s) is continuous on \mathbf{R} .
- (g-2) For r > 0, there is $\alpha_r \in L^2(\Omega)$ such that $|g(x,s)| \leq \alpha_r(x)$ for a.e. $x \in \Omega$ and $s \in \mathbf{R}$.
- (g-3) There exists nonnegative $a(x) \in L^2(\Omega)$ such that $sg(x,s) \le |s|a(x)$ for all $s \in \mathbf{R}$ and $x \in \Omega$.

Copyright ©1992 Rocky Mountain Mathematics Consortium

548

We shall also assume with respect to the operator Q in (1.1) the following:

(Q-1) The coefficients $a_{\alpha,\beta}(x,z)$ satisfy the same Caratheodory conditions as in (g-1) above.

(Q-2) There exists a nonnegative $a(x) \in L^2(\Omega)$ and c > 0 such that $|a_{\alpha\beta}(x,z)| \leq a(x) + c|z|$ for every $z \in \mathbf{R}^M$ and a.e. $x \in \Omega$.

(Q-3) There exists a uniformly elliptic semilinear $Lu=(-1)^{|\beta|}$ $D^{\beta}[b_{\alpha\beta}(x)D^{\alpha}u]$ (where the $b_{\alpha\beta}$ are real-valued functions in L^{∞} and the highest order coefficients are uniformly continuous) with a symmetric bilinear form $\mathbf{L}(u,v)=\int_{\Omega}b_{\alpha\beta}(x)D^{\alpha}uD^{\beta}v\,dx$ with first eigenvalue equal to zero and dimension of first eigenspace equal to one (i.e., $\mathbf{L}(u,u)\geq 0$ for all $u\in H^m$ and $\mathbf{L}(v,w)=0\,\forall w\in H^m$ if and only if v=constant), such that

$$\mathbf{Q}(u,u) \ge \mathbf{L}(u,u) \quad \forall u \in C^{\infty}$$

where

$$\mathbf{Q}(u,v) = \int_{\Omega} a_{\alpha\beta}(x,Du) D^{\alpha} u D^{\beta} v \, dx.$$

(For the relevant definition concerning L, see [2, p. 2].)

The theorem we establish is

Theorem. Assume (Q-1)-(Q-3) and (g-1)-(g-3). Also assume $h \in W^{-m,2}(\Omega)$. Then if

$$\int_{\Omega} g_{+}(x) dx < h(1) < \int_{\Omega} g_{-}(x) dx$$

where $g_+(x) = \limsup_{s \to \infty} g(x,s)$ and $g_-(x) = \liminf_{s \to -\infty} g(x,s)$, there exists $u \in W^{m,2}(\Omega)$ with $g(x,u) \in L^1(\Omega)$ which is a distribution solution of Qu = g(x,u) - h.

For related results in the literature, see [2, 4, 5, 6].

To be quite explicit, what we mean by $u \in W^{m,2}(\Omega)$ being a distribution solution of Qu = g(x, u) - h is $g(x, u) \in L^1(\Omega)$ and for all $\phi \in C^{\infty}(\Omega)$, we have

$$Q(u,\phi) = \int_{\Omega} g(x,u)\phi(x) dx - h(\phi).$$

2. Relevant consequences of Gårding's inequality. We will use the following form of Gårding's inequality (see [1, p. 170]).

On the N-torus with $\langle u, Lu \rangle = \int_{\Omega} \sum_{|\alpha|, |\beta| \leq m} a_{\alpha\beta}(x) D^{\alpha} u D^{\beta} u$, we have that there exist $c_1, c_2 > 0$ such that $\langle u, Lu \rangle \geq c_2 ||u||_m^2 - c_1 ||u||_0^2$ where $||u||_l^2 \sim \sum (1 + l \cdot l)^t |u^{\wedge}(l)|^2$. Here the $a_{\alpha\beta}$ are continuous for the highest order and in L^{∞} for lower order.

By Gårding's inequality, we have $c_2||u||_m^2 \leq \mathbf{L}(u,u) + c_1||u||_0^2$ where we assume $\mathbf{L}(u,v)$ is as in (Q-3). Set

$$\mathbf{L}_0(u,v) = \mathbf{L}(u,v) + c_1 \langle u, v \rangle_0.$$

Now

$$|c_2||u||_m^2 \le \mathbf{L}_0(u,u) \le |c_3||u||_m^2$$

so $\mathbf{L}_0(u,v)$ is an equivalent inner product to $\langle u,v\rangle_m$, for u and $v\in H^m$.

Given
$$f \in \tilde{H} = \{ f \in L^2(\Omega) : \int f \, dx = 0 \}$$
, for $v \in H^m$ we have

$$|\langle f, v \rangle_0| \le ||f||_0 ||v||_0 \le ||f||_0 ||v||_m.$$

Therefore, $\langle f, v \rangle_0 \in [W^{m,2}(\Omega)]^*$. By Riesz [3, p. 121], there exists $w \in H^m(\Omega)$ such that $\mathbf{L}_0(w,v) = \langle f, v \rangle_0$ for all $v \in H^m$. Therefore, $\mathbf{L}(w,1) + c_1 \langle w, 1 \rangle_0 = \langle f, 1 \rangle_0$. Since $\mathbf{L}(w,1) = 0$ and $\langle f, 1 \rangle_0 = 0$, it follows that $\langle w, 1 \rangle_0 = 0$. Therefore, $w \in \tilde{H}^m = H^m \cap \tilde{H}$. Call w = Tf, so $\mathbf{L}_0(Tf, v) = \langle f, v \rangle_0$ for $v \in H^m$. Therefore, $T : \tilde{H} \to \tilde{H}^m \subset \tilde{H}$.

Claim. T is symmetric on \tilde{H} .

Indeed, for $g \in \tilde{H}$, $\langle g, Tf \rangle_0 = \mathbf{L}_0(Tg, Tf) = \mathbf{L}_0(Tf, Tg) = \langle f, Tg \rangle_0$.

Claim. T is strictly positive on \tilde{H} (i.e., $\langle Tf, f \rangle_0 \geq 0$ and is $= 0 \Leftrightarrow f = 0$).

Indeed, $\langle Tf, f \rangle_0 = \langle f, Tf \rangle_0 = \mathbf{L}_0(Tf, Tf) \geq c_2 ||Tf||_m^2 \geq 0$. If f = 0, then obviously $\langle Tf, f \rangle_0 = 0$. If $\langle Tf, f \rangle_0 = 0$, then $\mathbf{L}_0(Tf, Tf) = 0$. Therefore, Tf = 0. Then $0 = \mathbf{L}_0(Tf, v) = \langle f, v \rangle_0$ for all $v \in \tilde{H}^m$. \tilde{H}^m is dense in \tilde{H} so $\langle f, v \rangle_0 = 0$ for all $v \in \tilde{H}$. Therefore, $\langle f, f \rangle_0 = 0$. Therefore, f = 0.

Claim. T is compact.

Indeed, given $||f_j||_0 \leq K$ for $j=1,2,\ldots$; we have to show there exists a subsequence $\{Tf_{jk}\}$ which is Cauchy in \tilde{H} . Now $|\mathbf{L}_0(Tf_j,v)| = |\langle f_j,v\rangle_0| \leq ||f_j||_0 ||v||_m$. Taking $v=Tf_j$, we see that $c_2||Tf_j||_m^2 \leq \mathbf{L}_0(Tf_j,Tf_j) \leq K||Tf_j||_m$. So $||Tf_j||_m \leq K/c_2$ for $j=1,2,\ldots$. Now \tilde{H}^m is compactly embedded in \tilde{H} [1, p. 164]. Therefore, there exists $\{Tf_{jk}\}$ which is Cauchy in \tilde{H} .

J.C. FAY

Now by these last three, there exist $\{\eta_j\}_{j=2}^{\infty}$ which are positive and strictly decreasing to zero and corresponding $\{\psi_{jk}\}$ such that $T\psi_{jk} = \eta_j \psi_{jk}$ and $\{\psi_{jk}\}_{j=2k=1}^{\infty}$ is a complete orthonormal system in \tilde{H} .

Set $\lambda_j = (1/\eta_j) - c_1$. Then $\mathbf{L}_0(\psi_{jk}, v) = (1/\eta_j)\mathbf{L}_0(T\psi_{jk}, v) = (1/\eta_j)\langle\psi_{jk}, v\rangle_0$. Therefore, $\eta_j\mathbf{L}_0(\psi_{jk}, v) = \langle\psi_{jk}, v\rangle_0 = v^{\wedge}(j, k)$. Hence, $\mathbf{L}(\psi_{jk}, v) = \lambda_j\langle\psi_{jk}, v\rangle_0$ for all $v \in \tilde{H}^m$. Note $0 \leq \mathbf{L}(\psi_{jk}, \psi_{jk}) = \lambda_j\langle\psi_{jk}, \psi_{jk}\rangle_0 = \lambda_j$. Therefore, $\lambda_j \geq 0$ for $j = 2, 3, \ldots$.

Now $\mathbf{L}_0(\sqrt{\eta_j}\psi_{jk},\sqrt{\eta_j}\psi_{jk}) = \eta_j \mathbf{L}_0(\psi_{jk},\psi_{jk}) = \langle \psi_{jk},\psi_{jk} \rangle_0 = 1$; therefore, $\{\sqrt{\eta_j}\psi_{jk}\}$ is a complete orthonormal system with respect to \mathbf{L}_0 on \tilde{H}^m .

So $v \in \tilde{H}^m$ implies that $\mathbf{L}_0(v,v) = \sum_{j=2}^{\infty} |\mathbf{L}_0(v,\sqrt{\eta_j}\psi_{jk})|^2 = \sum_{j=2}^{\infty} (|v^{\wedge}(j,k)|^2/\eta_j).$

Let $\psi_{11} = 1/(2\pi)^{N/2}$.

Claim. $H^m = \{\psi_{11}\} \oplus \tilde{H}^m$.

Indeed, we need to show $\{\psi_{11}\} \cup \{\psi_{jk}\}_{j=2k=1}^{\infty}$ is a complete orthonormal system with respect to \mathbf{L}_0 . Suppose $\mathbf{L}_0(v,\psi_{11})=0$ and $\mathbf{L}_0(v,\psi_{jk})=0$ for $j=2,3,\ldots$ and $k=1,2,\ldots,\kappa(j)$, where $v\in H^m$. Hence, $\mathbf{L}(v,\psi_{11})+c_1\langle v,\psi_{11}\rangle_0=0$ but $\mathbf{L}(v,\psi_{11})=0$. Therefore, $\langle v,\psi_{11}\rangle_0=0$. Therefore, $v\in \tilde{H}^m$. Since $\mathbf{L}_0(v,\psi_{jk})=0$ for $j=2,3,\ldots$ and $k=1,2,\ldots,\kappa(j)$, we have v=0 establishing the claim.

Now $\mathbf{L}(\psi_{jk}, w) = \lambda_j \langle \psi_{jk}, w \rangle_0$ for all $w \in \tilde{H}^m$. Therefore, $\mathbf{L}(\psi_{jk}, \psi_{11}) = \lambda_j (\psi_{jk}, \psi_{11})_0$ for $j \geq 2$. Given $v \in H^m$, $v = v^{\wedge}(1, 1)\psi_{11} + w$ where $w \in \tilde{H}^m$. Therefore, $\mathbf{L}(\psi_{jk}, v) = \mathbf{L}(\psi_{jk}, w) = \lambda_j \langle \psi_{jk}, w \rangle_0 = 0$

 $\lambda_j(\psi_{jk}, v)_0$. Thus, ψ_{jk} is an eigenfunction with respect to λ_j and ψ_{jk} is not identically zero because $\langle \psi_{jk}, \psi_{11} \rangle_0 = 0$ and $\langle \psi_{jk}, \psi_{jk} \rangle_0 = 1$. Therefore, $\lambda_j \neq 0$ for $j \geq 2$. Thus, for $v \in \tilde{H}^m$,

$$\mathbf{L}(v,v) = \mathbf{L}_0(v,v) - c_1 \langle v, v \rangle_0 = \sum_{j=2}^{\infty} |v^{\wedge}(j,k)|^2 \left(\frac{1}{\eta_j} - c_1\right)$$
$$= \sum_{j=2}^{\infty} \lambda_j |v^{\wedge}(j,k)|^2 \ge \lambda_2 \sum_{j=2}^{\infty} |v^{\wedge}(j,k)|^2.$$

Lemma A. If $\mathbf{L}(v^n, v^n) \to 0$ where $v^n \in H^m$ and $v^n \to v$ in L^2 , then v = C, a constant.

Proof. Set $w^n = v^n - v^{n\wedge}(1,1)\psi_{11} \in \tilde{H}^m$. Now $\mathbf{L}(w^n, w^n) = \mathbf{L}(v^n - c_1\psi_{11}, v^n - c_1\psi_{11}) = \mathbf{L}(v^n, v^n) \to 0$. So $\mathbf{L}(w^n, w^n) \to 0$. Since $\mathbf{L}(w^n, w^n) \geq \lambda_2 \langle w^n, w^n \rangle_0$, we have that $w^n \to 0$ in L^2 . So $v^n - v^{n\wedge}(1,1)\psi_{11} \to 0$ in L^2 . Thus, $v^n \to v^{\wedge}(1,1)\psi_{11} = \text{constant}$. Therefore, v is constant. \square

Lemma B. With the conditions as above and the assumption that $||v^n||_m^2 = 1$, C is nonzero.

Proof. 1 = $||v^n||_m^2$ and by Gårding, this is $\leq c_2^{-1}[\mathbf{L}(v^n, v^n) + c_1||v^n||_0^2]$. Now as $n \to \infty$, we have that $\mathbf{L}(v^n, v^n) \to 0$ and $||v^n||_0 \to ||v||_0$, so $1 \leq (c_1/c_2)||v||_0^2$. Therefore, v is nonzero. □

3. Fundamental lemmas.

Lemma 1. Let $B \geq 0$ be an L^2 function, g satisfy (g-1), Q satisfy (Q-1)-(Q-3), $h \in H^{-m}(\Omega)$, and $|g(x,s)| \leq B(x)$ for $s \in \mathbf{R}$, a.e. $x \in \Omega$. If n is a positive integer, there exists $u^n = \gamma_1^n \psi_1 + \cdots + \gamma_n^n \psi_n$ such that (3.1)

$$\int_{\Omega}\sum_{k}\left[a_{lphaeta}(x,Du)D^{lpha}u^{n}D^{eta}\psi_{k}+rac{u^{n}\psi_{k}}{n}
ight]\,dx=\int_{\Omega}\psi_{k}g(x,u^{n})\,dx-h\left(\psi_{k}
ight).$$

552

J.C. FAY

Here, $\{\psi_k\}_{k=1}^{\infty}$ is a complete orthonormal sequence in $L^2(\Omega)$ with each $\psi_k \in C^{\infty}(\Omega)$ and $\psi_1 = (2\pi)^{-N/2}$. Furthermore, given $\phi \in C^{\infty}(\Omega)$, there exists a sequence of constants $\{c_k\}_{k=1}^{\infty}$ such that

$$\lim_{n \to \infty} \sum_{k=1}^{n} c_k \psi_k(x) = \phi(x)$$

uniformly for $x \in \Omega$.

Proof. Let $f_k(\alpha) = \mathbf{Q}(\alpha_p \psi_p, \psi_k) + (\langle \alpha_p \psi_p, \psi_k \rangle / n) - \int_{\Omega} \psi_k g(x, \alpha_p \psi_p) + h(\psi_k)$ for $k = 1, \ldots, n$. Note that $f_k(\alpha) \cdot \alpha_k \geq \mathbf{L}(\alpha_p \psi_p, \alpha_k \psi_k) + (|\alpha|^2 / n) - \int_{\Omega} B(x) |\alpha_k \psi_k| - h(\alpha_k \psi_k)| \geq 0 + (|\alpha|^2 / n) - K_1 |\alpha| - K_2 |\alpha| \geq (|\alpha|^2 / n) - K_0 |\alpha| > 0$ for $|\alpha|$ large, say $|\alpha| = p$. Define $F(x, \lambda) = \lambda f(x) + (1 - \lambda)x$ for $0 \leq \lambda \leq 1$. Let $\overline{D} = \overline{B}(0, p)$.

Now $f(x) \cdot x > 0$ for |x| = p and indeed $f(x) \cdot x \ge \varepsilon > 0$ for |x| = p.

Then $F(x,\lambda) \cdot x = \lambda f(x) \cdot x + (1-\lambda)|x|^2 \ge \lambda \varepsilon + (1-\lambda)|x|^2 > 0$. Therefore, $F(x,\lambda) \ne 0$ for $0 \le \lambda \le 1$ and |x| = p.

Now, using topological degree theory, d(f, D, 0) = d(F(x, 1), D, 0) = d(F(x, 0), D, 0) (due to invariance with respect to homotopy) = d(I, D, 0) = 1. So by the Kronecker existence theorem, there exists $x^* \in \mathbf{R}^n$ such that $f(x^*) = 0$. Letting $\alpha = x^*$, we have (3.1).

The next lemma we prove is

Lemma 2. Let n be a given positive integer. Also, let g satisfy (g-1)-(g-3). Suppose that Q satisfies (Q-1)-(Q-3). Then there is a function $u = \gamma_1 \psi_1 + \cdots + \gamma_n \psi_n$, where $\gamma_1, \ldots, \gamma_n$ are constants, such that

$$\int_{\Omega} \sum_{1 \le |\alpha|, |\beta| \le m} \left[a_{\alpha\beta}(x, Du) D^{\alpha} u D^{\beta} \psi_k + \frac{u \psi_k}{n} \right] dx$$
$$= \int_{\Omega} \psi_k(x) g(x, u) dx - h(\psi_k).$$

Proof. For each positive integer p, set

$$g^{p}(x,s) = \begin{cases} g(x,p), & s \geq p; \\ g(x,s), & -p \leq s \leq p; \\ g(x,-p), & s \leq -p. \end{cases}$$

Then it follows from (g-2) that there is an $\alpha_p(x) \in L^2(\Omega)$ such that $|g^p(x,s)| \leq \alpha_p(x)$ for $s \in \mathbf{R}$ and a.e. $x \in \Omega$.

Consequently, it follows from Lemma 1 that there exist constants $\{\gamma_i^p\}_{i=1}^n$ such that

$$(3.2) u^p = \gamma_1^p \psi_1 + \dots + \gamma_n^p \psi_n$$

and satisfies (3.1) with g replaced by g^p , i.e., (3.3)

$$\langle D^{\beta}\psi_k, a_{\alpha\beta}(\cdot, Du^p)D^{\alpha}u^p\rangle_0 + \frac{\langle \psi_k, u^p\rangle_0}{n} = \langle \psi_k, g^p(\cdot, u^p)\rangle_0 - h(\psi_k),$$
for $k = 1, \dots, p$.

Now it follows from the definition and (g-3) that $sg^p(x,s) \leq |s|a(x)$ for all $s \in \mathbf{R}$ and a.e. $x \in \Omega$. A similar inequality will prevail a.e. in Ω if we replace s by the u^p given in (3.2). Consequently, if we multiply both sides of (3.3) by γ_k^p and sum on k, we obtain by (Q-3) that for all $p \in \mathbf{Z}^+$, $0 + (\langle u^p, u^p \rangle_0/n) \leq \langle u^p, g^p(\cdot, u^p) \rangle_0 - h(u^p) \leq \langle |u^p|, a \rangle_0 - h(u^p) \leq \langle u^p, u^p \rangle_0^{1/2} \langle a, a \rangle_0^{1/2} - h(u^p)$. Now, since $h \in H^{-m}(\Omega)$, $(\langle u^p, u^p \rangle_0/n) \leq \langle u^p, u^p \rangle_0^{1/2} K + K' \langle u^p, u^p \rangle_m^{1/2}$. It is clear that there is a constant depending on n such that $||u||_m \leq K^n ||u||_0$; therefore, $(\langle u^p, u^p \rangle_0/n) \leq \langle u^p, u^p \rangle_0^{1/2} K + K'' \langle u^p, u^p \rangle_m^{1/2}$. Therefore, $\langle u^p, u^p \rangle_0^{1/2} \leq n(K + K'')$. Thus, by (3.2) and the orthonormality of the ψ_j 's, $(\psi_1^p)^2 + \dots + (\psi_n^p)^2 \leq$ a constant depending on n.

Therefore, there exists a subsequence $\{\gamma_k^p\}$ which converges for each $k = 1, \ldots, n$. For ease of notation, say it is the full sequence and write

(3.4)
$$\lim_{p \to \infty} \gamma_k^p = \gamma_k^n \quad \text{for } k = 1, \dots, n.$$

We set $u = \gamma_1^n \psi_1 + \dots + \gamma_n^n \psi_n$ and see by the definition of u^p and (3.4) that

(3.5a)
$$\lim_{n \to \infty} u^p(x) = u(x) \quad \text{uniformly for } x \in \Omega$$

and $\begin{array}{l} \text{(3.5b)} \\ \lim_{p\to\infty} D^\alpha u^p(x) = D^\alpha u(x) \qquad \text{uniformly for } x\in\Omega \text{ and } 1\leq |\alpha|\leq m. \end{array}$

From this and (Q-1), we see that $\lim_{p\to\infty} a_{\alpha\beta}(x, Du^p(x)) = a_{\alpha\beta}(x, Du(x))$ for a.e. $x \in \Omega$ and $1 \le |\alpha|$, $|\beta| \le m$. From this with (Q-2), (3.2), (3.4), and (3.5) using the generalized Lebesgue Convergence Theorem, we see that

(3.6)
$$\lim_{p \to \infty} \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du^p) D^{\alpha} u^p \rangle_0 = \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u \rangle_0$$
for $k = 1, \dots, n$.

Then we see from (3.2) and (3.4) that $\{u^p\}_{p=1}^{\infty}$ is uniformly bounded on Ω and is in $C^{\infty}(\Omega)$ for each p.

Thus, from the definition of g^p , there exists p_0 such that $p \geq p_0$ implies that $g^p(x, u^p(x)) = g(x, u^p(x))$ for $x \in \Omega$. Then by (g-1), (g-2) and (3.5) we see that $\lim_{p\to\infty} \langle \psi_k, g^p(\cdot, u^p) \rangle_0 = \langle \psi_k, g(\cdot, u) \rangle_0$ for $k=1,\ldots,n$. Now from this with (3.3), (3.5) and (3.6), we obtain our conclusion. \square

The next lemma we prove is the following

Lemma 3. Suppose Q satisfies (Q-1)-(Q-3), $h \in H^{-m}(\Omega)$, and that g satisfies (g-1)-(g-3). Suppose also that for every positive integer n, there is a $u^n = \gamma_1^n \psi_1 + \cdots + \gamma_n^n \psi_n$, where $\gamma_1^n, \ldots, \gamma_n^n$ are constants, which satisfies for $k = 1, \ldots, n$,

$$(3.7) \int_{\Omega} \sum_{1 \leq |\alpha|, |\beta| \leq m} \left[a_{\alpha\beta}(x, Du^n) D^{\alpha} u^n D^{\beta} \psi_k + \frac{u^n \psi_k}{n} \right] dx$$

$$= \int_{\Omega} \psi_k(x) g(x, u) dx - h(\psi_k).$$

Assume furthermore that there is a constant K such that

(3.8)
$$||u^n||_m \le K$$
 for $n = 1, 2, \dots$

Then there is a constant K^* such that $\langle |g(\cdot,u^n)|, |u^n| \rangle_0 \leq K^*$ for $n=1,2,\ldots$

Proof. Multiplying both sides of (3.7) by γ_k^n and summing over $k = 1, \ldots, n$, we obtain

$$\langle D^{\beta}u^{n}, a_{\alpha\beta}(\cdot, Du^{n})D^{\alpha}u^{n}\rangle_{0} + \frac{\langle u^{n}, u^{n}\rangle_{0}}{n} = \langle u^{n}, g(\cdot, u^{n})\rangle_{0} - h(u^{n}).$$

Consequently, we have from (Q-3) that

$$(3.9) 0 \le \langle u^n, g(\cdot, u^n) \rangle_0 - h(u^n).$$

Next we set

(3.10a)
$$A_n = \{ x \in \Omega : u^n g(x, u^n) \ge 0 \}$$

and

(3.10b)
$$B_n = \{ x \in \Omega : u^n g(x, u^n) < 0 \}$$

and observe from (Q-3) that $\int_{A_n} u^n g(x, u^n) dx \leq ||u^n||_0 ||a||_0$ for $n = 1, 2, \ldots$. Therefore, it follows from (3.8) that there is a constant K_1 such that

(3.11)
$$\int_{A_n} u^n g(x, u^n) \, dx \le K_1 \quad \text{for } n = 1, 2, \dots.$$

Owing to (3.8), (3.9) and the fact that $\Omega = A_n \cup B_n$, $-\int_{B_n} u^n g(x, u^n) dx \le \int_{A_n} u^n g(x, u^n) dx + K_2$ follows. But then from (3.11) we have

$$-\int_{B_n} u^n g(x, u^n) \, dx \le K_1 + K_2 \quad \text{for } n = 1, 2, \dots.$$

This fact, in conjunction with (3.10) and (3.11), gives us $\int_{\Omega} |u^n| |g(x,u^n)| dx \leq 2K_1 + K_2$ for $n = 1, 2, \ldots$. However, this is the conclusion with $K^* = 2K_1 + K_2$ so the proof is complete. \square

Lemma 4. Suppose the conditions in the hypothesis of Lemma 3 hold. Then the sequence $\{g(x, u^n)\}_{n=1}^{\infty}$ is absolutely equi-integrable.

To be precise, what we mean by absolutely equi-integrable is the following: given $\varepsilon > 0$, there exists a $\delta > 0$ such that if $E \subset \Omega$ with

 $\mu(E) < \delta$, then $\int_E |g(x,u^n)| dx < \varepsilon$ for n = 1, 2, ..., where μ is N-dimensional Lebesgue measure.

Proof. First we choose r > 0 so that

$$\frac{K^*}{r} < \frac{\varepsilon}{2},$$

where K^* is the constant in Lemma 3. Next, using (g-2), we choose $\alpha_r \in L^2(\Omega)$ such that

$$|g(x,s)| \le \alpha_r(x)$$
 for a.e. $x \in \Omega$ and $|z| < r$.

Also, we set

$$A_n = \{ x \in \Omega : |u^n| \le r \}$$

and

$$B_n = \{x \in \Omega : |u^n| > r\}$$

and choose $\delta > 0$ such that $\mu(E) < \delta$ implies that $\int_E \alpha_r(x) \, dx < \varepsilon/2$. Now suppose $\mu(E) < \delta$ as in this last statement. Then it follows from Lemma 3 and these last three formulae that

$$\int_{E} |g(x, u^{n}(x))| dx \leq \int_{E \cap A_{n}} \alpha_{r}(x) dx + r^{-1} \int_{E \cap B_{n}} |u^{n}(x)g(x, u^{n}(x))| dx$$

$$\leq \frac{\varepsilon}{2} + \frac{K^{*}}{r} \quad \text{for } n = 1, 2, \dots.$$

From (3.12) we see that the right-hand side of this last established inequality is less than ε . Consequently, $\{g(x, u^n)\}_{n=1}^{\infty}$ is absolutely equi-integrable, and the proof of the lemma is complete. \square

4. Proof of Theorem. Note that the hypotheses of the theorem imply those of Lemma 2. So for $n \in \mathbf{Z}^+$, there exists u^n as in the conclusion of Lemma 2.

We claim there is a constant K such that

(4.1)
$$||u^n||_m \le K$$
 for $n = 1, 2, ...$

where

(4.2)
$$||u||_m^2 = \sum_{|\alpha| \le m} ||D^{\alpha}u||_0^2.$$

Say not, i.e., (4.1) is false. Then (for ease of notation) $\lim_{n\to\infty} ||u^n||_m = \infty$; and setting

$$(4.3) v^n = \frac{u^n}{||u^n||_m}$$

we get that [1, p. 169, Lemma 10 with $H_0=L^2(\Omega)$ and $H_m=W^{m,2}(\Omega)$]:

(4.4)
$$||v^n - v||_0 \to 0 \quad \text{as } n \to \infty \quad \text{for some } v \in W^{m,2}(\Omega);$$
$$v^n \to v \quad \text{for a.e. } x \in \Omega;$$

and

(4.5)
$$\lim_{n \to \infty} \int_{\Omega} w D^{\alpha} v^n \, dx = \int_{\Omega} w D^{\alpha} v \, dx$$
 for all $w \in L^2(\Omega)$ and $0 \le |\alpha| \le m$.

Therefore, $v^n \to v$ weakly in H^m . The conclusion of Lemma 2 now gives

$$(4.6) \quad \langle D^{\beta} v^{n}, a_{\alpha\beta}(x, Du^{n}) D^{\alpha} v^{n} \rangle_{0} + \langle v^{n}, v^{n} \rangle_{0} n^{-1}$$

$$= \left[\langle u^{n}, g(\cdot, u^{n}) \rangle_{0} - h(u^{n}) \right] ||u^{n}||_{m}^{-2}.$$

By (Q-3), the left-hand side of (4.6) is greater than zero. Now by (g-3), there exists a nonnegative $a(x) \in L^2(\Omega)$ such that $sg(x,s) \leq |s|a(x)$ for all $s \in \mathbf{R}$ and $x \in \Omega$. Thus, we see from (Q-3) and (4.6) that

$$\mathbf{L}(v^n,v^n) \leq \frac{\int_{\Omega} |u^n||a(x)| \, dx}{||u^n||_m^2} - \frac{h(v^n)}{||u^n||_m} \leq \frac{||u^n||_0||a||_0}{||u^n||_m^2} - \frac{h(v^n)}{||u^n||_m}.$$

Thus we have from (Q-3) that

(4.7)
$$\lim_{n \to \infty} \mathbf{L}(v^n, v^n) = 0.$$

Therefore, by Lemma A and Lemma B, v = constant, which is different from zero. Thus, we see that v=k>0 for a.e. $x\in\Omega$ or v=-k for a.e. $x \in \Omega$. Suppose that v = k for a.e. $x \in \Omega$. (The case v = -k for a.e. $x \in \Omega$ is similar.)

Now by (Q-3) and (4.6), $0 \le \langle u^n, g(\cdot, u^n) \rangle_0 - h(u^n)$. Therefore, $h(u^n) \leq \langle u^n, g(\cdot, u^n) \rangle_0 = \int_{\Omega} u^n g(\cdot, u^n) dx$. By the linearity of h we

$$(4.8) h(v^n) \le \int_{\Omega} v^n g(x, u^n) dx.$$

Now (again using the linearity of h) $h(v^n) \to kh(1)$ as $n \to \infty$. We let $g_{++}(x) = \limsup_{n \to \infty} g(x, u^n)$ and we observe that $g_{++}(x) \leq g_{+}(x)$. From (4.8),

$$-h(v^n) \geq \int_{\Omega} (-v^n g(x,u^n) + a(x)|v^n|) dx - \int_{\Omega} a(x)|v^n| dx.$$

Now, by Fatou,

$$-kh(1) \ge -\int_{\Omega} (vg_{++}(x) - a(x)|v|) dx - \int_{\Omega} a(x)|v| dx$$
$$= -\int_{\Omega} vg_{++}(x) dx$$
$$= -k \int_{\Omega} g_{++}(x) dx.$$

Therefore, $h(1) \leq \int_{\Omega} g_{++}(x) dx \leq \int_{\Omega} g_{+}(x) dx$ which is a contradiction to the hypotheses. Thus, we conclude our claim (4.1) is true.

Then [1] there exists a subsequence (for ease of notation the full sequence) of $\{u^n\}_{n=1}^{\infty}$ and a function $u \in W^{m,2}(\Omega)$ such that:

$$(4.9) \qquad \lim_{n \to \infty} ||D^{\alpha}u^n - D^{\alpha}u||_0 = 0 \qquad \text{for } |\alpha| \le m - 1;$$

(4.9)
$$\lim_{n \to \infty} ||D^{\alpha}u^{n} - D^{\alpha}u||_{0} = 0 \quad \text{for } |\alpha| \le m - 1;$$
(4.10)
$$\lim_{n \to \infty} D^{\alpha}u^{n} = D^{\alpha}u \quad \text{for a.e. } x \in \Omega \text{ and } |\alpha| \le m - 1;$$

and

$$\lim_{n \to \infty} \int_{\Omega} w D^{lpha} u^n \, dx = \int_{\Omega} w D^{lpha} u \, dx \qquad ext{for all } w \in L^2(\Omega) ext{ and } |lpha| = m.$$

Therefore $u^n \to u$ weakly in H^m .

From (4.10) and (Q-1), we see that $\lim_{n\to\infty} a_{\alpha\beta}(x, Du^n(x)) = a_{\alpha\beta}(x, Du(x))$ for a.e. $x \in \Omega$.

With this, (4.9), (Q-2), and the generalized Lebesgue Convergence Theorem [3, p. 89], we obtain

$$\lim_{n\to\infty}||a_{\alpha\beta}(\cdot,Du^n)-a_{\alpha\beta}(\cdot,Du)||_0=0.$$

Indeed, $2a(x) + c[|Du| + |Du^n|] \rightarrow 2a(x) + 2c|Du|$ and by (Q-2) $\lim_{n\to\infty} \int \{2a(x) + c[|Du| + |Du^n|]\}^2 dx = \int \{2a(x) + 2c|Du|\}^2 dx$. Also, $|a_{\alpha\beta}(x,Du^n) - a_{\alpha\beta}(x,Du)| \leq 2a(x) + c[|Du| + |Du^n|]$ so the theorem applies and the result is obtained.

Now this with (4.1) (which implies that $[\int |D^{\alpha}u^n|^2 dx]^{1/2} < \text{constant}$) and Schwarz give that for k fixed

(4.12)
$$\lim_{n \to \infty} \langle D^{\beta} \psi_k, [a_{\alpha\beta}(\cdot, Du^n) - a_{\alpha\beta}(\cdot, Du)] D^{\alpha} u^n \rangle_0 = 0.$$

From (4.11) and (Q-2) (which implies that $[D^{\beta}\psi_k][a_{\alpha\beta}(x,Du)] \in L^2(\Omega)$) we get

$$\lim_{n\to\infty} \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u^n \rangle_0 = \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u \rangle_0.$$

Then with this and (4.12) we get

$$(4.13) \quad \lim_{n \to \infty} \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du^n) D^{\alpha} u^n \rangle_0 = \langle D^{\beta} \psi_k, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u \rangle_0.$$

Next from (4.10) and (g-1) we see that

(4.14)
$$\lim_{n \to \infty} g(x, u^n(x)) = g(x, u(x)) \quad \text{for a.e. } x \in \Omega.$$

By (g-3), we can apply Lemma 4 to get that

(4.15)
$$\{g(x, u^n(x))\}\$$
 is absolutely equi-integrable.

(Note: $u^n \in C^{\infty}(\Omega)$.) Thus, there exists K such that $\int_{\Omega} |g(x, u^n)| dx \le K$ for $n = 1, 2, \ldots$. Then using (4.14), we see that $\int_{\Omega} |g(x, u)| dx \le K$; therefore, $g(x, u) \in L^1(\Omega)$.

Now for k fixed, $\lim_{n\to\infty} g(x,u^n)\psi_k = g(x,u)\psi_k$ for a.e. $x\in\Omega$. So

(4.16)
$$\{g(x, u^n)\psi_k\}$$
 is absolutely equi-integrable.

Now, given $\varepsilon > 0$, there exists δ such that $E \subset \Omega$ and $\mu(E) < \delta$ imply that $\int_E |g(x,u^n)\psi_k| dx < \varepsilon$ for $n=1,2,\ldots$. By Egoroff, given δ there exists $E \subset \Omega$ with $\mu(E) < \delta$ such that $[g(x,u^n)-g(x,u)]\psi_k \to 0$ uniformly on $\Omega - E$. Then

$$\limsup_{n \to \infty} \left| \int_{\Omega} \psi_{k}[g(x, u^{n}) - g(x, u)] dx \right| \\
\leq \limsup_{n \to \infty} \left| \int_{\Omega - E} \psi_{k}[g(x, u^{n}) - g(x, u)] dx \right| \\
+ \limsup_{n \to \infty} \left| \int_{E} \psi_{k}[g(x, u^{n})] dx \right| \\
+ \limsup_{n \to \infty} \left| \int_{E} \psi_{k}[g(x, u)] dx \right| \\
\leq 0 + \varepsilon + \varepsilon \\
\leq 2\varepsilon.$$

 ε was arbitrary so $\lim_{n\to\infty}\int_{\Omega}\psi_kg(x,u^n)\,dx=\int_{\Omega}\psi_kg(x,u)\,dx$. Thus,

(4.18)
$$\lim_{n \to \infty} \langle \psi_k, g(\cdot, u^n) \rangle_0 - h(\psi_k) = \langle \psi_k, g(\cdot, u) \rangle_0 - h(\psi_k).$$

From (4.9), Lemma 2, (4.13), and (4.18) we get

$$(4.19) \qquad \langle D^{\beta}\psi_k, a_{\alpha\beta}(x, Du)D^{\alpha}u\rangle_0 = \langle \psi_k, g(x, u)\rangle_0 - h(\psi_k).$$

Now, given $\phi \in C^{\infty}(\Omega)$, from the uniform approximation property of the ψ 's, there exist real $\{c_q^n\}_{q=1}^n$ and $\{\phi_n\}_{n=1}^{\infty}$ with

$$\phi_n = c_1^n \psi_1 + \dots + c_n^n \psi_n$$

such that

(4.21)
$$\lim_{n \to \infty} \phi_n(x) = \phi(x) \quad \text{uniformly for } x \in \Omega$$

and

(4.22)

$$\lim_{n\to\infty} D^{\alpha}\phi_n(x) = D^{\alpha}\phi(x) \qquad \text{uniformly for } x\in\Omega \text{ and } 1\leq |\alpha|\leq m.$$

Since $u \in W^{m,2}(\Omega)$, from (Q-2) and Schwarz we see

$$(4.23) a_{\alpha\beta}(x,u)D^{\alpha}u \in L^{1}(\Omega) \text{for } 1 \leq |\alpha|, |\beta| \leq m.$$

From (4.22) and (4.23), we obtain

(4.24)
$$\lim_{n \to \infty} \langle D^{\beta} \phi_n, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u \rangle_0 = \langle D^{\beta} \phi, a_{\alpha\beta}(\cdot, Du) D^{\alpha} u \rangle_0.$$

Also from (4.21)

(4.25)
$$\lim_{n \to \infty} \langle \phi_n, g(\cdot, u) \rangle_0 - h(\phi_n) = \langle \phi, g(\cdot, u) \rangle_0 - h(\phi).$$

Now, from (4.20), we see that (4.19) holds with ψ_k replaced by ϕ_n . Then from (4.24) and (4.25) we see that (4.19) holds with ψ_k replaced by ϕ , i.e.,

$$\langle D^{\beta}\phi, a_{\alpha\beta}(x, Du)D^{\alpha}u\rangle_0 = \langle \phi, g(x, u)\rangle_0 - h(\phi).$$

 ϕ is arbitrary in $C^{\infty}(\Omega)$ so this shows there exists a distribution solution of Qu = g(x, u) - h.

5. Acknowledgments. The author would like to thank Professor Victor L. Shapiro for his assistance with this work (which is based on the author's dissertation done under his supervision), especially regarding (Q-3).

REFERENCES

- 1. Lipman Bers, Fritz John and Martin Schecter, Partial differential equations, Lectures in Applied Mathematics 3, Interscience, New York, 1964.
- 2. Djairo G. deFigueiredo and Jean-Pierre Gossez, Nonlinear perturbations of a linear elliptic problem near its first eigenvalue, J. Differential Equations 30 (1978), 1–19.
 - 3. H.L. Royden, Real analysis, Macmillan Publishing Co., Inc., New York, 1968.
- $\textbf{4.}\ \ \text{Victor L.\ Shapiro},\ \textit{Resonance},\ \textit{distributions}\ \ \textit{and}\ \ \textit{semilinear}\ \ \textit{elliptic}\ \ \textit{partial}\ \ \textit{differential}\ \ \textit{equations},\ \textit{Nonlinear}\ \ \textit{Anal.},\ \textit{Theory},\ \textit{Methods}\ \&\ \textit{Appl.}\ \ \textbf{8}\ (1984),\ 857-871.$

- ${\bf 5.}$ —, Resonance and quasilinear ellipticity, Trans. Amer. Math. Soc. ${\bf 294}$ (1986), 567–584.
- $\pmb{6.}$ ——, Nonlinear distributions and quasilinear ellipticity, J. Differential Equations $\pmb{68}$ (1987), 253–280.

Department of Natural Science and Mathematics, St. Paul's College, Lawrenceville, Virginia 23868