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1. Introduction. Let Q@ = {z: -7 < z; <7,j=1,2,... ,N} be
the N-torus, N > 2. Also let ¢ € C*°(Q) mean that ¢ € C*°(RY) and
is periodic of period 2 in each variable. W™?(Q) will be

{m times weakly differentiable u : D%u € L?(f) for all || < m},

where the a-th weak derivative of u is v such that fQ pvdr =
(=1)lel [ uD*¢ dz for all ¢ € Cl*I(). W™2(Q) will also be denoted
H™(Q).

Let M be the number of all derivatives D, for 0 < |a] < m — 1.
Let Du stand for the M-vector whose components are D%u, for all
0 < |a] < m—1. Thatis, for m = 1, Du = (u); for m = 2,
Du = {u, Dyu, Dau, ... ,Dyu); and so on.

With
(1.1) Qu = (~1)"1D° [ags(w, Du) D*u),
we shall study the equation

(1.2) Qu = g(z,u) — h.
(In (1.1) we use the summation convention for 1 < |al,|3] < m.) his
a distribution in H~"(Q), where H~™(Q) = [H™(Q)]*.

We introduce some notions concerning the g given in (1.2). In
particular, we shall assume

(g-1) g(z, s) meets the usual Caratheodory conditions: For each fixed
s € R, g(z, s) is measurable on Q; for a.e. z € Q, g(z, s) is continuous
on R.

(g-2) For r > 0, there is . € L?(Q) such that |g(z,s)| < a,(z) for
ae z €and s € R.

(g-3) There exists nonnegative a(z) € L?(Q2) such that sg(z,s) <
|s|a(z) for all s € R and = € Q.
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We shall also assume with respect to the operator @ in (1.1) the
following:

(Q-1) The coefficients aq g(z,z) satisfy the same Caratheodory
conditions as in (g-1) above.

(Q-2) There exists a nonnegative a(z) € L?(2) and ¢ > 0 such that
laag(z,2)| < a(z) + c|z| for every z € RM and a.e. z € Q.

(Q-3) There exists a uniformly elliptic semilinear Lu = (—1)I7!
DPbyp(x) D*u] (where the b,g are real-valued functions in L*° and the
highest order coefficients are uniformly continuous) with a symmetric
bilinear form L(u, v) = [, bap(x)D*uDPv dx with first eigenvalue equal
to zero and dimension of first eigenspace equal to one (i.e., L(u,u) >0
for all w € H™ and L(v,w) = 0Yw € H™ if and only if v = constant),
such that

Q(u,u) > L(u,u) Yue C®

where

Q(u,v):/aag(a:,Du)DauDﬁvdw.
Q

(For the relevant definition concerning L, see [2, p. 2].)

The theorem we establish is

Theorem. Assume (Q-1)—(Q-3) and (g-1)—(g-3). Also assume
h € W-™2(Q). Then if

/Qg+(m)dx<h(1)</gg,(x)dm

where gy (x) = limsup,_,, g(z,s) and g_(z) = liminf,,  g(z,s),
there exists u € W™2(Q) with g(x,u) € L'(Q) which is a distribution
solution of Qu = g(z,u) — h.

For related results in the literature, see [2, 4, 5, 6].

To be quite explicit, what we mean by u € W™2(Q) being a
distribution solution of Qu = g(z,u) — h is g(z,u) € L'(Q) and for
all ¢ € C*(Q2), we have

Q(u, §) = /Q o, w)é() dz — h(g).
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2. Relevant consequences of Garding’s inequality. We will
use the following form of Garding’s inequality (see [1, p. 170]).

On the N-torus with (u,Lu) = fﬂz\a\,lﬂlﬂn aap(z)D*uDPu, we
have that there exist c1,co > 0 such that (u, Lu) > co|ul|?, — c1]|ul|3

where ||u||7 ~ > (1+1-1)*|u”(1)|*. Here the a,p are continuous for the
highest order and in L for lower order.

By Garding’s inequality, we have cs||u||?, < L(u,u) + c1||u||3 where
we assume L(u,v) is as in (Q-3). Set

Lo(u,v) = L(u,v) + ¢1(u, v)o.

Now
callull?, < Lo(u,u) < csllull?,

s0 Lo (u,v) is an equivalent inner product to (u, v),, for w and v € H™.
Given f € H={f € L*(Q) : [ fdz =0}, for v € H™ we have

[(£s0)ol < [ fllollollo < [If[[ol[o]|m-

Therefore, (f,v)o € [W™?2(Q)]*. By Riesz [3, p. 121], there exists
w € H™(Q) such that Lo(w,v) = (f,v)o for all v € H™. Therefore,
L(w,1) + c1{w,1)g = (f,1)p. Since L(w,1) = 0 and (f,1)o = 0, it
follows that (w,1)o = 0. Therefore, w € H™ = H™ N H. Callw = Tf,
so Lo(Tf,v) = (f,v)o for v € H™. Therefore, T: H — H™ C H.

Claim. T is symmetric on H.
Indeed, for g € H, (g, Tf)o = Lo(Tg, Tf) = Lo(Tf,Tg) = (f,Tg)o-

Claim. T is strictly positive on H (i.e., (T'f,f)o > 0 and is
=0« f=0).

Indeeda <Tf7f>0 = <f7Tf>0 = LO(Tfan) > 62|‘Tf||72n >0. If f = 07
then obviously (T'f, f)o = 0. If (T'f, f)o = 0, then Lo(Tf,Tf) = 0.
Therefore, T'f = 0. Then 0 = Lo(T'f,v) = (f,v)o for allv € H™. H™

is dense in H so (f,v)o = 0 for all v € H. Therefore, (£, f)o = 0.
Therefore, f = 0.
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Claim. T is compact.

Indeed, given ||fjllo < K for j = 1,2,...; we have to show there
exists a subsequence {1'f;, } which is Cauchy in H. Now |Lo(T'f;,v)| =
(£i> vl < [Ifjllollv]lm- Taking v = Tf;, we see that cof|Tf;ll7, <
Lo(Tf;,Tf;) < KIT fjllm- So [|Tfjllm < K/ecz for j =1,2,.... Now
H™ is compactly embedded in H [1, p. 164]. Therefore, there exists
{T fjr} which is Cauchy in H.

Now by these last three, there exist {n; 5o which are positive
and strictly decreasing to zero and corresponding {t;x} such that
T, = njv, and {wjk};i%i(f ) is a complete orthonormal system
in H.

Set )\j = (1/77]') — C1.- Then L0(¢jk,v) = (1/7]j)L0(T1/ij,U) =
(1/m7)(¥jk, v)o. Therefore, n;Lo(¥jk,v) = (¥jk,v)o = v"(j, k). Hence,
L(vjk,v) = Xj(¥jk,v)o for all v € H™. Note 0 < L(¢jk, i) =
i ¥k, Yjk)o = Aj. Therefore, A\; >0 for j =2,3,....

Now Lo (y/1j%jk: /M5%ik) = 1jLo(¥jk, Yjk) = (Yjk, Yjk)o = 1; there-
fore, {,/mj¥;r} is a complete orthonormal system with respect to Ly
on H™.

So(; v € H™ implies that Lo(v,v) = >y [Lo(v, i) ? =
> 7o (1075, k)2 /y)-

Let vy = 1/(2m)N/2.

Claim. H™ = {¢;;} ® H™.

Indeed, we need to show {1} U {¢jk};°;2ki(1j) is a complete or-
thonormal system with respect to Lg. Suppose Lg(v,%;1) = 0 and
Lo(v,¥jr) =0for j =2,3,... and k = 1,2,... ,k(j), where v € H™.
Hence, L(v,%11) + c1(v,9¥11)0 = 0 but L(v,%11) = 0. Therefore,

(v,%11)0 = 0. Therefore, v € H™. Since Lo(v,9;;) =0for j =2,3,...
and k =1,2,...,k(j), we have v = 0 establishing the claim.

Now L(¢jk, w) = Aj(¥jk, w)o for all w € H™. Therefore, L(¢jk, ¢¥11)
= )\j(’l/)jk,l/)11>0 for j > 2. Given v € H™, v = ’U/\(l,l)l,/)ll + w
where w € H™. Therefore, L(¢jk,v) = L(Yjk, w) = Xj(Yjk, w)o =
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Aj(¥jk,v)o. Thus, 9 is an eigenfunction with respect to A\; and i
is not identically zero because (jk,¥11)0 = 0 and (Yjr, Yjr)o = 1.
Therefore, A\; # 0 for j > 2. Therefore, A\; > 0 for j > 2. Thus, for
ve H™,

= nj
= NRGRP = XD G R)
Jj=2 j=2

Lemma A. If L(v",v") — 0 where v™ € H™ and v — v in L?,
then v = C, a constant.

Proof. Set w™ = v* — v™\(1,1)¢y; € H™. Now L(w",w") =
L(v" — e1¢11,v™ — e1¥11) = L(v™,v") — 0. So L(w",w™) — 0.
Since L(w™,w™) > A2(w™,w™)g, we have that w™ — 0 in L% So
™ — v (1,1)¢1; — 0 in L2 Thus, v® — v"(1,1)11; = constant.
Therefore, v is constant. m]

Lemma B. With the conditions as above and the assumption that
[lv™]|2, = 1, C is nonzero.

Proof. 1 = ||v"||2, and by Garding, this is < ¢5 * [L(v™,v™)+c1|[v™]]3]-
Now as n — oo, we have that L(v™,v™) — 0 and ||v"||o — ||v]|o, sO
1 < (c1/c2)||v||2. Therefore, v is nonzero. O

3. Fundamental lemmas.

Lemma 1. Let B > 0 be an L? function, g satisfy (g-1), Q satisfy
(Q-1)—-(Q-3), h € H ™(Q), and |g(x, s)| < B(z) for s € R, a.e. x € Q.
If n is a positive integer, there exists u™ = 71+ - -+, such that
(3.1)

/QZ [aag(m,Du)Dau"Dﬁwk—i—un:)k] dx :/01/1kg(x,u") dx—h(y).
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Here, {11 }32, is a complete orthonormal sequence in L*(2) with each
Y € C®(Q) and ¢y = (27)"N/2. Furthermore, given ¢ € C>(Q),
there exists a sequence of constants {ci}3> , such that

lim Y eripi(z) = ¢(x)
k=1

uniformly for x € Q2.

P’I’OOf. Let fk:(a) = Q(ap¢p7¢k)+(<apwpa¢k fQ 1/’169 Z, O‘p¢p)
(d)k) for k = 1,...,n. Note that fi(a) - ap > L(apdzp,akwk)
(|e?/n) — [q B(@)lowpi| — hoxpi)| = 0+ (laf?/n) — Kila| — Ka|a| =
(|a|?/n) — K0|oz\ > 0 for |af large, say |a| = p. Define F(z,\) =
A (z)+ (1 =Nz for 0 < A< 1. Let D = B(0,p).
Now f(z) -z > 0 for |z| = p and indeed f(z) -2 > ¢ > 0 for |z| = p.
Then F(z,A\) -z = Af(z) -z + (1 = A)|z|*> > Xe + (1 — N)|z|*> > 0.
Therefore, F(z,\) #0 for 0 < A <1and [z|=
Now, using topological degree theory, d(f,D,0) = d(F(z,1),D,0) =
d(F(z,0),D,0) (due to invariance with respect to homotopy) = d(I, D,

0) = 1. So by the Kronecker existence theorem, there exists z* € R”
such that f(z*) = 0. Letting o = 2*, we have (3.1). O

The next lemma we prove is

Lemma 2. Let n be a given positive integer. Also, let g satisfy
(g-1)—(g-3). Suppose that Q satisfies (Q-1)—(Q-3). Then there is a
function u = y1¥1 + -+ - + Yp¥p, where Y1, .. ,7Y, are constants, such
that

>

dx

[aag(a: Du)D*uDPyy, + m/}k]

1<]al18l<m

/wk gle,u) do — h(by).
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Proof. For each positive integer p, set

g(z,p), s>p;
g (z,s) = ¢ 9(z, ), —p<s<p;
g(wv _p)7 S S —p-

Then it follows from (g-2) that there is an a,(z) € L?*(Q) such that
|97 (z, s)| < ap(z) for s € R and a.e. z € Q.

Consequently, it follows from Lemma 1 that there exist constants
{7F}2_, such that

(32) uP = 7f¢1 4+t ’Yﬁ¢n

and satisfies (3.1) with g replaced by ¢?, i.e.,

(3.3)
<Dﬁ¢k,aa5(-,Dup)D°‘up>o + w = <¢k,gp(',up)>o - h("pk)a

fork=1,...,p.

Now it follows from the definition and (g-3) that sg?(z, s) < |s|a(z)
for all s € R and a.e. £ € Q. A similar inequality will prevail
a.e. in Q if we replace s by the wP given in (3.2). Consequently,
if we multiply both sides of (3.3) by 7 and sum on k, we obtain
by (Q-3) that for all p € Z*, 0+ ((u,wP)o/n) < (uP,g?(:,uP))o —
h(uP) < (JuP|,a)o — h(uP) < (u”,up>é/2<a,a)(1)/2 — h(uP). Now, since
h e H-™(Q), ((uP,uP)o/n) < (uP,uP)/*K + K'(uP, uP)/®. Tt is clear
that there is a constant depending on n such that ||u||, < K"||ullo;
therefore, ((uP,uf)o/n) < <up,up>é/2K+K”<up,up>71ﬂ{2. Therefore,
(uP, up>(1)/2 < n(K+K"). Thus, by (3.2) and the orthonormality of the
¥;’s, (Y1) + -+ (¥2)? < a constant depending on n.

Therefore, there exists a subsequence {v;} which converges for each

k=1,...,n. For ease of notation, say it is the full sequence and write
; P _.n _
(3.4) pli>n(>10'yk = fork=1,...,n.

We set u = yJ"1p1 + - - - + 421, and see by the definition of u? and (3.4)
that

(3.5a) lim wP(z) = u(x) uniformly for z € Q

p—o0
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and
(3.5b)

pli)ngo D%uP(z) = D%u(x) uniformly for z € Q and 1 < |a] < m.
From this and (Q-1), we see that lim, ,. ang(z, DuP(x)) =
aap(z, Du(z)) for a.e. z € Q and 1 < |af, || < m. From this with
(Q-2), (3.2), (3.4), and (3.5) using the generalized Lebesgue Conver-
gence Theorem, we see that

lim (D'Bwk,aag(-,Dup)Daup>0 = (D'Bwk,aaﬂv(-,Du)D“u)O
(3.6) P7>
fork=1,... n.

Then we see from (3.2) and (3.4) that {uP};2, is uniformly bounded
on Q and is in C*°(Q) for each p.

Thus, from the definition of gP, there exists py such that p > po
implies that ¢P(z,u?(z)) = g(z,uP(z)) for x € Q. Then by (g-1),
(g-2) and (3.5) we see that lim,_, o (¢x, gP(-,uP))o = (¥r, g(-,u))o for
k=1,...,n. Now from this with (3.3), (3.5) and (3.6), we obtain our
conclusion. |

The next lemma we prove is the following

Lemma 3. Suppose Q satisfies (Q-1)—(Q-3), h € H~™(Q), and that
g satisfies (g-1)—(g-3). Suppose also that for every positive integer n,
there is a u™ = YY1 + -+ + Y0y, where VT, ...,y are constants,
which satisfies for k =1,... ,n,

(3.7) / Z [aa,g(x, Du™)D*u" DPy, + unnwk:] dx

¢ 1<al B <m
= /ka(x)g(w, u) dz — h(¢y).
Assume furthermore that there is a constant K such that
(3.8) [lu" | < K formn=1,2,....

Then there is a constant K* such that {|g(-,u™)|, |u"|)o0 < K* for
n=12,....
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Proof. Multiplying both sides of (3.7) by 77 and summing over
k=1,...,n, we obtain

(DPu, s (-, Dum) D*umYg + S0 _ g um)o — h(u®).

n

Consequently, we have from (Q-3) that

(3.9) 0< (", g(-,u"))o — h(u").

Next we set

(3.10a) A, ={zeQ:u"g(z,u") > 0}
and
(3.10b) B, ={z € Q:u"g(z,u") <0}
and observe from (Q-3) that [, u"g(z,u™)dz < |[u"|o]|allo for n =
1,2,.... Therefore, it follows from (3.8) that there is a constant K
such that
(3.11) / u"g(z,u™)dz < K forn=1,2,....
A

n

Owing to (3.8), (3.9) and the fact that Q = A, UB,,, — an u"g(z, u™)
dz < [, u"g(z,u™)dz + K> follows. But then from (3.11) we have

_/ u"g(z,u")de < K1 + Ko forn=1,2,....
B,

This fact, in conjunction with (3.10) and (3.11), gives us [, |u”||g(z,u™)|
drx < 2K; + K5 for n =1,2,.... However, this is the conclusion with
K* = 2K, + K> so the proof is complete. ]

Lemma 4. Suppose the conditions in the hypothesis of Lemma 3
hold. Then the sequence {g(z,u™)}22 , is absolutely equi-integrable.

To be precise, what we mean by absolutely equi-integrable is the
following: given € > 0, there exists a § > 0 such that if E C Q with
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w(E) < 4§, then fE lg(z,u™)|dz < e for n = 1,2,..., where p is N-
dimensional Lebesgue measure.

Proof. First we choose r > 0 so that

K* €

<
r 2’

(3.12)

where K* is the constant in Lemma 3. Next, using (g-2), we choose
a, € L*(2) such that

lg(z, 5)| < an(z) for a.e. z € Q and |z| < .
Also, we set
A, ={ze€eQ:|u" <r}
and
B,={xcQ:|u" >r}

and choose § > 0 such that u(E) < ¢ implies that [, a.(z)dz < £/2.
Now suppose u(E) < § as in this last statement. Then it follows from
Lemma 3 and these last three formulae that

[ @ @)lde < [ (@) / g @) do

< =+ forn=1,2,....

r

From (3.12) we see that the right-hand side of this last established
inequality is less than . Consequently, {g(z,u™)}2, is absolutely
equi-integrable, and the proof of the lemma is complete. u]

4. Proof of Theorem. Note that the hypotheses of the theorem
imply those of Lemma 2. So for n € Z™, there exists u™ as in the
conclusion of Lemma, 2.

We claim there is a constant K such that

(4.1) [lu™|m < K forn=1,2,...
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where

(4.2) [ullry = D [1D%ull3.

la|<m

Say not, i.e., (4.1) is false. Then (for ease of notation) lim,, o ||u™||m
= 00; and setting

n

(4.3) v =

[l {[m

we get that [1, p. 169, Lemma 10 with Hy = L2?(Q) and H,, =
w2 (Q)):

(4.4) |[v"™ = vllo = 0 asn — oo for some v € W™?2(Q);
' vt = for a.e. x €

and

lim wD%v" dx = / wD%y dx
for all w € L?(R2) and 0 < |a| < m.

Therefore, v — v weakly in H™. The conclusion of Lemma 2 now
gives

(4.6) (DPv", anp(x, Du™)D™)o + (v™,v™)on ™
= [(u", g(-;u™))o — h(u™)]|[u"]|72.
By (Q-3), the left-hand side of (4.6) is greater than zero. Now by (g-

3), there exists a nonnegative a(z) € L?() such that sg(z, s) < |s|a(z)
for all s € R and z € Q. Thus, we see from (Q-3) and (4.6) that

_ Jolutlla@)lde  h(") _ |lu*llollalle  A(v")

L(v™,v") < - < - .
’ [l 17, | | |7 1 A T [ P

Thus we have from (Q-3) that

(4.7) lim L(v",v") = 0.

n—oo
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Therefore, by Lemma A and Lemma B, v = constant, which is different
from zero. Thus, we see that v = k > 0 for a.e. z € Q or v = —k for
a.e. ¢ € Q. Suppose that v = k for a.e. z € Q. (The case v = —k for
a.e. x €  is similar.)

Now by (Q-3) and (4.6), 0 < (u™,g(-,u™))o — h(u™). Therefore,
h(u™) < (u" g(-,u™))o = [qu"g(-,u™)dz. By the linearity of h we
have

(4.8) h(v™) §/Qv"g(ac,u") dx.

Now (again using the linearity of h) h(v"™) — kh(1) as n — oo. We let
9g++(z) = limsup,,_, . g(z,u™) and we observe that g, (z) < g4 ().
From (4.8),

_h(w™) 2/Q(—v”g(m,u”)+a(m)|v"|)dac—/Qa(m)|v"|dac.
Now, by Fatou,
k(1) = = [ (vg11() = ala)lo da = [ ala)ll da
- [ i@ do
k[ g1s (o) do

Therefore, h(1) < [, g4+ (z) dz < [, g4 (x) dz which is a contradiction
to the hypotheses. Thus, we conclude our claim (4.1) is true.

Then [1] there exists a subsequence (for ease of notation the full
sequence) of {u"}°°; and a function u € W™?(Q) such that:

(4.9) lim |[D%u™ — D%ullo =0 for ja] <m —1;
n—oo
(4.10) lim D*u"™ = D%u for a.e. z € Q and |of <m —1;
n—oo
and
(4.11)

lim | wD%u"dz = / wD%u dx for all w € L?(Q2) and |a| = m.
Q Q

n—oo
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Therefore u™ — u weakly in H™.

From (4.10) and (Q-1), we see that lim, , aag(z, Du"(z)) =
aop(x, Du(x)) for a.e. x € Q.

With this, (4.9), (Q-2), and the generalized Lebesgue Convergence
Theorem [3, p. 89], we obtain

lim ||awg(-, Du™) — aag(-, Du)||o = 0.

n— oo

Indeed, 2a(z) + c[|Du| + |Du™|] — 2a(z) + 2¢|Du| and by (Q-2)
limp, o0 [{2a(z)+c[|Du|+|Du™|]}? dz = [{2a(x)+2¢c|Dul}? dz. Also,
|aag(z, Du™) — agp(z, Du)| < 2a(x) + c[|Du| + |Du"|] so the theorem
applies and the result is obtained.

Now this with (4.1) (which implies that [ [ |D%u™|? dz]'/? < constant)
and Schwarz give that for k fixed

(4.12) lim (DPyy, [aas (-, Du™) — anp(-, Du)]|D*u™) = 0.

n—oo

From (4.11) and (Q-2) (which implies that [DPiy][ans(z, Du)] €
L?(Q)) we get

lim (DPyy, ans(-, Du)Du™)o = (DPty, ans(-, Du) D*u)o.
n—0o0
Then with this and (4.12) we get

(4.13) nlL&(Dﬂwk,aag(-,Du")D“u”)o = (DPyy,, anp(-, Du) D%u)y.

Next from (4.10) and (g-1) we see that

(4.14) lim g(z,u"(x)) = g(z, u(z)) for a.e. z € Q.

n—ro0

By (g-3), we can apply Lemma 4 to get that
(4.15) {g9(z,u"(x))} is absolutely equi-integrable.

(Note: u™ € C*(f2).) Thus, there exists K such that [, |g(z,u")|dz <
K forn =1,2,.... Then using (4.14), we see that [, |g(z,u)|dz < K;
therefore, g(z,u) € L'(Q).
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Now for k fixed, lim,,_,~ g(z, u™)hr, = g(z, u)y for a.e. z € Q. So
(4.16) {g(z,u")¢i} is absolutely equi-integrable.

Now, given € > 0, there exists § such that E C Q and u(FE) < § imply
that [, |g(z,u")¢r|dz < e for n = 1,2,.... By Egoroff, given § there
exists E C Q with u(E) < § such that [g(z,u") — g(z,uw)]py — O
uniformly on 2 — E. Then

lim sup \ [ o) - g(ow) do

n—ro0

¢k [g(l‘, un) - g(x, u)] dz

< lim sup
n—00 Q—E

(4.17) + lim sup ‘ /E¢k[g(x,u")] dz

n—oo

+ limsup ‘ /E drlg(w,w)] do

n—oo

<0+e+e¢
< 2e.

e was arbitrary so lim, o [, ¥rg(®,u"™)dz = [, Yrg(x,u)dz. Thus,

(4.18) Wk, (- u™))o — P(¥r) = (P, 9 (- w))o — h(ehr)-

lim
n—ro0
From (4.9), Lemma 2, (4.13), and (4.18) we get

(4.19) (D'Bd)k,aaﬁ(w, Du)D%u)o = (Y, g(x,u))o — h(¢r).

Now, given ¢ € C°°(Q), from the uniform approximation property of
the 9’s, there exist real {cf };_; and {¢,};>; with

q=1
(4.20) G = CTY1+ -+ iy

such that

(4.21) lim ¢, (z) = ¢(z) uniformly for z €

n—oo
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and
(4.22)
lim D%@,(z) = D*¢(z) uniformly for z € Q and 1 < || < m.

n—o0

Since u € W™2(Q), from (Q-2) and Schwarz we see
(4.23) aop(z,u)D*u € L' (Q) for 1 < |al,|8] < m.
From (4.22) and (4.23), we obtain

(4.24) lim (DP ¢y, anp (-, Du)D*u)o = (DP ¢, anp(-, Du)D™u)q.

n—ro0

Also from (4.21)
(425)  lm (Ga g 00— h(dn) = (6,90 0o~ h().

Now, from (4.20), we see that (4.19) holds with v, replaced by ¢,.
Then from (4.24) and (4.25) we see that (4.19) holds with ¢ replaced

by ¢, i.e.,
<DB¢7 aaﬁ(xv Du)Dau>0 = <¢,g(ac,u)>0 - h(¢)

¢ is arbitrary in C°°(€2) so this shows there exists a distribution solution
of Qu = g(z,u) — h. o
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