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RIMCOMPACTNESS AND SIMILAR
PROPERTIES IN PREIMAGES

BEVERLY DIAMOND

ABSTRACT. It is shown that the properties of rimcompact-
ness, almost rimcompactness and having a compactification
with totally disconnected remainder are preserved in preim-
ages under closed maps whose point preimages have the appro-
priate property and have compact zero-dimensional boundary.
Examples indicate that the hypotheses on the maps cannot be
weakened significantly.

All spaces in this paper will be completely regular and Hausdorff.
A space X is rimcompact if X has a base of open sets with compact
boundaries, almost rimcompact if X has a compactification KX in
which each point of the remainder K X\ X has a base of open sets of
KX whose boundaries lie in X, and TDI (for totally disconnected
at infinity) if X has a compactification with totally disconnected
remainder. Note that an almost rimcompact space is TDI.

Various authors have considered the preservation of the above prop-
erties in images and preimages, with an interesting duality developing.
“Map” will mean continuous surjection; a map f : X — Y is perfect
(rimperfect, respectively) if f is closed and f (y) (bd.f* (y) respec-
tively) is compact for y € Y, and monotone if f* (y) is connected for
y € Y. It is shown in [1] that rimcompactness is preserved in im-
ages under rimperfect monotone maps. Following on this work, we
showed in [3] that the properties of almost rimcompactness and hav-
ing a compactification with 0-dimensional remainder are preserved in
rimperfect monotone images. Also, the properties of rimcompactness
and almost rimcompactness are preserved in preimages of such spaces
under rimperfect maps whose point preimages are zero-dimensional.
Since the perfect monotone preimage of a rimcompact space need not
be rimcompact [4], zero-dimensionality in some form is important in
this last result. In this paper we prove the stronger result stated in the
abstract.
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We denote by C(8X) the decomposition of SX consisting of {{z} :
z € X}U{C : C'is a connected component of BX\X}. It is known that
X is TDI if and only if C(8X) consists of compact sets and is an upper
semicontinuous decomposition of SX, in which case 8X/C(8X) yields
the largest compactification of X with totally disconnected remainder
[9, or 8]. If X is TDI, then X is almost rimcompact if and only if each
connected component of X\ X has a base in SX of open sets whose
boundaries lie in X, in which case the compactification X \C(8X) is
the largest compactification of X witnessing the fact that X is almost
rimcompact [7, 2] . If X is TDI, FyX will denote 5X/C(8X).

Although the result for rimcompact spaces can be written as a
corollary to the result for the larger classes of almost rimcompact and
TDI spaces, there is a straightforward proof of the result in this case
that makes more direct use of the structure of rimcompact spaces. In
the following, an open set U of X is m-open in X if bdxU is compact.

Theorem 1. Suppose that f : X — Y is rimperfect, and for y € Y,
< (y) is rimcompact and has 0-dimensional boundary in X. IfY is
rimcompact, then X is rimcompact.

Proof. If x € intx f< (y) for some y € Y, x has a base in X of -
open sets. Suppose then that z € bdx f< (y) for some y € Y and that
x ¢ T for T closed in X. Let T/ = T Nbdx f< (y); since bdx f< (y) is
zero-dimensional and compact, there are open sets Uy and Us of X with
x e Uy, T C Us, clxUiNclxUs = @, and bdxfg(y) C U UU,. Without
loss of generality, Uy N T = @. Now f“(y) CU; UUs Uintx f (y),
f is closed and Y is rimcompact, so there is a m-open set W of Y
with f<(y) CFEW]C T [cly W] C Uy UUz Uintx f< (y). According
to Lemma 3 of [7], f< [W] is m-open in X. Now f* (y) N [T\ (U UU3)]
is closed in f(y) and f<(y) N [T\(U1 UT2)] Nbdxf(y) = @.
Since f* (y) is rimcompact, there is a m-open set V of f<(y) with
bdx f<(y)CV and clxV N f<(y) N [T\(Uy UU2)] = @. The sets
V' = VU(X\f“(y)) and V' N f<[W] are m-open in X. Because
V’ N f(_[W] g Ul U U2, and Clel N Clez = @, V’ N _)H_[W] N U1 is
m-open in X and is the desired neighborhood of = in X. O
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For a map f : X — Y, the extension map from BX into BY
will be denoted by f?, and the composition of f# : X — BY and
g:B8Y = FyY by f: 8X — FyY.

Theorem 2. Suppose that f : X — Y is rimperfect and that for
y €Y, f<(y) is a TDI space with 0-dimensional boundary in X. If Y
is a TDI space, C(8X) is an upper semicontinuous decomposition of
BX consisting of compact sets. That is, X is a TDI space.

Proof. We first show that C(8X) is a decomposition of X into
compact sets. Since f is a closed map, it follows from 1.1 of [5]
that f7<(y) = clgxf~(y) for y € Y. According to the corollary to
Lemma 1 of [9], bdgxclgx f< (y) = clgxbdx f (y). Since bdx f (y) is
compact for y € Y, bdgxclgx f< (y) = bdx f< (y), so that clgx f< (y) N
(BX\X) = intgxclgx [ (y) N (BX\X) and is clopen in SX\X. That
bdx f< (y) is compact also implies that f (y) is C*-embedded in X,
hence clgx f< (y) = B(f* (y)); in particular the connected components
of clgx < (y)\f* (y) are the connected components of 3(f* (y)).

Let C be a connected component of SX\X. If C N fP<(y) # @
for some y € Y, then C C f# (y) and thus is a connected component
of A< (y)\f<(y) and is compact. If C'C fP<[BY\Y], then the set
fP[C] is a connected subset of fY'\Y and thus is contained in some
compact connected component D of 3Y\Y. Then C C f#<[D], and as
a connected component of the compact set f#°[D], is compact.

We now show that each element of C(8X) has a base in X of
open sets saturated with respect to C(8X). For y € Y, ff(y)
is saturated with respect to C(8X). Also, f< (y) is a TDI space,
and hence C(B8(f“ (y))) is an upper semicontinuous decomposition of
B(f< (y)); collapsing connected components of X\ X whose intersec-
tion with f# (y) is nonempty is equivalent to collapsing connected
components of 4 (y)\f(y) = B(f(y))\f(y). This implies that
if P € C(BX) is contained in intgx f%* (y), P has a base of open sets
of BX saturated with respect to C(3X). Also, the above comments
imply that if T is closed in f< (y) with T Nbdx f< (y) = @, the set

S =U{C € C(BX) : CNclgxT # @} is a closed subset of X saturated
with respect to C(8X). Then SX\S is an open saturated subset of 3X
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with bdx f< (y) CBX\S and TN (6X\S) = &, a fact we shall use later
to show that any = € bdx f* (y) has a base of saturated open sets.

If C is a connected component of 3X\X contained in BX\ fA<[Y],
then f°[C] is a connected subset of the 0-dimensional space FpY\Y,
hence |f°[C]| = 1. It follows that if W is open in FyY, fO<[W] is
saturated with respect to C(8X). Suppose then that C' is a connected
component of X\ X contained in AX\f#<[Y], and that C N T = &,
where T is closed in 8X. If D is the connected component of SY\Y
with fP[C]C D, let T' = T N f#<[D]. Now Y is TDI, so that D, and
thus f#*[D], is compact. Since C is a connected component of f#<[D],
there is a clopen set K of f#<[D] such that CCK and K NT' = .
Choose open sets U; and U; of SX having disjoint closures and
such that K CU; while f#<[D]\K CU,. Without loss of generality,
U;NT = @. Now £V is a closed map, and £ [g[D]] C U;UUs, thus there
is an open set W of FyY with f4<[D] = %< [g[D]] C f° [W] C U1 UUs.
If V= fo[W]NU, then CCV CBX\T. Because the only nontrivial
elements of C(3X) are connected sets, fO[W] is saturated, and since
U, NU,; = @,V is saturated with respect to C(8X).

Finally, suppose that € bdxf* (y) for some y € Y, and that
xz ¢ T, where T is closed in 8X. Once again, let 7 = T Nbdx f* (y);
since bdx f* (y) is 0-dimensional and compact, there are open sets
Uy and U, of X with & € Uy, T CUs, clgxUs NclgxUs = @, and
bdx < (y) CUy U Uz. Without loss of generality, Uy NT = &. Now
bdpx [P (y) = bdgxclpx f(y) = bdx f* (y), so that f7* (y) CUL U
Us Uintgx f<(y). Since fP<(y) = f°(y), there is W open in
FyY with f0<(y) C fo<[W]CU; UUs Uintgx f?<(y). As previously
discussed, it is possible to choose V' saturated and open in X so that
z€Vand VN[ (y)\(UzUUz)] = @. Theset VN fO[W]NU, is
a saturated open neighborhood of x having empty intersection with 7.
O

The result for Y almost rimcompact follows easily.

Corollary 1. Suppose that f : X — Y is rimperfect, and fory € Y,
f< (y) is almost rimcompact with 0-dimensional boundary. If Y is
almost rimcompact, then X is almost rimcompact.
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Proof. According to Theorem 2, X is TDI, so that it suffices to
show that each connected component C' of SX\X has a base in X
of open sets whose boundaries lie in X. Recall that bdgx f°< (y) =
bdx f<(y)CX fory e Y. If CN fP(y) # @ for some y € Y, then C
is a connected component of f#< (y)\f<(y) = B(f~(y))\f (y). The
set < (y) is almost rimcompact, thus C has a base in f#* (y) of open
sets whose boundaries lie in < (y). Since C Cintgx f° (y), C has the
desired base in 8X.

If CCBX\fP[Y], then f°[C], as a single point of FyY'\Y, has a
base in FyY of open sets whose boundaries lie in Y. But if W is
open in F()Y with bdpoy[W] QY, then bdgxfo(—[W] - fOF [bdpoyW]
\U {intﬁxf()(_(y) TS bdpoyw} = U{bdgxfm_(’y) HETIES bdpoyW} =
U{bdﬁXf’&_(y) HETNS bdpoyW} CcX. O

As was mentioned earlier, the perfect monotone preimage of a rim-
compact space need not be rimcompact. Examples 3.1-3.3 of [3] indi-
cate additional limitations in weakening the hypotheses of the above
results.

We cannot show that Theorem 2 holds if ‘rimcompact’ is replaced
everywhere by ‘has a compactification with 0-dimensional remainder,’
even in the case in which f* (y) is 0O-dimensional for y € Y.
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