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FOURTH ORDER DIFFERENCE EQUATIONS:
OSCILLATION AND NONOSCILLATION

W.E. TAYLOR, JR.

1. Introduction. This paper studies various properties of solutions
of the difference equation

(e) AZ(PTLAZUTL) - Qn+1A2Un+1 - Rn+2Un+2 - 07

where P,, Q,, and R,, define real sequences satisfying P, > 0, Q, > 0,
R, > 0 for each n > 1, and A denotes the difference operator of the
finite calculus, AU, = U,4+1 — U,.

By a solution of (e) is meant a sequence U = {U,,} satisfying (e) for
all positive integers n. The graph of a sequence U is the polygonal path
joining the points (n,U,), n > 1. Clearly, the graph of a sequence is
a continuous function defined by U*(t), satisfying U*(¢) = U, for all
positive integers ¢. The zeros of U*(t) are called nodes. A nontrivial
solution U of (e) is oscillatory if it has arbitrarily large nodes; otherwise,
it is nonoscillatory. Solution will mean nontrivial solution. The
variables n,m, N, M, 1, j, k represent positive integers. The variables
n, m, N, M when subscripted represent positive integers. Furthermore,
when referring to intervals such as [a,b] or [a,00), a,b are positive
integers and [a,b] = {a,a+1,...,b} while [a,00) = {a,a+1,a+2,...}.
This is the same notation used by Hartman [3].

Remark. In the literature the second order equation
(1) A(PnAUn) - Rn+1Un+1 == 0
is commonly referred to as a self-adjoint equation. See, for example,
[5,9]. If one actually derives the adjoint of (1), according to Fort’s book

[2], one obtains

2) A(Poi1AV,) = RypaVisr = 0.

Received by the editors on August 9, 1990, and in revised form on March 25,
1991.
1980 AMS Subject Classification. 39A10, 39A12.

Copyright ©1993 Rocky Mountain Mathematics Consortium

781



782 W.E. TAYLOR, JR.

Reducing n, on the coefficients of (2), we find the reduced adjoint
of (1)
A(PnAVn) - Rn+1Vn+1 = 0

Following this same convention, the reduced adjoint of (e) is the
equation

(e*) A2(PnA2Vn - QnVn—i-l) - Rn+2Vn+2 =0.

Thus, (e) is self-adjoint if and only if Q is constant.

Very few studies have appeared in the literature on fourth order
difference equations. The special case of (e) where P, = 1 and
@, = 0 has recently been studied in detail by Smith and Taylor [8],
and by Hooker and Patula [4]. Other works on fourth order difference
equations include those by Cheng [1] and by Smith and Taylor [7].

Following [4], we say that a solution U of (e) has a generalized zero
at m if one of the following holds:

(i) Up=0,m>1;
(i) Up_1Unm <0, m > 1;
(iii) There exists an integer k, 1 < k < m, such that

(=1)*Upy pUp >0 and Uy 1 =Up g=---=Up 41 =0.

A generalized zero of a solution of (e) is of order 0, 1, k > 1 according
to whether (i), (ii) or (iii), respectively, holds. A nontrivial solution U
of (e) satisfying U,, 1 = U,, = 0, or having a generalized zero of order
2 at m, has a double zero at m. Similarly, a solution U satisfying
Upn_2 =Un_1 = Uy, = 0, or having a generalized zero of order 3 at
m, has a triple zero at m. If ¢ and j are such that i + j = 4 and
no solution of (e) has an (i, j)-distribution of generalized zeros, (e) is
(1, j)-disconjugate, meaning no nontrivial solution of (e) has a pair of
generalized zeros of multiplicities ¢ and j, respectively.

2. Disconjugacy properties. In this section we discuss the dis-
conjugacy properties of (e) and examine the distribution of generalized
zeros of various solutions, specifically those having a generalized zero
of order greater than one. The asymptotic behavior of these solutions
is also studied.
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Our first result shows the effect of initial conditions on the asymptotic
behavior of certain solutions of (e).

Theorem 2.1. If U is a nontrivial solution of (e) satisfying
U >0, AU, >0, P,,A%U,, >0, A(P,,A%*U,,) >0,
for some choice of m > 1, then
U, >0, AU, >0, P,A%U, >0, A(P,A%U,) >0,

for each n > m + 3.

Proof. We assume without loss of generality that A(P,,A%U,,) > 0.
Then the following inequalities hold:

Umn+1 = Up + AU, > 0,
AUpy1 = AU, + AU, >0,
P 1A%Up 11 = P (AU, + A3U,,)
= Pp AUy, + A(PrA?Uy,)
> A(P,A%U,,) > 0.

From (e),

A(Ppi1A%Upm 1) = A(PrA%Un) + (Qums 1A%Un 41
+ Rm+2(Um+1 + AUm+1)) > 0.

Similarly,

Um+2 > 0, AUm+2 > 0, Pm+2A2Um+2 > 0,
A(Pry20%Upny2) > 0,
and
Um+3 > 0, AUm+3 > 0, Pm+3A2Um+3 > 0,
A(Ppy 302U 43) > 0.

A simple induction argument completes the proof. O
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Lemma 2.2. If U is a nontrivial solution of (e) satisfying
Un+1 >0, AU, <0, P,,A%U,, >0, A(P,A%U,,) <0
for some choice of m > 1, then
U, >0, AU, <0, P,A%U, >0, A(P,A%U,) <0

foreachn=1,2,... ,m—1.

Proof. From (e), we find

Az(-Pm—1A2[]m—1) = QmA2Um + Rm+1Um+1 > 0.

Thus,

A(P,A%Uy,) — A(Pp 1A%U,, 1) >0,
and hence

A(Py,_1A*U,,_1) < A(P,A%U,,) < 0.
It follows

P,AU,, — P, _1A%U,, 1 <O.

So we see Py_1A?U,,_1 > 0. From this it follows that AU,, —
AU,,—1 > 0in which case AU,,,_1 < 0. Finally, AU,, = Up,+1—U,, <0
implies U, > 0. Repeating this process for each 1 <n < m — 1 proves
the lemma. u]

The previous result allows us to examine solutions with multiple
ZEros.

Theorem 2.3. IfU is a solution of (e) with a triple zero at m + 2,
then none of the terms

Un, AUy, P,AU,, A(P,A%U,),
changes sign on the interval [1,m — 2]. Furthermore,

sgnU,, = sgn P, A’U,, # sgn AU,, = sgn A(P,A*U,)
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for eachn=1,2,... ,m—2 and

sgnU,, = sgn AU,, = sgn P,A?U,, = sgn A(PnAQUn)
for each n > m + 3.

Proof. Without loss of generality, suppose U is a solution of (e)

satisfying

Un—1<0, U, =0, Unt1 =0, Unpt2a >0
for some choice of m > 1. Clearly,

Upn =0, AUy > 0, P 1A%U,,_1 = Pr_1Up_1 < 0.
Moreover,
A(Py, 1A%Uy, 1) = AP 41U 1) = =Py 1Up 1 > 0.

Hence, by Lemma 2.2,

sgn U, = sgn P, A%U,, # sgn AU,, = sgn A(P,A%U,)
for each n =1,2,... ,m — 2. We also note that

Un =0, AU, =0, P AU, = Pp(Ungo—2Um11+Un)
= PoUpiz > 0.

Because of Theorem 2.1, to complete our proof it will be enough to
show A(P,,A%U,,) > 0. However this is clear. From (e), we find

A(PmA2U ) = A(Pr- 1A U 1)+QmA2U + R+1Umt1
A(Py 1A%Up, 1) + QAU + Rypy1 (U + AU,)
A(Py, 1A%U,, 1) + QA%U,,

A( m— lUm 1)+QmA2U

= - m—lUm—l + QmA2Um > 0. ]

Corollary 2.4. FEquation (e) is (1,3)-disconjugate and (3,1)-
disconjugate.
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Theorem 2.1 implies equation (e) always has unbounded nonoscilla-
tory solutions; however, Lemma 2.2 can be used to construct a bounded
nonoscillatory solution for (e).

A proof of the following result may be obtained using standard
iterative techniques. See, for example, [4].

Theorem 2.5. There ezists a solution W of (e) such that
sgn W,, = sgn P, A’W,, # sgn AW,, = sgn A(PnAQWn)
for all n, and
lim AW, = lim P,A’W, = lim A(P,A?W,,) = 0.

n—oo n—o0 n—o0

Whether or not the solution W is essentially unique remains an open
question.

Lemma 2.6. Suppose U is a solution of (e) satisfying

Um Z 07 AUm Z 07
melAQUmfl Z 07 A(13m72A2[]1n72) > 07

for some integer m > 2. Then,

U,>0, AU, >0,
Pn_1A2Un_1 > 0, A(Pn_QAZUn_Q) >0

for each n > m + 2. Furthermore,
lim U, = lim AU, = lim P,A*U, = cc.
n—oo n—oo n—oo
Proof. From (e), we find

PmUm+2 = A(-P71”L—2A2[]7n—2) + Pm—1A2Um—1
+ Qm—lAZUm—l + PmAUm + RmUm + PmUm+1-
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Thus,
PmAUm—i-l = A(-Prn—QAzUvm—2) + Pm—lAzUm—l
+ Qm—lAzUm—l + PmAUm + RmUm
and
PnA*U,, = A(Pp 2A%Uy, 2) + Py 1 AU, 1
+ Qm_1A%Upm_1 + RUnp,.
So we find

A(melA2Um71) = A(P’ITL72A2UTI’L72) + C271L71A2[]1n71 + RnUnp-

Hence,
U, + AU, = m+1 > 0, AUerl >0,
PnA%U,, >0, A(Pp_1A%Up,_q) > 0.
Similarly,
Un+2 >0, AU,42 > 0,
P 1A%Up 41 > 0, A(P,,A%U,,) > 0.
An induction argument will complete the proof. O

Theorem 2.7. If U is a solution of (e) with a double zero at m + 2,
where m > 2, then none of the terms

U,, AU, P,A*U,, A(P,A*U,)
changes sign on the interval [1,m — 1] and
sgn U, = sgn P, A*U, # sgn AU,, = sgn A(P,A%U,),
or none of the terms
Un, AU, P, 1A%*U,_1, A(P,_2A*U,_5)
changes sign on the interval [m + 2, 00) and
sgnU, = sgn AU,, = sgn P, AU, 1 = sgn A(P, AU, »)

for each n > m + 4.
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Proof. Without loss of generality, suppose U is a solution of (e)
satisfying
U,, > 0, Um+1 =0, Um+2 >0,

for some integer m > 2. Clearly, U,,+1 = 0, AU, < 0, P,A%U,, =
Py (Upnio + Uy) > 0. If A(P,,A%U,,) < 0, Lemma 2.2 applies and
the first alternative of the theorem holds. If A(P,,A%U,,) > 0, then
P, 1A%U,, 11 > P,,A%U,, > 0. Moreover, U, 11 + AU,i1 = Uppya >
0 and AUpy2 = AUpy1 + A%Up 41 > 0. By Lemma 2.6, the second
alternative of the theorem holds for each n > m + 4. This completes
the proof of the theorem. u]

Corollary 2.8. Equation (e) is (1,2,1)-disconjugate.
3. Properties of nonoscillatory solutions.

Lemma 3.1. IfU is a nonoscillatory solution of (e), then Uy, AU,,
A2U,, do not change sign for all n sufficiently large.

Proof. Suppose U is a nonoscillatory solution of (e). Under the
transformation T}, = P, A?U,,, equation (e) becomes

(3) A2Tn - QTH-I Tn+1 = Gn7

PnJrl
where G, = Ryu42U,42. Since U is a nonoscillatory solution of (e),
G, is eventually of one sign. By [6], equation (3) is nonoscillatory,
thus T, = P,A%U, is eventually sign definite. This implies AU, is
eventually of one sign, and the product U, AU, A%U,, does not change
sign for all n sufficiently large. ]

The following result specifies all possible behaviors of nonoscillatory
solutions of (e). The proof is straightforward and will be omitted.

Theorem 3.2. If U is a nonoscillatory solution of (e), then one of
the following is true:
(i) sgnU, = sgnAU, = sgnA%U,, = sgn A(P,A%U,) for all n
sufficiently large.



FOURTH ORDER DIFFERENCE EQUATIONS 789

(ii) sgnU, = sgnA2U, # sgnAU, = sgn A(P,A%U,) for each
n>1.

(iii) sgnU, = sgn AU, = sgnA%U,, # sgn A(P,A%U,) for all n
sufficiently large.

(iv) sgnU, = sgn AU, # sgn A2U, for all n sufficiently large.

Remark. An eventually positive solution of (e) satisfying the relations
(i) of Theorem 2.3 we call strongly increasing. An eventually positive
solution of (e) satisfying the relations (ii) of Theorem 2.3 is termed
strongly decreasing. Note that in (iv) of Theorem 3.2 no information is
known about the behavior of A(P,,A2U,,) since A%(P,A%U,) may not
be of one sign.

In the next result, W represents the solution of (e) whose existence
is assured by Theorem 2.5.

Theorem 3.3. Suppose U is an oscillatory solution of (e) such that
U, # 0 for some positive integer m. Let t be a real number such that
Wy — tUy,, = 0. Then X,, = W,, — tU,, defines an oscillatory solution
of (e) and X, =0.

Proof. Suppose not, then X, satisfies one of the conditions of
Theorem 3.2. Clearly, X,, is not strongly decreasing, since it has a
zero. From the remaining possibilities, X,, must be increasing. But,
examining X,, along the nodes of U, we see that X, is decreasing. This
contradiction completes the proof of the theorem. ]

Theorem 3.4. If (e) has an oscillatory solution and U is a nonoscil-
latory solution of (e) which has a generalized zero of order zero in com-
mon with some oscillatory solution of (e), then there exists an integer

N such that
sgn U,, = sgn AU, = sgn A’U,, = sgn A(P,A*U,,)

for alln > N.

Proof. Let Z be an oscillatory solution of (e) and suppose that
Unm, = Z,, =0, where U is a nonoscillatory solution of (e). Since U is
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a nonoscillatory solution of (e), there exists an integer My > m such
that U, AU, A%U,, A(P,A2U,) are sign definite for each n > M.
Let

Xn=UnZp 1 — ZnUnfla

and suppose n; < ng are consecutive generalized zeros of Z which
are greater than M. Without loss of generality, suppose Z,,_1 > 0,
Zn, <0, then

Xny =UnyZny 1 — ZnyUpy 1 >0

and
an = UnZan—l - anUnz—l <0.

Define Y,, = U Z,, — ZsU,,, where s is the first integer between n; and
ng — 1 such that X, > 0 and X,4; < 0. Note that Y, ; = X, > 0,
Y, =0, Ysp1 = —Xs41 > 0. Clearly,

Y;=0, AY,>0, A%, ;>0.

Moreover, A(P,_2A%Y,_5) > 0, for if A(P,_2A%Y,_5) < 0 we would
have the following lineup

Y, 1>0, AY, 5<0, A%, >0,  A(P, 2A%, ) <0.

By Lemma 2.2, Y would be of constant sign for all n such that
1 < n < s — 3, contradicting the fact that Y,, = 0. From Lemma
2.6, Y, AY, P,A?Y, all tend to co as n tends to oco. To complete
the proof, it is enough to show sgn P,A%U,, = sgn A(P,A%U,,) for all
n > My. However, this is clear, for sgn P, A%U, # sgn A(P,A%U,)
implies P,A%U,, is bounded for all n sufficiently large. This is seen
to be impossible by examining the graph of P,A?Y,, along an infinite
sequence of nodes of P,A2Z,. a

Corollary 3.5. If (e) is oscillatory, a nonoscillatory solution of (e)
satisfies either (i), (ii), or (iil) of Theorem 3.2.

In the following result, W represents the solution of (e) whose
existence is guaranteed by Theorem 2.5.

Theorem 3.6. The following two statements are equivalent.
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(a) Equation (e) has an oscillatory solution.

(b) IfY, is a nonoscillatory solution of (e), then Y, satisfies either
(i) or (ii) of Theorem 3.2.

Proof. Assume (a) holds, and let U be a nonoscillatory solution of (e).
Then there exists a number Mj such that U,,, AU,,, AU, A(P,A%U,,)
are of constant sign for all n > Mj.

Note. If sgnU, = sgnA%U,, # sgnAU, = sgnA(P,A%U,) for all
n > My, then sgnU, = sgnA2U, # sgnAU, = sgn A(P,A%U,) for
each n > 1. Let Z be an oscillatory solution of (e) and m > M; such
that Z,, = 0. Let K; be a constant with

Un + KiW,, = 0.

Let Y,, = U, + K1 W,, and, without loss of generality, suppose U,, > 0,
for each n > My. If U,, does not satisfy condition (b), then either (iii)
or (iv) of Theorem 3.2 is satisfied and in either case Y is nonoscillatory.
Since Y,,, = Z,, = 0, by Theorem 3.4, there exists an integer M; such
that sgnY, = sgnAY, = sgn A%Y,, = sgn A(P,A%Y,), on [M;, o).
Indeed, it follows that lim,, ., |P,A?Y,| = co since sgn A(P,A?Y,,) =
sgn A?(P,A%Y,,) for n > M;. But this is a contradiction since both
P,A%U, and P,A%W,, are bounded for n > M,. This completes the
first part of the theorem.

Suppose now condition (b) holds. Let {Z%},{Z1},{Z2},{Z3} denote
solutions of (e) defined by

AN ZE =65, A(PyAZ)) = 63
fori=0,1,2,3, j = 0,1, 2, where §;; is the Kronecker delta. For each
natural number m, let by, b3m, Com, and cs,, be numbers satisfying
(bOm)2 + (bSm)2 = (CZm)2 + (CSm)2 = ]-7

bOmZ?n + b3mZ13n =0,

CQmZTZn + Cng‘;)’n = 0.
Define U, and V,]* by

U = bomZy + bsm Z5,
V™ = comZ2 + cam Z2.

n



792 W.E. TAYLOR, JR.

By the compactness of the unit ball in R?, there exists a sequence
{my} of natural numbers, and numbers by, b3, c2,c3, such that the

sequences {bom,, }5 {b3my, }» {C2m, }, and {csm, } converge to by, bz, c2, c3,
respectively, where

(bo)? + (b3)* = (c2)” + (c3)* = 1.
Let S,, and T;, be solutions of (e) given by

Sp =0y Z° + 373,
Tp = coZ2 4 c3Z3.

We wish to show that S, and T, are oscillatory. Suppose S,, is not
oscillatory, and assume without loss of generality that S,, > 0 for all
n > N, for some N. Then S, satisfies either (i) or (ii) of Theorem
3.2. But, AS; = 0; therefore, S,, does not satisfy (ii) of Theorem
3.2. Thus, there exists Ny such that S, > 0, AS, > 0, A2S,, > 0,
A(P,A%S,) > 0, for all n > Np. Suppose M > Ny, where M is
an integer. Since {Uy*}, {AUY*}, {A2U*} and {A(P*A%UL )}
converge to Sar, ASy, A%Sys, and A(PyA2Syy), respectively, there
exists a natural number N; such that Uy, > 0, AU > 0, A2Uy* >
0, A(Py*A%Uy*) > 0, for all my > N;. Hence, by Theorem 2.1,
Ume >0, AUT > 0, A2U™ > 0, A(P™ A2UT) > 0, for all n > M,
my > Ni. But this is a contradiction since Up* = 0, for all my.
Therefore, S,, is oscillatory. Similarly, T, is oscillatory. This completes
the proof of the theorem. ]

4. Oscillation criteria. In addition to the standing conditions
on P,, Q, and R,, we assume for the remainder of this paper that

S>*1/P, = oo.

Theorem 4.1. If Q, is bounded and >.° R, = oo, then (e) is
oscillatory.

Proof. Tt is sufficient to establish that a nonoscillatory solution of (e)
satisfies either (i) or (ii) of Theorem 3.2. Let Y;, be a nonoscillatory
solution of (e) and assume Y, > 0 for all n sufficiently large. Let ng
be such that Y,,AY,,A%Y,, has no nodes on [ng,c0). We show first that
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A%Y,, > 0 on [ng,c0). Suppose it could happen that A?Y,, < 0 on
[no,00). Then we would have AY;, > 0 on [n2,00). Let o be an upper
bound of @Q),,. Then summing from ny to n, we obtain

Z Qm+1A2Ym+1 > Z A2Y;nqu = a[AYn+2 - AYng]-

no no

Since lim,, o, AY,, exists, we conclude that Y™ Q,,11A%Y,, is finite.
Summing (e) from ny to n and using the fact that Y, is increasing on
[ng, 00), we have

A(Pi1A%Y 1) — A(Ppy A%Yy,)

—

P,

0

Qm+1A2Ym+1 + Z Rm+2Ym+2

no m=ng

I
NE

3
Il

QerlAzYerl +Yno+2 Z Rm+2-

no m=no

NE

>

m

Since Y% Rpm42 = oo, it follows that A(P,A?Y,) — oo as n — oo.
But this implies P,A%Y,, — oo, contradicting our assumption that
A?Y,, < 0. Thus, A%Y,, > 0 on [ng,c0). Since Y,, > 0 and A%Y,, > 0, it
follows from (e) that A%(P,A%Y,,) > 0. Thus, A(P,A?Y,,) is eventually
of one sign. If A(P,A%Y,,) > 0on [n1,00), n1 > ng, then P,,A%Y,, — oo
as n — oo and, in particular, P,A%Y,, > 1 on [n2,00), ny > nj.
Therefore,

AY, 1 — AY, = i A?Y,, > i 1/P,,.

m=nz m=nsz

Letting n tend to co we conclude lim,_, ., AY,, = lim, ,, Y, = oo,
implying that Y;, is strongly increasing. If A(P,A%Y,,) < 0 on [ng, 00),
ny > ng, then we claim that AY,, < 0 on [ng,00). For if AY,, > 0 on
[ng,00), then Y is increasing on [ng, c0) and from (e)

A? (PnAQYn) = Qn+1A2Yn+1 + Rn+2Yn+2 > Yn0+2Rn+2-

Summing this inequality, we obtain

n—1
A(PoA’Y,) = A(PyyAY,) > Yoz > Rinsa,

m=ng
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so that A(P,A?Y,) — oo as n — oo, which contradicts A(P,A?Y,) <
0 on [ny,00). Thus, A(P,A?Y,) < 0 on [n;,00) implies that the
inequalities Y,, > 0, AY,, < 0, P,A%Y, > 0, A(P,A?Y,) < 0 hold
on [ny,00). From Lemma 2.2, these same inequalities hold on [0,7n1)
and (ii) of Theorem 3.2 holds.

Theorem 4.2. If R, 12 — 2Q,+1 > 0 and either
liminf Q,, > 0
n—oo

or

lim inf(Rn+2 — 2Qn+1) >0,

n—oo

then (e) is oscillatory.

Proof. Let Y be a nonoscillatory solution of (e) and assume Y, > 0
for all n sufficiently large. Note that (e) can be written as

Az (PnAZYn) - Qn+1Yn+3 + (Rn+2 - 2Qn+1)Yn+2 + Qn+1Yn+1-

Clearly, from our hypothesis, it follows for sufficiently large n, the
product Y, AY, A?Y,, A(P,A%Y,) has no nodes. Since A?(P,A?Y,,) >
0, it is clear that A(P,A?Y,,) is increasing and is eventually of one sign.
Suppose A(P,A%Y,,) < 0 for large n, then P, A%Y,, > 0 for large n, for
otherwise we arrive at a contradiction. Similarly, AY,, < 0 for large n
and therefore Y,, is strongly decreasing. If A(P,A2%Y,,) > 0 for large n,
then it follows easily that Y, is strongly increasing using the methods
of the previous theorem. a

In conclusion, we present some examples.

Example 1. The equation
A*Y,, — (n+ 1)A%Y, 11 — (20 + 4n)Y,, 10 = 0
satisfies the conditions of Theorem 4.2 where P, = 1, Q, = n and

R, = 12 + 4n. In fact, ¥, = (—1)" defines an oscillatory solution of
this equation.
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Example 2. The general solution of the equation
AYY, — (1/4)A%, 1 — (1/8)Yyi2 =0
is defined by
Y, = C12" + C3(1/2)" + Cy sinnfb + Cy cosnb

where tanf = (15)/2/7. Clearly, Y;, = 2" and Y,, = (1/2)" define
strongly increasing and strongly decreasing solutions, respectively, of
this difference equation. Note that the conditions of Theorem 4.2 are
not satisfied; however, the conditions of Theorem 4.1 are satisfied.
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