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EXTENSIONS AND INTERNAL STRUCTURE
ELLEN E. REED

ABSTRACT. This paper introduces a kind of grid which
helps to organize the information about Tp-extensions of topo-
logical spaces. The kinds of extensions a space can support
are closely controlled by its internal structure. For example,
a Th-space cannot have a compact T-extension unless it is
also completely regular. But every extension induces a trace
system of filters on the original space; moreover, these filter
systems can be arranged into proximity classes. Thus, the
proximities form a kind of z-axis, and each proximity class is
a kind of y-axis.

Using this grid, we can “plot” the Stone-Cech, the Wallman,
and the one-point compactification. They all turn out to have
the same “height.” In addition, we can identify new classes
of compactifications. For example, each proximity class has
a largest filter system, which consists of all the open filters
which are in some sense compatible with the proximity. By
taking only the filters which are minimal in some sense related
to the proximity, we obtain a compactification which is highly
separated. If the proximity is dense and separated, then this
compactification is the unique T»-compactification induced by
the proximity. Of course, in such a case the original space
must be T and completely regular. This is just a sample of
the kinds of results obtained. It is hoped that this idea of a
grid will continue to shed light on the ways a space can be
extended.

1. Filter systems and extensions. Let X be a Ty-space. An
extension (e,Y’) induces a system of open filters on X via the pullbacks
of the neighborhood filters under e. This system is known as the trace
system of (e,Y). It turns out that each system of open filters on X
which includes all the neighborhood filters is the trace system for some
Th-extension. This leads to the following.

Definition 1.1. A filter system on a Ty-topological space X is a
family of open filters which includes all the neighborhood filters.
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Remark 1.2. Filter systems are closely related to the nearness
structures of Herrlich [6] and to the merotopic structures of Katétov
[8]. In fact, a filter system can be thought of as the dual of a nearness
structure on X. The open hulls of filters with duals in a given nearness
constitute a filter system; conversely, the duals of the filters of a given
filter system generate a nearness. (For a detailed discussion of the
duality between grills and filters, see Thron [13].) This correspondence
between filter systems and nearnesses is not in general 1 — 1, since more
than one filter system can generate the same nearness.

Similarly, there is a correspondence between filter systems and mero-
topic structures. Given a filter system ©, we can obtain a merotopic
structure by taking all collections A for which [A] contains some filter
in ©. By [A] is meant the set of all supersets of members of A. Con-
versely, a merotopic structure I' on X gives rise to a filter system if we
take the open hulls of the filters in I'.

Finally, every filter system is the trace system of an extension of X.
The construction of one such extension follows.

Construction 1.3. Let © be a filter system on a Ty-space X. Let
Y denote the set of filters in ©. The map e : X — Y s defined by

e(z) = Ny, the neighborhood filter at x.

For A C X, we define A={F e ©:Ae F}. T" is generated by {G:
G is an open subset of X}. Finally, ke = (e, (Y, T")).

This construction yields a Tj-extension kg with trace system ©.
Moreover, 7 is the smallest topology on © with this property. In
Banaschewski and Maranda [2] and again in Banaschewski [1] there
is a concise but thorough development of the properties of kg, called
by them the strict extension with trace system ©. Basing his work on
that of Kowalsky [9], Thron gives a clear and detailed account in [12,
Chapter 17]. Thron refers to this extension as the principal extension
belonging to ©. Bowing to long-established usage, we will refer to this
extension as the strict extension determined by ©.

Theorem 1.4. If © is a filter system on a Ty-space X, then ko is a
Ty-extension of X with trace system ©.
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Proof. See Thron [12, Theorem 17.4 and Remark 17.4]. O

This indicates that Tp-extensions of X can be studied using the
internal structure of X; namely, its filter systems. We will now
consider some properties of the filter system which guarantee desirable
properties of the corresponding extension.

Theorem 1.5. Let © be a filter system on a Ty-space X .
(1) ke is T1 if and only if each filter in © is minimal in ©.

(2) ke is Ty if and only if distinct members of © are disjoint; i.e.,
they have no proper upper bound.

Proof. For any filter F in O, let Nz denote the set of 7"-
neighborhoods of F. Note that for 7 and G in ©® we have that 7 X G
if and only if N < Ng.

To establish (2), note that if F € © and U is an ultrafilter, then
F < U if and only if e(if) — F. Recall that a space is T3 if and only if
each ultrafilter has a unique limit. Thus kg is T3 if and only if filters
in O are disjoint. a

Since we intend to treat compactifications in this paper, we would
like to obtain a condition on © which guarantees that kg is compact.
Intuitively, a filter system determines a compact extension if it is closed
in some sense; that is, if it “includes” all “nearby” filters.

Definition 1.6. A filter F is close to a filter system O if and only
if every finite family of open subsets of x which meets every filter in
© also meets F. Let [O] denote the set of all filters which contain a
member of ©. We say that © is contigual if and only if [©] includes
every filter which is close to ©.

This definition of contigual was designed to be the dual of the
corresponding term in the context of nearness spaces. (See Remark
1.2.) And, in fact, it is easy to check that a filter system is contigual if
and only if its dual nearness is contigual.
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The definition of close given here has an interesting relationship to the
definition of a micromeric filter given in Bentley and Herrlich [3, page
145]. To see the relationship, we need the concept of the contigual hull
of a nearness, developed in Reed [10, Proposition 1.22]. Every nearness
has a kind of contigual closure, which is the smallest contigual nearness
which contains the given one. It turns out that a filter which is close to
a filter system © has its dual in the contigual hull of the dual nearness,
whereas a micromeric filter has its dual in the dual nearness itself. If
the filter system © is contigual, then a filter is close to O if and only if
it is micromeric with respect to ©.

Theorem 1.7 Let © be a filter system on X. Then © is contigual if
and only if ke is compact.

Proof. (=). Suppose © is contigual. Let I be an ultrafilter on Yg.
We wish to show that U converges. Set

F={A:Acuj.
It is straightforward to check that F is a filter on X. Notice that the
operation A — A is preserved under intersections and containment.

(1) The filter F is close to ©. Let A be a finite family of open subsets
of X. Suppose ANF = &. We wish to find a filter G in © such that
ANg=2.

For A € A, we have A ¢ F and so A ¢ U. Since U is an ultrafilter,
Y\A € U. But A is finite, so "{Y\A : A € A} # @. Let G be a
member. Then ANG = &.

(2) Since © is contigual, we may choose F* in © such that F > F*.
We claim that 4 — F*. Clearly, if G is an open set in F*, then G € F
and so, by definition of F, we have that Gel. Clearly then U — F*
as desired.

(«<). Now suppose that ke is compact. Let F be a filter close to ©.
We need to show that F contains a filter in ©. Let

S ={Y\G:Gisopenand G ¢ F}.

(1) The family S has the finite intersection property. Let A be a
finite family of open sets with AN F = @. Since F is close to O, there



EXTENSIONS AND INTERNAL STRUCTURE 757

must be some G in © suc}} that ANG = &. Clearly, tpen for G € A we
have G ¢ G, and so G ¢ G. Thus we have G e N{Y\G : G € A}.

(2) Since ke is compact, we may conclude that NS is nonempty. Let
F* be a member. We claim that F > F*. Let G be open and suppose
that G ¢ F. Then Y\G € S, and so F* € Y\G. Thus G ¢ F*. This
establishes that F > F*. O

2. Proximity classes of filter systems. We have just seen that
Th-extensions of X can be analyzed by using filter systems on X. Each
filter system induces a kind of proximity on the subsets of X. Using
this proximity relation, we can group the filter systems into proximity
classes, and thus obtain a grid for the filter systems. The x-axis of
the grid consists of the proximity relations, and each proximity class of
filter systems is a kind of y-axis.

Each proximity class has a largest filter system ©p,, which is trivially
contigual. A more separated system, ©¢, can be obtained by using
only filters which are minimal in some sense related to the proximity
class. In case the proximity is an EF-proximity, ©g turns out to
be the trace system for the Th-compactification associated with the
proximity. Finally, a system Oy can be obtained by using members of
O¢ which are contained in ultra closed filters. This system gives the
y-coordinate for the Wallman, the Stone-Cech, and the Alexandroff
compactifications. In what follows, let © be a filter system on a Tp-
space X.

Definition 2.1. Let ® denote the family of filters F on X such that
F — z whenever F < &, the ultrafilter generated by {z}. Recall that
the dual of a filter consists of all the sets whose complements are not
in the filter. For A and B subsets of X, we define

AmgB ifandonly if ANclB# @, or
there existsan F € ON® with A,B e dF.

The relation mg is not quite a proximity, since it may not be symmetric.
It satisfies a weakened Lodato condition, which will be stated below.

Proposition 2.2. Let A, B, and C be subsets of X, and let x € X.
Let  denote mg. Then the following conditions hold.
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(Pl) o #A #@.

(P2) ArBCC= AnC.

(P3) COBrA=CrA.

(P4) An(BUC)= AnBor AnC.
(P5) (BuC)mA=BmAorCrA.
(P6) ANB#@= ArnB.

(P7) AnclB= ArB.

(P8) z € clAif and only if {x}r A.

Proof. The first five properties follow easily from the properties of
ultra filters and grills. Recall that the dual of a filter is a grill, and that
a grill is a union of ultra filters. Note also that if ¢/ is an ultrafilter
with AU B € U, then either A€ U or B € U.

Clearly, from the definition of 7 we have that if ANclB # @ then
A B. This establishes (P6) and parts of (P7) and (P8). Now suppose
that AmclB and ANclB = @. Let F be a filter in ® N O such that A
and cl B are in dF. Since F is open, B is also in dF, and so A7 B.

Finally, suppose {z}mA. We wish to show that € clA. Suppose
that F € N O and {z}, A € dF. Since {z} € dF we have F < z. But
F € ® and so F — z. But then since A € dF, we have X\A ¢ N.
From this it follows that « € cl A. mi

Definition 2.3. A relation 7 on the subsets of a Ty-space X will
be called a quasi-Lodato prozimity on X if and only if it satisfies the
conditions of Proposition 2.2.

Example 2.4. Not every quasi-Lodato proximity on X supports a
filter system. For example, let X be the reals with the usual topology.
Define A7 B if and only if ANclB # @. It is easy to check that 7 is
a quasi-Lodato proximity on X. We claim that 7 is not obtained from
any filter system. Let © be a filter system on X. Choose A and B so
that ANclB = @ and clANclB # @. Note that A #B. We claim
that Awg B. Choose x € clANclB. Then A and B are in the dual of
N,. Note that since X is a T;-space, we have N, € ®. Thus Ang B.
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Definition 2.5. Let m be a quasi-Lodato proximity on X. We
say 7 is admissible if and only if there is a filter system © such that
m = mg. The proximity class of m consists of all filter systems © such
that 7 = mg. In case X is T3, then every neighborhood filter is in
O N ®. This forces T to be symmetric. Thus an admissible proximity
on a Tj-space is a generalized proximity in the sense of Bentley and
Herrlich [3].

Next we will construct several filter systems which are good candi-
dates for a given proximity class. Under the proper conditions, all these
systems will in fact turn out to be members of the class.

Definition 2.6. A filter F is a w-filter if and only if for A and B
in dF we have Am B. We remark that a w-filter is simply the dual
of a m-clan in the sense of Gagrat and Thron [5]. Moreover, minimal
m-filters are the duals of maximal 7-clans.

Construction 2.7. Let m be a quasi-Lodato proximity on X. Let N
denote the set of all neighborhood filters. We define

OL(m) = {F : F is open and
F is a w-filter or there exists an x with F < N, }.

O¢(m) = {F : F is a minimal open w-filter} U N.
Ow (m) ={F : F € Og(r) and U ultraclosed with F XU} UN.

Os(m){U' NV : U and V are ultrafilters and
U NV is a n-filter} UN.

Let mp,mg, mw, and mg denote the respective proximities. We note
that minimal open w-filters are the same as minimal 7w-filters. This
follows essentially from (P7) and (P8). Moreover, the dual of ©¢ is the
nearness vg generated by all the 7-clans. It is the trace nearness of the
extension of Gagrat and Naimpally [4, Theorem 4.4].

Lemma 2.8. Let m be a quasi-Lodato proximity on X, and let © be
any filter system on X.
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Every neighborhood filter which is a w-filter is a minimal 7-filter.

~ Y~~~
w N
o — Y ~—

Every open w-filter is in ®.
If m¢ C m, then every filter in © N ® is a w-filter.
If m is admissible and N, € ®, then N, is a w-filter.

Every open w-filter contains a minimal open -filter.

Proof. (1) Suppose N, is a 7-filter, and there is a m-filter F such that
F < N,. We will show that F — x, so that in fact F = N,. Let G be
an open set with € G. Then {z} #(X\G). Now, X\{z} ¢ F, since
F = N,. Hence {z} € dF. Since F is a w-filter, X\G ¢ dF, and so
G € F. Thus we have F — z as desired.

(2) Now let G be any open 7-filter. We wish to show that G € ®.
Suppose G =X & for some z. Then since G is open, we have G < N,.
Thus, N, contains a w-filter, and so it must already itself be a w-filter.

But we have just seen that every neighborhood n-filter is a minimal
w-filter. Thus, G = N,. This establishes that G € ®, as desired.

(3) Now suppose that mg C , and let F be any filter in © N ®.
Clearly then F is a me-filter, and hence a w-filter.

(4) If 7 is admissible and N, € ®, then we can apply the preceding
result to conclude that N, is a w-filter. Note that N, is in every filter
system in the proximity class of .

(5) Let G be an open 7-filter. Set
A= {H :H is an open n-filter and H =< G}.

Observe that the intersection of any chain of open n-filters is itself an
open w-filter. Thus by Zorn’s lemma we may conclude that A has a
minimal element M. It is easy to see that M must be a minimal open
m-filter. O

Theorem 2.9. Let m be an admissible proximity on X. Then
Og,0¢, and O, are in the proximity class of w. Moreover, Ty C 7.

Proof. (1) Let ©, € {Or,0¢5,0w,0s}, and let m; be the proximity
class of ©;. We claim that m; C 7. Suppose Am B. If ANclB # @,
then since 7 is a quasi-Lodato proximity we have A 7w B. Now suppose
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that there exists an F € ©; N ® with A, B € dF. We claim that F
is a m-filter, so that A7 B. The only difficulty occurs when F € N.
Suppose that F < N, for some z. Since F € ® we have F = N,.
But since 7 is admissible we can apply the fourth part of Lemma 2.8
to conclude that N, is a m-filter, and hence A 7 B.

(2) We will show that # C mg Nmg. Let Am B. Let © be any filter
system in the proximity class of 7. Then Ang B. If ANclB # @, then
clearly Ang B, and Ang B.

Suppose now that A and B are in dF for some F € © N ®. Then,
by the third part of Lemma 2.8, we have that F is a w-filter. Again by
Lemma 2.8, F must contain a minimal open m-filter G. Then A and B
are in dG and G € ©g. By Lemma 2.8, G is also in ®, since G is an
open 7-filter. Hence A wg B.

To see that Awg B, note that there exist ultra filters &/ and V such
that Ae U, B €V, and F <U NY. This follows from the fact that A
and B are in dF. Let G = U* N V*. Note that F < G, so that G is a
m-filter. By Lemma 2.8, G € ®. Note also that A and B are in dG by
its construction. Since G € ©g N @, then we have Awg B.

(3) We claim now that 7¢ = n¢ = 7, = 7. From (1) and (2) we
have that m¢ = mg = 7. Note that 7g C 7, C w, and so 7, = 7 as
well. O

The system Oy (7) is trivially contigual, since {X} is a member.
In the corresponding extension, all filters converge to the same point;
namely, {X}. They may have other points of convergence as well. In
order to reduce the number of duplicates and obtain as much separation
of points as possible in the extension, we will restrict the size of ©.

Definition 2.10. A filter system © on X is pruned if and only if
the only filters in © which are not in & are the neighborhood filters.
A quasi-proximity 7 on X is contigual if and only if it has a pruned
contigual filter system in its proximity class.

Example 2.11. Not every admissible proximity is contigual. Let Z
be the integers, with the right-hand ray topology. Set

Gm={n€eZ:n>m}
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The open sets of Z consist of the G,,’s, together with Z and &. Let
7 be the proximity defined by An B if and only if ANclB # @. It is
easy to check that 7 is a quasi-Lodato proximity on Z. We maintain
that every filter system is in the proximity class of .

Notice that for x > y we have N, < &. Hence no neighborhood filter
can be in ®. Notice that each set in an open filter 7 must contain
a set of the form G,,, for some m. From this it follows easily that if
A, B € dF then ANclB # @. Hence for any filter system © we have
me = w. Thus 7 is admissible. We claim that 7 is not contigual.

We will show that the filter {Z} is close to N, and hence close to any
filter system on Z. Suppose that A is a finite family of open sets and
AN{Z} = @. Then each nonempty set in .A must be of the form G,,,
for some m. Since A is finite there is an integer b such that b < m for
G, in A. Clearly N N A is empty.

Now {Z} cannot contain any member of any pruned filter system on
Z. For clearly {Z} ¢ ®, and {Z} does not converge. From this it
follows that there are no pruned contigual filter systems at all on Z,
and so 7 cannot be contigual.

Theorem 2.12. Let m be an admissible proximity on X. Then m is
contigual if and only if ©g(m) is contigual.

Proof. Let O¢g denote O¢ ().

(«<). Suppose O is contigual. Using Theorem 2.9, we see that ©¢
is a contigual filter system in the proximity class of w. To see that ©g
is pruned, let F be in ©¢ and suppose that F ¢ N. Then clearly F is
an open m-filter. By Lemma 2.8 then F € ®.

(=). Suppose 7 is contigual. Let © be a pruned contigual filter
system such that mg = m. We need to show that O¢g is contigual.
Suppose F is close to ©g and F does not converge. We wish to show
that F* is a w-filter. Then, using Lemma 2.8, we may conclude that F
contains a member of Og.

Let A and B be members of dF*. We need to show that A7 B. Note
that cl A and ¢l B are both in dF. Now set

C={G:Gisopenand G ¢ F}.
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Since F does not converge, C is an open cover of X. Let C° denote
the set of complements of the sets in C.

Case 1. Suppose that C¢ U {cl A, cl B} does not have the finite inter-
section property. Then there is a finite subset D of C such that D covers
clANclB. Set

A=DU{X\clA4, X\clB}.

Then ANJF = @. Since F is close to Og we may choose H € ©g such
that ANH = @. We claim that H is a m-filter, for which A, B € dH.

First, we will establish that # ¢ N. Choose z € X. Clearly if
z ¢ clANclB, then X\clA or X\clB is a neighborhood of x which
is not in #. And if z € clANclB, then z is in some member U of
D. Then U is a neighborhood of z not in #. Thus, H ¢ N, and so
H must be a 7-filter. Since H is open, with cl A, c1 B in dH, we have
A, B € dH, and so A7 B, as desired.

Case II. Suppose that C° U {clA,cl B} has the finite intersection
property. Let U be an ultrafilter containing this family of sets. We
claim that U/ is close to N.

Suppose A is a finite family of open sets, and ANU = @. Then since
U is an ultrafilter, A¢ C U, and so NA° # &. Let  be a member. Then
N, is a neighborhood filter which misses A. This establishes that
is close to N. Clearly then U is close to O, since N C ©. But O is
contigual, so U must contain a filter # in ©. We claim that H is a
m-filter and A and B are in dH.

Note first that & is nonconvergent, since F does not converge. Thus
H is also nonconvergent. Now recall that H is a member of a pruned
filter system. Thus, # must be a member of ®. Then H € ©® N ® and
so by Lemma 2.8, H is a w-filter.

Finally, recall that cl A and cl B are in Y. Thus cl A and cl B are in
dH. Since H is open, we have A, B € dH. Thus again Aw B. This
establishes F' as a 7-filter and completes the proof that O is contigual.
]

Now let us consider the Wallman systems Oy (7). These turn out to
be the trace systems for some very familiar compactifications. However,
to guarantee that Oy is in the proximity class of 7 we need a restriction
on .
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Definition 2.13. A Wallman filter is a filter which is contained
in some ultraclosed filter. The Wallman system of m is defined to be
Ow (7). Note that the Wallman system of = consists of the minimal
Wallman n-filters along with the neighborhood filters. A proximity = is
covered if and only if whenever Aw B and ANclB = & then A and B
are in the dual of some open 7-filter F such that F is either a Wallman
or a neighborhood filter.

Theorem 2.14. An admissible prozimity 7 includes its Wallman
system if and only if © is covered.

Proof. Let Oy denote Oy ().

(«<). Suppose 7 is covered. Recall that, by Theorem 2.9, we have
mw C m. Now suppose that A7 B. We need to show that Amy B.
If we have ANclB # @, then clearly Amy B. Now suppose that
ANclB = @. Then since 7 is covered, there is an open w-filter F such
that A, B € dF, and F is either a Wallman or a neighborhood filter.
By Lemma 2.8, we have that F € ®. If F is a neighborhood filter, then
clearly F € Oy N ® and so Amy B. If F is a Wallman w-filter, then,
by Lemma 2.8, F must contain a minimal 7-filter G which is open.
Clearly, then, G is in Oy . Since G is an open w-filter, we have G € @,
by Lemma 2.8. Thus G € Oy N ®. Clearly, then, G is a my -filter, and
hence A my B.

(=). Conversely, suppose my = m. Let A7 B, and suppose that
ANclB = @. Since Ay B there is a filter F in Oy N ® such that A
and B are in dF. Clearly, then, by Lemma 2.8, F is an open w-filter.
But by the definition of Oy, F is either a Wallman or a neighborhood
filter. Hence 7 is covered. ]

In the last part of this section we will show that the Wallman,
the Stone-Cech and the Alexandroff compactifications all have trace
systems of the form Oy (7) for a suitably chosen Lodato proximity .
From now on, we will assume that X is a Tj-space. This last part relies
heavily on the notation and results of Reed [10] and [11].

Theorem 2.15. Let dO denote the set of duals of filters in a Ty -filter
system © on X. Then
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(1) dO generates a nearness v on X.
(2) The clusters of v are the members of dO.

(3) K, is equivalent to ko.

Proof. Note that for x € X we have £ < dN,. From this it is
easy to check that dO generates a nearness which is compatible with
the topology on X. Since © is T3, it follows easily from Theorem 1.5
that every member of dO is a cluster of v. Conversely, since v is grill-
generated, then every cluster must be in dO©. It is straightforward to
check that the map F — dF defines an equivalence between the two
extensions. u]

Notation 2.16. Let my denote the “Wallman” proximity on X:
Amw B if and only if clANclB # @.
Let m4 denote the “Alexandroff” proximity:

A7 B if and only if clANclB # @ or cl A and cl B are noncompact.

Theorem 2.17. Let w be a Lodato prorimity on X.

(1) If 7 = 7w, then Ow () is the trace system for the Wallman
compactification of X.

(2) If m = wa, then Ow(rw) is the trace system of the Alexandroff
compactification of X.

(3) If w is an Efremovich proximity, then Oy () is the trace system
for the Ty-compactification associated with .

Proof. In Reed [11] the concept of a Wallman nearness was intro-
duced. Given a Lodato proximity, m, the nearness vy (7) is defined
to be the nearness generated by all the Wallman =w-clans; i.e., those
m-clans which contain ultraclosed filters. It is easy to check that the
clusters of vy () are simply the duals of the filters in Oy (7). Thus
the corresponding extensions are equivalent, by the preceding theorem.

In Reed [11, Theorem 2.18] it was shown that the extension obtained
from vy (mw ) is the usual Wallman compactification of X; hence, its
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trace system must be Oy (my). Similarly, in the same theorem it was
shown that the extension obtained from vy (m4) is the Alexandroff
compactification of X; its trace system is therefore @y (m4). Finally,
if 7 is an EF-proximity, then the extension obtained from vy () is a
T»-compactification; its trace system is Oy (7). O

This theorem locates the Wallman, the Alexandroff, and the T5-
compactifications at the same “height” in the proximity class. We
have now seen that if the proximity class is sufficiently nice it contains
a largest member O, a “highly separated” member O¢g, a “Wallman”
member Oy, and a very small member Og. Hopefully, this provides a
useful way to organize information about extensions.
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