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REDUCIBLE EPIDEMICS: CHOOSING YOUR SADDLE
J. RADCLIFFE AND L. RASS

1. Introduction. The propagation of infection in spatial models
for a deterministic n-type S — I — R epidemic with a nonreducible
infection matrix is now fairly well understood. Under certain conditions
the equations admit wave solutions travelling with each speed c greater
than or equal to a minimum speed cy. The conditions are that the
Perron-Frobenius root of the infection matrix is greater than one,
and that the contact distributions are exponentially dominated in the
forward tail. The solution at each speed ¢ > ¢y has been proved to
be unique modulo translation. For the critical case ¢ = ¢y, when ¢q is
positive, the wave solution has been proved, except in an exceptional
case, to be unique modulo translation.

A saddle-point approximation can be used to give an indication of the
asymptotic speed of propagation. The result for the one-type simple
epidemic was obtained by Daniels [2]. A rigorized approach to the
saddle-point method, and the result for the speed of propagation for the
n-type epidemic are given in Radcliffe and Rass [6]. This suggests that
the asymptotic speed of propagation is in fact ¢y, the minimum speed
for which wave solutions exist. That this is the case has been proved
by exact analytic methods. The one-type case appears in Aronson [1],
Diekmann [3] and Thieme [9], and the n-type cases appears in Radcliffe
and Rass [7]. Note that these results all assume radially symmetric
contact distributions.

Recently the authors (Radcliffe and Rass [8]) have investigated the
possible wave solutions for an S — I — R model with a reducible
infection matrix. Some interesting results were obtained. In particular,
under certain conditions, more than one wave solution exists at a
particular speed; these wave solutions affecting both types and having
different behavior in their tails.

It is shown in Section 2 that the spatial models for the S — I — R
and § — I — S epidemics both lead to the same equations for the
spread of infection in the forward tail of the epidemic. Thus, the
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results of our paper [6], which were derived for the S — I — R
epidemic, apply equally well to the S — I — S epidemic. In this
paper we apply the saddle-point method to the deterministic n-type
S —1I— Rand S — I — S epidemics with contact distributions which
are not necessarily radially symmetric, and with a reducible infection
matrix. The velocity of propagation of infection is determined in the
various subgroups for any specified direction. There are, of course,
conditions under which the saddle-point method can be applied. These
are discussed in Section 5.

The analogous results for the n-type stochastic epidemic and the con-
tact birth process are also briefly mentioned. It is hoped to investigate
the velocity of propagation of the reducible S — I — R epidemic along
the lines of Radcliffe and Rass [7] shortly.

2. The models. The model for the n-type reducible deterministic
S — I — R epidemic is identical to the model described in Radcliffe
and Rass [6], except that the infection matrix is no longer nonreducible
and we do not restrict the epidemic to occur on the real line R and be
symmetric about zero. There is an analogous S — I — S model which
is described in (ii) below. When the infection matrix is nonreducible,
any infectious individual of any type can, possibly through a sequence of
infections, infect any susceptible individual of any type. For a reducible
epidemic, there is at least one pair of types 7, j where a type ¢ infectious
individual cannot, even through a sequence of infections, infect a type
j susceptible individual.

(i) The S — I — R model. Counsider n types of individuals, each
type having uniform density in IN-dimensional space R, and con-
sisting of susceptible, infectious and removed individuals. Denote the
proportions of susceptible, infectious and removed individuals of type i
at position s and time t by z;(s,t), y;(s,t) and z(s,t), respectively, so
that x;(s,t) + yi(s,t) + zi(s,t) = 1. The density of type i individuals is
o;. Let \;; be the rate of infection of susceptible individuals of type @
by infectious individuals of type j. The contact distribution represent-
ing the distance r over which infection occurs has density p;;(r). The
removal rate for infectious individuals of type ¢ is ;.
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The epidemic occurring over all real ¢ is described by the equations

(1)
dw;(s,t)/0t = —xi(s, t ZAUUJ / pij(r)y;(s — r,t) dr,

0yi(s,t)/0t = z;(s, t) Z / pij(r)y;(s —r,t) dr — p;y;(s, t),
=1
0zi(s,t)/0t = piyi(s,t), i=1,.

(ii) The S — I — S model. Consider n types of individuals, each
type having uniform density in N-dimensional space R" and consisting
of susceptible and infectious individuals. Denote the proportions of
susceptible and infectious individuals of type ¢ at position s and time ¢
by z;i(s,t) and y;(s, t), respectively, so that z;(s,t) + y:(s,t) = 1. The
density of type ¢ individuals is o;. Let \;; be the rate of infection of
susceptible individuals of type i by infectious individuals of type j. The
contact distribution representing the distance r over which infection
occurs has density p;;(r). The rate at which infectious individuals of
type ¢ recover and re-enter the susceptible state is ;.

The equations for this model are

(2)
Ox;(s,t n
76(?25 ) = —x;(s,t) E )\ijaj/ pij(r)y;(s —r,t) dr + p;y;(s, t),
— RN

Oyi(s,t)
ot (s,t) Z)\”aj /RNpij(r)yj(s—r,t) dr — piyi(s, t),
1=1,...,n.

Note that equations (2) also hold if births and deaths are included
in the model, which are balanced so that the population size stays
constant. Then y; includes the death rate for infectives as a component.

For both models we restrict each p;;(r) so that the joint Laplace

transform P(0), exists in an open region of § = 0, where P};(0) =

fRNG PzJ( r)dr.

We wish to consider the speed of spread of the forward front of the
epidemic in a specific direction. In the extreme forward region, where
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there is little infection, we may approximate z;(s,t) by one, so that in
both models (i) and (ii) ¥;(s,t) approximately satisfies the equation
(3)

Oy (s,t)

% = ZAZ']'UJ'/ pij (r)y;(s—r,t) dr—py;(s,t), i=1,...,n.
j=1 R

Let A = (\;;) be reducible. For simplicity of exposition, we will
discuss the following simple reducible case. The population of n types
is taken to consist of two groups of m; and mgy types, respectively,
where my + mo = n. Within a group, infection can occur between any
types, possibly through a sequence of infections. No type in group 2
can infect a type in group 1; but at least one type in group 1 can infect
some type in group 2. Hence, by reordering the types so that A is in
normal form (see Gantmacher [4]), A may be partitioned so that

Ar A )’
where Ay; and Ags are nonnegative, nonreducible square matrices of
sizes my and mg, respectively, and Ag; is nonnegative and is not

identically zero. The extension to the general reducible case is discussed
in Section 7.

The nonreducible n-type contact birth process and n-type S — I —
R stochastic epidemic, described in Radcliffe and Rass [6], also have
reducible analogues. There is also an analagous stochastic S -1 — S
reducible epidemic. These can be treated in a similar manner and lead
us to consider the same equation (3).

For the contact birth process, spreading in RY, we can immediately
restrict attention to the spread in a specific direction. This, of course, is
not true for an epidemic process. The projection of an /N-dimensional
contact birth process in a given direction is a 1-dimensional contact
birth process, with its contact distribution the marginal distribution
of the N-dimensional contact distribution in the specified direction. A
full description of this process is given in Radcliffe and Rass [6], Section
3. For the contact birth process, let U(t) be the position of furthest
spread in that direction from 0 at time ¢. Then

yi(s,t) = P(U(t) > s | one type i individual
at position 0 at time ¢t = 0).
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Note that y; (s, t) for the projection of the contact birth process satisfies
equation (3) with N = 1 and p;;(r) the marginal contact distribution
in that direction. The saddle-point method will give the asymptotic
speed of translation of the distribution function of furthest spread of the
contact birth process in that direction. In a similar way, the asymptotic
speed of translation of the distribution function of furthest spread of a
specific type k in a specific direction may be obtained.

For the stochastic epidemic, y;(s,t) is the expected proportion of
infectives at position s and time ¢. The saddle-point method gives
an approximation to the asymptotic expectation velocity in a specific
direction.

3. An expression for the velocity of propagation obtained
using the saddle-point method when the infection matrix is
nonreducible. This section defines the velocity of propagation, indi-
cates how the saddle-point method is applied, and gives an expression
for the velocity of propagation when the contact distributions are sym-
metric and the infection matrix is nonreducible. For a detailed descrip-
tion and proofs of these results, the reader is referred to Radcliffe and
Rass [6].

The velocity of propagation considered in that paper is in fact the
speed of spread of the forward tail of the epidemic when the population
is of uniform density on the real line R. This can be defined for each
specific type j. Consider a small amount 7 of infection ahead of position
s at time t for a specific type j. If n remains constant as ¢ increases,
then the position s is defined by [ y;(u,t) du = 7.

The speed of spread of the forward tail of infection for population j is
then lim;_, o, s/¢. This limit is assumed to exist and to be positive. The
saddle-point method enables us to find this limit; and to verify that it
is the same for all types when the infection matrix is nonreducible.

The method uses the approximate equations (3) with N = 1, which
are valid in the tail of the epidemic; and works with the Laplace
transform of y;(s,t), since the differential equations for the Laplace
transform have a simple solution which can be inverted.

Let Ll(A, t) = foo )‘Syi(s,t) dS, {L()\,t)}z = LZ(A,t) and P”()\) =

€
—oo



730 J. RADCLIFFE AND L. RASS

ffooo e*p;j(r) dr. Then Laplace transforming equation (3), we obtain

OL(\, t)
ot

= (A(A) = uDL(A, 1),

where p = max(p1,... ,pn) and {A(X)}ij = oA P (X) + 85 (0 — pi)-
Note that
1, ifi=j;
0ij = e
0, if¢#j.
Then L(\, t) = eAMN 1Dty ()) where u(\) = L(),0).

Let Ay;; be the abscissa of convergence of P;;()) in the positive half of
the complex plane; and let Ay = min; ; Ay,,. Conditions are imposed
on P;;(A\) and L;(A,0). It is assumed that the p;;(r) are symmetric
about zero with limATAvij P;;(\) = oo for all i,7; and that for any
[01,62] C (0,Ay), there exists a k;;(y) with |P;;(0 + iy)| < ksj(y) for
all § € [01,0,) with [*_ki;j(y)dy < co. Each L;(},0) is taken to be
the Laplace transform of a function y;(s,0) of bounded support, the
Laplace transform being analytic for all A.

The transform L;(A,t) is inverted so that, for a suitable choice of

0(t),

—uX
wt) =g [ e o) o
Integrating over u from s to co gives an equation for 7. The dominant
term in {L(A,t)}; comes from considering the eigenvalue of A(\) with
largest real part. When A is real, this eigenvalue is the Perron-Frobenius
eigenvalue p(A(A)). This can be extended to complex A close to the
real line, so that Re (p(A(A)) is the maximum of the real parts of the
eigenvalues of A ().

6(t) is chosen to be the saddle-point of Re(g())), where g(A) =
[p(A(N\))t—As]. Note that g()) is a convex function of A, for A real, with
a unique minimum at A = 6(t), where p'(A(6(t))) = s/t. That A = 6(¢)
is a saddle-point of Re (g(\)) can be seen by observing that, from the
proof of Lemma 5 by Radcliffe and Rass [6], Re (g(x +iy)) < Re (g(z))

for y # 0.

Note that the symmetry condition imposed on the p;;(r) ensures that
the derivatives of p(A(6)) with respect to 6, denoted by p'(A(6)), takes
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all positive values for 6 € (0,A,). This is easily seen by noting that
p(A(0)) is a convex function of 6 for 6 € (0,4,), with

> 2. A (0){Adj (A(6) — p(A(6))D)}4;
trace Adj (A (9) — p(A(9))I) ’

p'(A(0)) =

so that p’(A(0)) = 0. Observe that, with the additional assumption
that limxta,, P (M) = o0, the corollary to Lemma 5 of our paper [6]
also shows that limyyay p'(A(X)) = 0.

The symmetry condition also ensures that if p(A(0)) > pu, then
p(A(X)) > p for all A € (0,A,). This ensures that p(A(6(¢))) > wu,
which is required in the proof of Theorem 1 of Radcliffe and Rass [6].

This theorem establishes that, given any small § > 0, for ¢ sufficiently
large

0(t)+id
1 1

~

~ (AN =mt=AsIEE (X u(X)}; dA,
o= B {EO)u(\)},

where E()) is the idempotent of A(X) corresponding to p(A())). It

then follows that

—[(p(A(6(2)))—p)t—50(t)]

SERYAEE

o 2w _s5 H(t)
]. 1"

| 2
_ [t u P (APt /2
=5 /_6 i ){E(e(t)) (0()}; dy

t
~ {E(0(6))u(8(£))}5/[(2m)/26() (0" (A(0(£))) 7],

ne
{E(6(t))u(B(t)))}; eve AO)—p" 0y /2-iys g,

Therefore, f = lim; o0 s/t = limi oo (p(A((2))) — p)/0(t). If
lim;_, o 0(t) = 6y, then f = (p(A(6y))—p)/bo. Note that p'(A(6(t))) =
s/t so that f = p’(A(6y)). Observe that f does not depend on the
type j. Note that, in order to derive this result, we need to use the
analyticity of p(A()\)) in an open region of A = 6.

Now consider f(A) = (p(A(X)) — p)/A. This is a continuous function
of A, for A € (0,A,), with limy;a, f(A) = co. Also, from Lemma 6 part
(ii) of our paper [6], any positive solution A to f'(A) = 0 is a minimum
of f(A). Hence, there can be at most one such solution.
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When p(A(0)) > u, f(A) > 0 for A € (0,A,) and f(0) = co. There
is then a unique A € (0,A,) such that f/(\) = 0, this being at the
unique minimum of the function f(\). Hence, f'(6y) = (p'(A(6y)) —
f(60))/00 = 0, so that f = f(fp) = minyc(o,a,) f(A). This then gives
an explicit expression for the speed of propagation f of the forward tail
of the epidemic.

When p(A(0)) < p, limyo f(A) = —oo. Hence, there is no A €
(0,A,) such that f'(A) = 0. When p(A(0)) = g, limy o f(A) = 0; and
f(A) > 0for X € (0,A,). Hence, there isno A € (0,A,) with f'(\) = 0.
Theorem 1 of our paper [6] requires p(A(6(t))) > p. The implication is
then that there cannot exist a positive limit f to s/t with f > p(A(6*))
where 6* € (0, A,) is such that p(A(0*)) = u. When p(A(0)) = p, this
implies f = 0. This suggests that f = 0 for p(A(0)) < u.

4. Connecting the functions K(c,A) and f(\) to show that
f =co. Let K(c,\) = p(V.())) and V.(\) = AN)(F(c,\)) !, where
{A(N)}ij = 0Xij Pij(X) and F(c, ) = diag (u1 +cA, ... , un+cX). Note
that K(c,0) = p(I") for all ¢ > 0, where {I'};; = o\i;/1;-

In the analysis of the S — I — R epidemic, the function K(c, \)
is central to the problem of the existence and nonexistence of wave
solutions to equation (1) at different speeds ¢ (see Radcliffe and Rass
[6]). Note that in that paper the contact distributions were not
restricted to be symmetric about zero. When p(T') > 1, the minimum
speed co for which wave solutions exist has an explicit expression in
terms of K (c, \); namely,

co =inf{c>0: K(c,\) =1 for some X € (0,A,)}.

When p(I") < 1, no wave solutions exist at any speed ¢ > 0. In this
case we define ¢y = 0.

The properties of K (c, \) are discussed in our paper [6]. In particular,
for each fixed positive speed ¢, K(c, A) is a convex function of A. Also,
K(c, \) is a decreasing function of ¢ for each A € (0,4,).

The saddle-point method suggests that when p(A(0)) < y, the speed
of propagation f = 0. When p(A(0)) > u, it identifies the speed of

propagation f as minyc(o,a,) f()), where f(A) = (p(A(N)) — p)/A
Note that in this case, with the restriction imposed in Section 3, f()\)
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is a continuous function of A which tends to infinity as A | 0 and as
ATA,.

We now prove two lemmas. They are proved in more generality than
is needed in this section so that they may be used in the latter part of
the paper where less restrictions are placed on the contact distributions.
The only condition required is that each P;;(\) exists for some open
region about A = 0.

Lemma 1. Let A(0) be a nonreducible matriz so that T' is also
nonreducible. Then p(A(0)) < p if and only if p(T') < 1.

Proof. If p(A(0)) < p, since the Perron-Frobenius eigenvalue of a
nonreducible nonnegative matrix is a continuous increasing function of
its entries, there exists a B > 0 such that p(A(0) + B) = u. Hence,
there is a u > 0 such that

u'(A(0) +B —ul) =0".

Hence,
u'((0;i) + B — diag (p1, ... ,ptn)) = 0.

Then
(T +B*—1)=0,

where B* = B(diag (u1,... ,4,))" ' > 0. Therefore, p(T' + B*) = 1,
and hence, p(I") < 1.

Similarly, if p(I') < 1, there exists a B* > 0 such that p(I'+B*) = 1.
We may then reverse the steps and show that p(A(0)) < p.

Hence, p(A(0)) < p if and only if p(T') <1. O

Lemma 2. When p(A(0)) > p or, equivalently, p(T') > 1, then f =
co where f = max(0, infae(o,a,)f(N)) and co = inf{c > 0: K(c,\) =1
for some A € (0,A,)}.

Proof. Consider K(c,A). It is a convex function of A which is
monotone decreasing in ¢ for each A and K(c,0) = p(I') > 1. For
A€ (0,A,), lime_yeo K (e, A) = 0.
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For fixed ¢ > ¢g, K(c,\) = 1 has either two distinct roots a(c) and
a*(c) or a single root a(c). The latter case cannot occur if each Pj;(\)
becomes infinite at its abscissa of convergence. If ¢y > 0, there is only
one root a(cp). Note that ¢g = 0 occurs when each contact distribution
is one-sided, so that limy_,. P;;(A) = 0 for all ¢,j. Note that, for
c > ¢y, alc) < alcy) < a*(c). For fixed ¢ > 0, let A = a(c) if ¢ = ¢
and A = a(c) or a*(c) if ¢ > ¢p. Then there exists a positive vector u
such that

W (AN (F(e ) -1 =0,

o w/(AQ)) = F(e, ) = 0,

u(AN) — (L+cA)I) =0
Hence, as u > 0, p(A(X)) = p + ¢\ so that ¢ = f(A).

Thus, for ¢ > ¢y, if A = a(c) and A = a*(c) are roots of K(c,\) =1,
then f(a(c)) = ¢ = f(a*(c)). There may of course be only one root so
that f(a(c)) = c. When ¢ = ¢g, with ¢g > 0, so that A = a(cp) is the
only root of K(cg,\) =1, then f(a(cg)) = co.

Hence, infyc(o,a,)f(A) < co, and so f < co.

Now if we consider any A such that ¢ = f(A) > 0, we have p(A(X)) =
i+ cA. By reversing the steps, we have K(c,\) = 1 and hence ¢ > ¢g.
Hence, f = max(0,infy¢(0,a,)f(N)) > co.

Therefore, f = c¢o. o

5. Constraints on the applicability of the saddle-point
method in the reducible case. This section acts as a prelude
to Section 7, in which the saddle-point method is used to obtain the
velocity of propagation of the forward front of the epidemic in a specific
direction. It will be seen in Section 7 that we again need to consider
F(A) = (p(A(X) — u) /A, where A(X) is defined as in Section 3 but is
now reducible and P;;(\) is the Laplace transform of the appropriate
marginal contact distribution in a specific direction. We may specify
the direction by «, where o’a = 1. Then P;;(\) = P};(Aa). The specific
value of a used specifies the direction of the front under consideration.

Conditions are imposed on the P;;(A) and the y;(s,0). We assume
that, for any [61,02] C (0,A,), there exists a k;;(y) with |P;;(6 +iy)| <
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kij(y) for all 6 € (01,6, where [* kij(y)dy < oo. Also, we assume
that each y;(s,0) is a function of bounded support, with its Laplace
transform analytic for all values of its entries.

The matrix A()) is now reducible and can be expressed in the form

A (N 0 >
AN = ,
() (A21(>\) Ass(N)
where Aj;(\) and Agp()) are nonreducible, of sizes m; X m; and

ma X ma, respectively, and Ay () has at least one nonzero element.
The function

FA) = (p(A(X) — 1) /A = (max(p(A11(A)), p(A22(N))) — 1) /A

may be written in the form f(\) = max(fi()), f2(\)), where f;(\) =
(p(Aii(A)) — p)/A for i = 1,2.

The results for types in group 1 follow, with some adaptation to
allow for increased generality, from our paper [6]. However, for types
in group 2 the situation is more intricate. The aim of this section is to
obtain conditions under which the saddle-point method can be applied
to obtain results for types in group 2. In order to accomplish this, it
is necessary, when p(A;;(\)) > u, for i = 1,2, to classify the possible
joint configurations of fi(A) and f2(\). Consideration also needs to be
given to the case when p(A;;(\)) < u for some ¢ =1, 2.

In order to apply the saddle-point method to obtain the speed of
propagation for types in group 2, we need f(A) to have a minimum
at some point A = 6y € (0,A,), with f(6p) > 0, and p(A(X)) to be
analytic in some open region of A = 5. We therefore prove Lemma 3
concerning the behavior of f;(\) and then use this lemma to identify
different cases.

Define A;; to be the minimum of the abscissae of convergence, in the
positive half of the complex plane, of each of the entries in A;;(\). We
assume that Ag; > min(Aj;, Ag). This is sufficient to ensure that
A()) exists for Re(A) = 6y + ¢ for some small positive §. In order
for the saddle-point method to be applied, in fact, the only restriction
needed is that Ao > 6.

Lemma 3. When p(A;;(0)) > u, the function fi(X) = (p(Aiu(N)) —
w)/ X either has a uniqgue minimum at A = 6; € (0,A;;) at which point
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—
>
=,
~
I
(=)
S

r it is monotone decreasing for A € (0,A;;). In addition,
p'(A;(0)) > 0, then there is a minimum at A = 6; € (0,A;),

(A;i(0)) < p, fi(A) is monotone increasing for A € (0, Ay;).

Proof. We use the convexity of p(A;;(\)) established in our paper
[6]. We first show that any solution A € (0,A;;) to f/(A) = 0 must
be a minimum of f;(A). Now f/(A) = (p'(Au(N) — fi(A))/X and
FE) = (P*(Ai(N) = 2f{(N) /A

Hence, for any A = 0; € (0, A;;) such that f/(6;) = 0 we have f2(6;) =
p%(Ai;i(0;))/6; > 0 with equality only possible if p’'(A;;(6;)) = 0. Note
that p'((Ay(0;)) = 0 implies that f;(6;) = 0 so that p(A;(6;)) = .
The convexity of p(A())) then gives p(A;;(A\)) > p for A # 6;. Thus,
any solution A € (0,A;;) to f/(\) = 0 must be at a minimum of f;(\).

Therefore, there is either a unique minimum of f;(A) at A = 6; €
(0, A;;) or the function f;(A) is monotone for A € (0, A;;).

When p(A;(0)) > p, limyg fi(A) = oco. Hence, if there is no
minimum of f;(A) in the range (0,A;;), fi(A) must be monotone
decreasing in that range.

If p(Ai;(0)) > p and p’(A;;(0)) > O then, from the convexity of
p(Ais(N); p(As(A) > 0 for A € (0, Ay). Hence, fi(A) = (p(Asi(0)) —
w)/ )\ for all A in that range. Then if f;(A\) has a minimum at A = 6; €
(0,Ay), fi(6;) > 0. Note that if p'(A;;(0)) < 0, f;(6;) can be negative.

When p(A;;(0)) < p, limyyo fi(A) = —oo. Since f;(A) can only have
zero derivative at a minimum, f;(A\) must be monotone increasing for
A€ (0,Ay).

Finally, consider the case when p(A;;(0)) = p. Usmg I"Hopital’s Rule,
limxyo fi(A) = p'(Ai(0)) and hm)\wf (A) = p?(Aii(0))/2 > 0 with
equality only possible if p'(A;(0)) = 0. The convexity of p(Ai(N)
implies that if p’(A;;(0)) = 0, p(Aii()\)) > pfor A > 0, so that f;(A) > 0
for A > 0. As f;(\) can only have a minimum in the range (0, A;;), this
implies that when p(A;;(0)) = u, f;(\) is monotone increasing in that
range. o

p(A;;(0)) > p for i = 1,2. There are four cases.
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Case 1. For any 7 such that f;(\) has a minimum at A = 6; € (0, A;;)
with f;(6;) > 0, we have f;(6;) < f1:(6;).

If f;()\) does not have a minimum for each ¢ = 1,2, then by Lemma
3 each f;(\) is monotone decreasing. Hence, f(A) does not have a
minimum in (0, A;).

If fi(\) has a minimum at A = 6;, but f;_;(\) does not have a
minimum, then either f;_;(6;) > fi(6;) or f1_i(6;) < f:(6;) < 0. In the
former case f()\) either does not have a minimum, or has a minimum
at A = 6p > 0; at which point p(A())) is not differentiable. In the
latter case f(A) has a minimum at A = 6y = 6; at which f(6y) <O0.

Finally, if f;(\) has a minimum at A\ = 6; for i = 1,2, we have (for
each i) either fi_;(6;) > fi(6;) or f1;(6;) < fi(6;) < 0. If the latter
holds for at least one ¢, then min f(\) < 0. If the former holds for both

i, then f(A) has a minimum at A = 6y, where 6y lies strictly between
61 and 65, and f(A) is not differentiable at A = 6.

Hence, either f()) does not have a minimum at which it is positive,
or f(A\) has a minimum at A = 6y at which f(fp) > 0 but p(A(})) is
not analytic in an open region of A\ = 6.

Case 2. fi(\) has a minimum at A\ = 6; with f;(f;) > 0 and
fi(61) > f2(61).

In this case f(A) has a minimum at A = 6y = 61, and p(A(6y)) =
p(A11(00)) > p(Aa22(0p)). Since p(Aq1(N)) is analytic, there is an open
region of A = 6y in the complex plane for which p(A())) is analytic.
Also f(6y) > 0.

Case 3. f2(\) has a minimum at A = 6, with f2(f2) > 0 and
f2(62) > f1(62).

In this case f(\) has a minimum at A = 6, = 63, and p(A(6y)) =
p(A22(00)) > p(A11(0p)). There is therefore an open region of A = 6
in the complex plane for which p(A())) is analytic. Also, f(6p) > 0.

Case 4. f1(\) = f2(A\) > 0 for at least one of A = 6; and A = 0s.

Note that equality is only possible at both A = 6; and A = 05 if
61 = 0. If equality occurs at A = 0y, but either fa()\) does not have
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a minimum or equality does not occur at A = 65, then 6y = 6;. The
function f()), and hence p(A(}\)), is not differentiable at A = 6, for A
real. Hence, p(A())) is not analytic in any open region of A = 6 in
the complex plane. A similar result holds if equality occurs at A = 65
but either f1(A\) does not have a minimum or equality does not occur
at A = 01.

Now consider f1(\) = fa()\) for A = 0; = 0. Then 0y = 0; = 0.
Note that f](6y) = f5(6p) = 0. Hence, p(A(6p)) = p(A11(0o)) =
p(A22(0p)) and the derivatives of p(A;;(N)), for i = 1,2, with respect
to A are equal at A = 6. Consider the Taylor expansion of each
p(Aii(\)) about A = 6y, and let p*(A;;(\)) denote the s derivative
of p(A;;(\)) with respect to A\. Suppose there exists a positive integer
r such that p®(A11(6o)) = p*(A22(6p)) for s < r, and p"(Aq11(00)) #
p"(A22(00)). If p"(Aii(60)) > p"(A1—i1-i(f0)), then Re (p(Ai;(6o +
z))) > Re(p(A1—i1-i(f0 + x))) for = a small positive real, whereas
Re (p(Aii(6o + 2))) < Re(p(A1_i1—_i(fp + 2))) for z = Re™ (") where
R is a small positive real. Hence, p(A())) cannot be analytic at A = 6.
This implies that p(A())) is not analytic in an open region of A = 6
unless p(A11 (M) = p(Azs(N)).

Hence, when p(A;;(0)) > p for i = 1,2, we can only apply the saddle
point method in cases 2 and 3 and in the special situation in case 4
when p(A11(A)) = p(Aa2(N)). This special situation in case 4 will
clearly occur if m; = my and Aj;(A\) = Age()). As this is the only
situation of interest where this is likely to arise, we will restrict ourselves
in case 4 to A11(A\) = A2(N).

p(A;i(0)) < p for at least one of i = 1,2. We can partition I in a
similar way to A(\), so that

T 0
I'= .
( [y T2 >
There are five cases.

Case 5. p(A;;(0)) < p for i = 1,2, (and hence p(T") < 1).
There is no A € (0,A,) such that f'(A) =0.

Case 6. p(A11(0)) > p and p(A22(0)) < u, (and hence p(T'y;) > 1
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and p(T'y2) < 1). Also, f1()\) has a minimum at A = 6; with f1(61) >0
and f1(61) > f2(61).

In this case 6y = 61 and p(A(6y)) = p(A11(6)) > p(A22(60)),
so that p(A())) is analytic in an open region of A = 6y. Also,
f(60) = f1(60) > 0.

Case 7. p(A11(0)) > p and p(A22(0)) < g, (and hence p(T'11) > 1
and p(Ta2) < 1). Also either f1(A\) does not have a minimum in
(0,Aq1), has a minimum at A = 6; with f1(61) <0, or has a minimum
at A = 01 with f1(01) S f2(6’1)

Either f()\) has no minimum in (0,A,), or (if f2(61) < f1(61) < 0)
it has a minimum at A = 6y = 6; with f(6y) = f1(6p) < 0, or (if
f2(01) > f1(61)) it has a minimum at A = 6y < 6; at which f(\) is not
differentiable. Hence either f()) does not have a minimum at which
f(X) is positive, or it has such a minimum at A = 6y but p(A(}\)) is
not analytic in an open region of A = 6.

Case 8. p(A22(0)) > p and p(A11(0)) < p, (and hence p(T'22) > 1
and p(I'11) < 1). Also f2(A) has a minimum at A = 0y with f2(62) >0
and f2(62) > fi (92)

In this case 8y = 62 and p(A(fy)) = p(Az2(b)) > p(Ai11(6)),
so that p(A()\)) is analytic in an open region of A = 6. Also
f(60) = f2(60) > 0.

Case 9. p(A22(0)) > p and p(A11(0)) < g, (and hence p(T22) > 1
and p(T'11) < 1). Also either f3(A\) does not have a minimum in
(0, Agz), has a minimum at A = 6, with f3(62) < 0, or has a minimum
at A = 92 with f2(02) S f1(02)

As in Case 7, either f(\) does not have a minimum at which f(\) is
positive, or it has such a minimum at A = 6y < 6, but p(A())) is not
analytic in an open region of \ = 6.

Hence, when p(A;;(0)) < p for at least one of i = 1,2, the saddle-
point method can only be applied in Cases 6 and 8.

6. Linking wave solution existence and saddle-point con-
straints. It is of interest to see how the cases described in Section 5,
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in which the saddle-point can be applied, are linked with the existence
of wave solutions to the reducible S — I — R epidemic obtained in
our paper [8]. For an epidemic in R", the waves considered are those
travelling in a fixed direction, the proportions of susceptible, infected
and removed individuals being constant on the orthogonal (N — 1)-
dimensional hyperplane. The contact distributions in that paper are
therefore the marginal distributions of each p;;(r) in that specific di-
rection; the Laplace transforms being the P;;(\) defined in Section 5 of
this paper. Note that in [8], for simplicity of exposition, we assumed
that each P;;()\) became infinite at its abscissa of convergence. This
restriction is therefore also imposed for this section only.

Let V.(\), as defined in Section 4, be partitioned by groups so that

Ve = (xigz i; V22(()Ca >\)> '

If p(Tii) > 1, ¢; = inf{c > 0: p(Vii(e,\)) =1 for some X € (0, A;;)}.
Then for ¢ > ¢; we define A = a;(c) to be the smallest positive root of
p(Vii(e,\)) = 1. This is the only root if ¢ = ¢; > 0. If ¢ > ¢; there is a
second positive root which we define to be af(c). If ¢; = 0 there may
be only one root, or there may be a second positive root «(0).

If p(T;) <1, ¢; = 0, and for each ¢ > 0 there is a single root of
p(Vii(e,\) = 1. We define this root as a(c).

p(T'11) > 0 and p(T32) > 1. Case 2 corresponds to ¢; > co with
az(c1) < ay(e1) < ad(c1). In our paper [8] we showed (Theorem 11
part (d)) that in this case wave solutions affecting both groups exist.
There is an infinite number of such solutions. However, there is a unique
wave solution of a particular type, namely with the same behavior in the
forward tail for both groups determined by a;(cy). For precise details,
see our paper [8]. This wave was interpreted as being generated purely
by a wave in group 1 which induces a wave in group 2.

Case 3 corresponds to c2 > ¢1 with ag(c2) < az(cz2). In our paper
[8] we showed (Theorem 11 part (c)) that no wave solution is possible
for both groups. A wave in the second group only at speed c; exists,
which is unique modulo translation.

Case 4 corresponds to a critical case in our paper [8] with ¢; = ca.
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The existence or nonexistence of waves was not established (see the
comment after Theorem 11 of that paper).

p(T'11) > 1 and p(Ty3) < 1. Case 6 corresponds to f1(61) > f2(61)
with ¢; > ¢2 = 0 and ai(c1) < aj(c1). In this case there is a
unique wave solution for both groups at speed c¢; with its tail behavior
determined by o (c1).

p(T'11) < 1 and p(Tyz) > 1. Case 8 corresponds to fa(62) > f1(62)
with ¢2 > ¢; = 0. Only a wave solution in the second group is possible
at speed cz. There is a unique wave solution in group 2 at speed cs
with its tail behavior determined by as(cs3).

7. Choosing the saddle in the reducible case. If we consider the
speed of spread of the forward region in a specific direction (determined
by a such that o’a = 1) for the 5 type in equation (3), we may proceed
in an analagous manner to our paper [6]; this being outlined in Section
3 of this paper. For fixed j and each ¢ we define s so that, for fixed

small positive 7,
/ yi(x,t)dx = .
x:a'x>s

This specifies that the total proportion of infectives beyond the hyper-
plane a’x = s is 7.

Define P};(A) as in Section 2. Let {A*(A)}ij = 0 Ai; P5(A) + 04 (0 —
/sz) and {A()\)}” = UinjPij(A) + 5”(# — ,uz), where 1% and 52’]' are
as defined in Section 3 and P;;(A\) = Pj(Aa). Partition A()) as in
Section 5. Also take an equivalent partition of A*(\). Take A, to be
the minimum of the abscissae of convergence of the P;;(\) in the right
hand half of the complex plane.

We assume that the limit of s/t as t tends to infinity, f, exists and is
positive. This limit is then identified for different values of j.

Since p(A (X)) = max(p(A11(A)), p(A22(A))) we have two possible
saddle-points, namely that of each of g;(A\) = Re(p(A;i(N))t — As),
for + = 1,2, on the real axis. The saddle-point chosen will depend
on whether the type is in group 1 or group 2. For group 2 types it
will depend on the initial conditions, specifically whether or not there
is some initial infection in group 1. When there is initial infection in
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group 1 the choice of the appropriate saddle-point is more complicated,
and Cases 2, 3, 4, 6, and 8, listed in Section 5, will need to be considered
separately.

Define L} (\,t) = [ € ®yi(s,t) ds and {L*(\,t)}; = L¥(\,¢). Also
i

A, t) and

partition (L*(A,t)) = ((Li(A ), (L5(A,t))), where L
L%(A,t) are vectors of length my and ma, respectively.

Transforming equation (3), we obtain

OLIND) _ (a,(3) - w0 1),
@ i
% = A3 (VLA 1) + (A3, (N) — pDL5 (A, 1),

Let u*(\) = L*(\,0). Then the solution to equation (4) is given by
L*(\, t) = A N -mDtyx(y),
Let L(\t) = L*(Aa,t) and u(A

L(X,0). We may partition (u(A))" = ((
L¥(Aa,0). Then we obtain

= L*(A\a,0) =
(A)'; (u2(X))') where u;(A) =

L(\, t) = e =Dty ().

Note that {u(A)}; is the Laplace transform of the function y;(x,0)
which has been integrated over the hyperplane o/x = s.

We then invert {L(A,t)}; and integrate the inversion from s to co to
obtain an equation for 7. This is done in a similar manner to our paper
[6], since 7 = [ x>, Ui (X, 8) dx.

Hence, for ¢ sufficiently large,

1 o@)Fico

n=--= Ale (LA 1)} — e Besroenmn)ifu(A)}5) dA.
21 Jo(t)—ioco

No initial infection in group 1. First consider the case where the
infection starts amongst individuals in the second group of types only,
so that u;(A\) = 0. In this case L;(A,¢) =0 and

Ly(\, t) = eA22()=1Dig, ()),
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Clearly, there is no spread of infection amongst the first group of types
so that the speed of propagation of the forward tail of the epidemic for
types in group 1 is zero. For types in group 2 we may proceed in
an identical fashion to our paper [6] using the saddle-point of g ().
Note that we can only prove Theorem 1 of that paper if there exists
al\E€ (O,Agg) with p(A22(A)) > 1253 and p’(Azg()\)) = 6’(t)/t for ¢
sufficiently large.

When p(A32(0)) > g, ie., p(T'22) > 1, this establishes the speed of
propagation of the forward tail of the epidemic for each type in group
2 as fo, provided fo = infyc(0,a,,)(P(A22(A)) — 1)/ X is positive with
the inf achieved for A € (0, Ass). Note that, from the results in Section
4, fo is the minimum speed co for which wave solutions exist to the
S — I — R epidemic when the epidemic is amongst types in group 2
only.

When p(Az2(0)) < g, ie., p(T'a2) < 1, there cannot exist a positive
speed of propagation fy with fo > infp’(Ag2())), where the inf is over
A € (0, Agz) such that p(Aa2(A)) > p. This tends to suggest the speed
of propagation is zero.

The exact saddle-point results are summarized in Theorem 1.

Theorem 1. Consider a fixred direction determined by o and a
specific type j in group 2. For some small n > 0, let s be defined
by n = [ s Vi(xt)dx. Also let p(Ta2) > 1 and fa(A) have a
minimum for some A\ = 0y € (0,Aqs) with f2(fy) > 0. Suppose the
following conditions hold:

(1) fo = limy o0 8/t exists and is positive with p'(Aaz(N)) = f2 for
some A € (0, Agz).

(ii) Asg2(6o) has distinct eigenvalues.

(iii) P};(0) exists in some open region of 6 = 0 for all i,j from my+1
to n.

(iv) For any interval [01,62] C (0, Asz) and for all 6 € [01,65], there
exists a kij(y) such that |Pi;(0 +iy)| < kij(y) and [ kij(y)dy < oo
for alli,j from my + 1 to n.

(v) Each y;(s,0) is a function of bounded support for i = mq +
1,...,n and y;(s,0) = 0 for i < my.
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The speed of spread of the forward front in equation (3) is co =
Minge (0,a,,) f2(0). This is the minimum velocity for which wave so-
lutions exist in the model for the S — I — R deterministic epidemic
for types in group 2 only.

Inatial infection in group 1. speed of spread for types in group 1. In
this case uj (A\) # 0. The first m; of equation (4) gives

Li(\, t) = eAuM)=mDiy, (3),

Hence the speed of propagation of the forward front for types in group
1 can be obtained exactly as in our paper [6] using the saddle-point of
g1(A). Again we have to assume that there exists a A € (0, A1) such
that p(A11(X)) > p and p'(A11(N)) = 6(¢)/t for t sufficiently large.
When p(Aq11(0)) > p, ie., p(T'11) > 1, this establishes the speed as
f1, provided fi = infico,a,,)(P(A11(N)) — p)/A is positive with the
inf achieved for A € (0,A;;). Note that, from the results in Section
4, f1 is the minimum speed c; for which wave solutions exist for an
S — I — R epidemic amongst types in group 1 only, the infection of
types in group 2 being ignored. If p(A11(0)) < g, i.e., p(T'11) < 1, there
again are restrictions on the possible positive speed of propagation.
This tends to suggest, as in the previous case considered, that the
speed of propagation is zero.

The exact saddle-point results may be summarized in Theorem 2.

Theorem 2. Consider a fixred direction determined by o and a
specific type j in group 1. For some small n > 0, let s be defined
by n = [ s Vi(xt)dx. Also let p(T11) > 1 and fi()\) have a
minimum for some A\ = 0y € (0,A;) with f1(6y) > 0. Suppose the
following conditions hold:

(i) f1 = limy o0 8/t exists and is positive with p'(A11(N\)) = f1 for
some X € (0,Aq1).

(ii) A11(6o) has distinct eigenvalues.

(i) P
mi.

(iv) For any interval [61,02] C (0, A11) and for all 6 € [61,0;] there

exists a kij(y) such that |Pi;(0 +iy)| < kij(y) and [* kij(y)dy < oo
foralli,j from 1 to my.

(0) exists in some open region of @ = 0 for all 1,5 from 1 to
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(v) Each y;(s,0) is a function of bounded support fori=1,... ,my
and y;(s,0) = 0 for i > m;.

The speed of propagation of the forward front in equation (3) is
c1 = minge(o,a,,) f1(0). This is the minimum velocity for which wave
solutions exist in the model for the S — I — R deterministic epidemic
for types in group 1 only.

Initial infection in group 1: speed of spread for types in group 2.
Again u; () # 0. We consider the speed of spread of the forward front
for type j, where m; +1 < j < n. The saddle-point at A = 6(¢)
of g(A) = Re (p(A (X))t — As) is used. We need to assume that there
exists a A € (0,4,) such that p'(A(\)) = f. Notice that in Section
5, when p(A;(0)) > p for ¢ = 1,2, we have listed four cases and
observed that the method can only be applied in Cases 2 and 3 and
in a special situation in Case 4. The situation we consider in Case
4 is when Aq1(A) = Ass(A). In addition, when p(A;;(0)) < p for at
least one i, we have listed five cases and observed that the saddle-point
method can only be applied in Cases 6 and 8.

Case 2. In this case, the saddle-point of g(\) that we use is that of
g1(A). The proof of Theorem 1 proceeds as in our paper [6] and shows
that for any type j from mj; + 1 to n, for § sufficiently small and ¢
sufficiently large,

e o L M1 (A ()2
net TN ~ ——e™m / ——{E(MN)u(\)};elHrETAS g
2 o(t)—is H(t){ ( ) ( )}J

where v;(t) = p(A;;(0(t))) — s0(t), and in an open region of A\ = 6y,
E()) is the idempotent of A()\) corresponding to p(A(A)) = p(A11(N)).
Note that

B E;1()) 0
B(Y) = <(P(A11(>\))I — A2(N) T A2 (MEI(N) 0> ’

where Eq(A\) > 0 is the idempotent of A1;1(A) corresponding to
p(A11(N)).

This idempotent is easily obtained from the right and left eigenvectors
of A(X) corresponding to p(A(N)) = p(A;1(XA)) and demonstrates that
the dominant term in the integral involves only u; () and not ug(X).
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We then proceed in an identical fashion to our paper [6] to establish
that the speed of propagation of the forward front of infection for each
type in group 2 is f;. Note that, from the results of section 4, f; is the
minimum speed ¢; for which wave solutions exist for the S — I — R
epidemic if we consider an epidemic amongst group ¢ types only, the
infection amongst group (1—1) types being ignored. In this case f; > fo
so that, using the results in Section 4, f; = ¢; = max(cy, ¢2).

Case 3. The saddle-point of g()\) that we use is that of g2()A). For
any type j, from mj + 1 to n, for ¢ sufficiently small and ¢ sufficiently
large,

pt—y2(t) 1 —72(t) Py p(A22(N))t—As
ne ~ —e —{EMNu())},e d,
2mi o(t)—is A

where E(A) > 0 is the idempotent of A () corresponding to p(A (X)) =
p(A22(X)). Note that

0 0
A = <E2(A)A22(>\)(P(A22(>\))I —Au(\)™! EM)) ’

where Eg(A) > 0 is the idempotent of Asz(A) corresponding to
p(Az2(N)).

The idempotent is obtained as in case 2 and demonstrates that the
dominant term in the integral involves only uz()).

Proceeding in an identical fashion to our paper [6] we obtain the speed
of propagation for each type in group 2 as f>. Note that in this case
f1 > fo. Using the results in Section 4 we have fy = co = max(cy, cg).
Hence, the speed of propagation for types in group 2 is max(cy, cg).

Case 4. We consider case 4 when m; = mg and A11(A\) = Aga(A)
(= B()\) say). Then eA(? has dominant term (E(\) +N(\)t)er(BODE
where (in the case where the eigenvalues of B()\) are all distinct), the
nilpotent N(\) and the idempotent E()) are given by

0 0
N\ = <E1(>\)A21(>\)E1(>\) 0)’
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E.(}) 0
<Z#1 W(Ej(/\)Azl()‘)El(A)+E1()‘)A21()\)Ej()\)) E1(/\)> ’

where p(B(\)), A2, ... , Am, are the eigenvalues of B(A) and Eq(A),. ..,
E,., ()\) are the corresponding idempotents.

The form of idempotent and nilpotent can be obtained by considering
the spectral expansion of (A(\) — aI)~! as a tends to p(A(N)).

Hence for any type j, from mj + 1 to n, for § sufficiently small and ¢
sufficiently large,

neut—v(t)

~ L —(t) e(tHiél _p(B(A)t—As

~ Ll (EOV)+N(A)u(V)} e dx,

271 0(t)—id A

0(t)+is 4

~ e / LB () Agt VEL V(A }jpa, e?BODEA5 gy,
e 8 )\

where v(t) = p(B(0(t)))t — s6(t). Thus the dominant term in the
integral involves only u; ().

The proof then follows as in our paper [6] to identify the speed of
propagation of the forward front of infection for any type in group 2
as f1 = fa. Using the results of Section 4, we have ¢; = f; = fo = ca.
Hence the speed of propagation for types in group 2 is again max(cy, ¢z).

Case 6. As in Case 2, the saddle-point of g(\) that we use is that
of g1(A). In an identical fashion to Case 2, the speed of propagation
is identified as being f; for each type in group 2. Note that, from the
results of Section 4, f; = ¢; > 0 and, since p(T'22) < 1, c2 = 0. Hence
the speed of propagation of the forward front of infection for all types
in group 2 is max(cq, ¢2).

Case 8. Asin Case 3, the saddle-point of g(\) that we use is that of
92(A). The speed of propagation is identified as being f for each type
in group 2. Again, from the results of Section 4, fo = ¢ > 0 and, since
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p(T11) <1, ¢4 = 0. Hence, the speed of propagation of the forward
front of infection for all types in group 2 is max(cy, ¢3).

Hence, when there is initial infection in group 1, in all cases that we
are able to treat by the saddle-point method we obtain the same result
for types in group 2; namely that the speed of spread of the forward
front for type 2 individuals is max(cq, c2).

The exact saddle-point results are summarized in Theorem 3.

Theorem 3. Consider a fixed direction determined by o and a
specific type j in group 2. For some small n > 0, let s be defined by
M= [oaxss ¥i(X t)dx. Also let p(T) > 1 and f(X) have a minimum
for some X\ = 6y € (0,A,) with f(6p) > 0. Let p(A()\)) be analytic in
an open region about A = 0y. Suppose the following conditions hold:

(i) f = limy_o s/t exists and is positive with p'(A(X\)) = [ for
some X\ € (0,A,).

(i) If A11(X\) Z Aga() then let A(6y) have distinct eigenvalues. In
the special case where Aq1(X) = Aaa(N), then let Aq11(0y) have distinct
etgenvalues.

(iii) Pj;(0) ewists in some open region of 6 =0 for all 4, j.

(iv) For any interval [01,62] C (0,A,) and for all 0 € [01,02] there
exists a kij(y) such that |Pi;(0 +iy)| < kij(y) and [ kij(y)dy < oo
for alli,j.

(v) Each y;(s,0) is a function of bounded support.

The speed of spread of the forward front for equation (3) is then ¢y =
max(cy, cz), where ¢; = 0 if p(I'y;) <1 and ¢; = max{0, infae(0,a,,)fi(A))
if p(Ty;) > 1. Note that if p(T';;) > 1, then ¢; is the infimum of the pos-
itive speeds at which wave solutions exist for an S — I — R epidemic
involving types in group i only.

8. Conclusion and extension to a general reducible epidemic.
For each i = 1,2 we make the following definition. Define ¢; = 0 if
p(Ti;) < 1. If p(Ty;) > 1, ¢; is defined to be the infimum of the positive
speeds for which wave solutions exist in a specific direction when we
consider an S — I — R epidemic amongst group ¢ individuals only,
group (1 — ¢) individuals being ignored.
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The saddle-point approximation suggests the following results for the
reducible S -+ I — R and S — I — S epidemics with two groups.

(i) If the initial infection affects group 1 individuals, then the speed
of propagation in the specific direction for any type in group 1is ¢;. The
speed of propagation for any type in group 2 is, in this case, max(cy, cz2).

(ii) If the initial infection affects group 2 individuals only, then there
is no infection amongst group 1 types. The speed of propagation for
any type in group 2 is cs.

The values of ¢; and co depend upon the direction considered, as
determined by the value of a, where o/a = 1.

Let f;(A\; @) denote the function f;()) for a specific direction given by
a, and let ¢;(a) and Aj;(a) denote the corresponding values of ¢; and
Aii-

We can easily show that ¢;() is a continuous function of « if
p(Ci;) > 1 and f;(A;a) has a minimum within the range (0, A ()
for each a. Note that ¢;(a) =0 for all « if p(T';;) < 1.

Theorem 4. If p(Ty) > 1 and fi(A\;a*) has a minimum at
A= 0; € (0,A(a*)), then c;() is a continuous function of o at
oa=a*.

Proof. Note that p(A;(\)) is a continuous function of the entries
of A;;(\); these being continuous functions of «. Hence, f;()\; ) is a
continuous function of a and A.

Let ﬂl = (A”(a*)+9,)/2 if Aii (a*) is ﬁnite, and Bi = 301/2 if Aii(a*)
is infinite. Take b = min(f;(6;/2;a*), fi(Bi; a*)) — fi(6:; a*). Using the
continuity of f;(A\;a) in o at A = 6;/2, A = B; and A = 0, there exists
a §; > 0 such that

[fi(xe) = filxi@®)| <b/2 for (a—a")(a—a") < 0

for each of A = 6;/2, B; and 6;.

This shows that A;(«) > B; for (@ — a*) (e — a*) < 6;. Also in
this range of «, f;(0;; @) < min(f;(6;/2; «), fi(Bi;)). Hence, using the
properties of f;(\;«) obtained in Lemma 3, f;(\;a) has a minimum
within the range (6;/2, 8;) for (o — a*) (o — @*) < 43.
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Take any € > 0 and let €; = min(e, b/2). Now f;(\; @) is uniformly
continuous for A € [0;/2,6;] and (o — o*)' (v — &*) < &;. Therefore,
there exists a § with 0 < § < §; such that

[filha) = filh )] < ex for (a—a*) (a—a*) < ¢

and X € [00/2, 3]
Then, because f;();a*) has its only minimum at A = 6;,
i i(Aa) — i i(A o) <er <
ey )~ Ry fildi el <1 S €
for (a—a*) (a—a*) < 4.

But ¢;(a) = max(0,infyc(o,a,:(a)) fi(A;@)), when f;(X; ) has a mini-
mum in (0, Aj;(«)). Therefore,

lei(a) —ci(a)| <e  for (a—a*) (a—a*) < 4.

Hence ¢;(«) is a continuous function of o at oo = a*. d

These results may be extended to cover the more general reducible
epidemic. By reordering the types, I' may be expressed in normal form
(see Gantmacher [4, p. 75]), i.e.,

Flyl O e 0 0 e 0
0 ISP s 0 0 - 0
= 0 0 - Fg,g 0 . 0 ,
Fgr1p0 Tgr12 - Ty Tgri941 -+ 0
Fs,l Fs,Q Fs,g Fs,g+1 Fs,s
where I';; is nonreducible for i = 1,... ,s; and foreachi = g+1,... ,s

there exists a j < ¢ such that I';; # 0.

Consider the speed of propagation of an epidemic in a specific di-
rection. For each i = 1,...,g, define ¢; = 0 if p(T;;) < 1. For each
i=1,...,9, if p(Ty) > 1, ¢; is defined to be the infimum of the pos-
itive speeds for which wave solutions in that direction exist when we
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consider an § — I — R epidemic amongst group ¢ individuals only, all
other groups of individuals being excluded from the epidemic.

Infection can be transmitted from the j* group to the i*" group if
there exists a sequence {i,,7 = 1,... ,k} of distinct elements such that
t1=jand i =4and I'; #0forr=1,... ,k—1.

Infection will occur in the i*® group if either there is infection present
in i*" group at time ¢ = 0 or if there is infection present at time t = 0
in another group from which it can be transmitted, possibly through a
sequence of infections, to the i*" group.

Trt1

Then the speed of propagation in a specific direction for types in
group ¢ is max{c;}, where the max is taken over all j such that the
initial infection causes some infection in group j and the j*' group
can infect the i*® group, perhaps through a sequence of infections.
Again, the speed is a continuous function of the direction of propagation
considered.

Equivalent results can be obtained for the mean expectation velocity
of the stochastic epidemic and the asymptotic speed of translation of
the distribution function of furthest speed in the contact birth process.
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