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STABILITY ANALYSIS OF IMPULSIVE
SYSTEM VIA PERTURBING FAMILIES
OF LYAPUNOV FUNCTIONS

XINZHI LIU

ABSTRACT. We extend, in this paper, Lyapunov’s sec-
ond method to impulsive systems and prove various stability
criteria in a unified set up employing perturbing families of
piecewise continuous Lyapunov functions. Examples are dis-
cussed which demonstrate the advantage of the technique and
the effect of impulses.

1. Introduction. It is well known that Lyapunov’s second method
is an interesting and fruitful technique that has gained increasing
significance and has given decisive impetus for modern development
of stability theory of differential equations. A manifest advantage of
this method is that it does not demand the knowledge of solutions and
therefore has great power in applications. A stability property can be
considered as a family of properties depending on some parameters.
Consequently, when we employ a single Lyapunov function to prove
a given stability property, the Lyapunov function used is assumed
to play the role for every choice of these parameters. As a result,
if we utilize a family of Lyapunov functions instead of one, it is
natural to expect that each member of the family has to satisfy weaker
requirements. This is precisely the idea of using a family of Lyapunov
functions [11]. An interesting idea of perturbing Lyapunov functions
is introduced in [6] which is useful in the study of nonuniform stability
properties under weaker conditions. These ideas are further utilized and
extended recently in the study of stability properties of nonautonomous
ordinary differential systems [8]. Since in many problems of nonlinear
mechanics [1], biology [3] and control theory [2], solutions experience
jump discontinuities at certain moments of the evolution process, the
study of impulsive dynamical systems has been assuming a greater
importance lately [5, 10]. Employing piecewise continuous Lyapunov
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functions and the theory of impulsive differential inequalities, we wish
to extend Lyapunov’s method in the light of [8] to impulsive differential
systems. In Section 2, we give some basic notions and introduce
the concepts of (hg, h)-stability which enable us to unify a variety of
stability notions found in the literature and offer a general framework
for investigation. Consequently, our results developed in Section 3
include many interesting special cases. Also in Section 3, we discuss
some examples which clearly demonstrate the crucial dependence on the
parameters of the Lyapunov function and the differential inequalities.
The advantage of using one parameter family of Lyapunov functions is
further revealed in the case of uniform stability properties (Theorems
3.2-3.3). It is important to note that impulse effects do contribute
to yield stability properties even when the corresponding differential
system without impulses does not enjoy any stability behavior at all.
See Remark 1 following the proof of Theorem 3.1 in Section 3 for a
discussion of this point.

2. Preliminaries. Consider the impulsive differential system

x' = f(tvm)a t F t,
2.1
( ) {AmZIk(J)), t:tk,k:1,2,...,

where 0 < t; < tg < -+- < txp < --- and tp — o© as k — oo;
f: Ry x R* — R™ is continuous on (tx_1,t;] X R™ and

lim t,y) = f(th, x exists;
(i T 08 = )
t>t

and I : R® — R" is continuous for each £k =1,2,... .

Let us list the following classes of functions for convenience.

PC ={o: Ry — R, continuous on (tx—_1, x| and lim+ o(t)
tt)

= o(t;) exists].
K = [0 € C[Ry4, Ry], strictly increasing and o(0) = 0].
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PCK=[c:Ry XRy = Ry,0(-,u) € PC for each u € R, and
o(t,-) € K for each ¢t € Ry].
F'=[h:Ry xR"— Ri,h(-,x) € PC for each x € R",h(t,-) €
C[R",Ry] for each t € R, and infh(t, z) = 0].
vo=1[V:R; x R® = R, continuous on (t;_1,t;] X R", locally
Lipschitz in = and lim  V(ty)=V(t, ) exists].

(t,y) = ()
t>tg

Definition 2.1. V € vy. Then for (¢,z) € (tx—1,tr) x R", the upper
right derivative V (¢, z) with respect to the impulsive differential system
(2.1) is defined as

DV (t,2) = Tim sup(1/8)[V (¢ + 6,2+ 5f(t,2)) — V()]

Definition 2.2. Let hg,h € I'. Then we say that (i) ho is finer than
h if there exists a 6 > 0 and a function ¢ € K such that ho(t,z) < ¢
implies h(t,z) € ¢(ho(t,z)); (ii) ho is weakly finer than h if there exists
a d > 0 and a function ¢p € PCK such that ho(t,z) < § implies
h(tv x) < 1/’(@ hO(tv Z))

Definition 2.3. Let V € vy and hg,h € I'. Then V (¢,z) is said to
be

(i) h-positive definite if there exists a constant p > 0 and a function
b € K such that h(t,z) < p implies b(h(t,z)) < V (¢, x);

(ii) ho-decrescent if there exists a constant ¢ > 0 and a function
a € K such that ho(t,x) < ¢ implies V(t,2) < a(ho(t, 2));

(iii) weakly ho-decrescent if there exists a constant § > 0 and a func-
tion d € PCK such that ho(t,z) < 0 implies V (¢, z) < d(¢, ho(¢, z)).

Definition 2.4. Let A : Ry — Ry be a measurable function.
Then A(t) is said to be integrally positive if [, A(s)ds = oo whenever
I =U2 [a;,Bi], o < Bi < ajp1 and B; —a; > 6 > 0. It is easy to see
that A is integrally positive if and only if lim;,o inf [77 A(s)ds > 0
for every v > 0 [4].
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Definition 2.5. The impulsive system (2.1) is said to be

(i)  (ho, h)-stable if given ¢ > 0 and ¢ty € R, there exists a
0 = 6(to,€) > 0 such that ho(to, zo) < ¢ implies h(¢, z(t)) < &, t > to,
for any solution z(t) = z(t, to, zo) of (2.1) with initial value z(t9) = zo;

(ii) (hg, h)-uniformly stable if ¢ in (i) is independent of to;

(iii) (ho, h)-asymptotically stable if it is (hg, h)-stable and for ¢ €
R there exists o = a(tg) > 0 such that hg(to,z0) < « implies
lim;_, oo (¢, z(t)) = 0 for any solution z(t) = x(¢,t9, zo) of (2.1);

(iv) (ho, h)-uniformly asymptotically stable if it is (hg, h)-uniformly
stable and for any € > 0 there exist two positive numbers « and
T = T'(e) such that for ¢g € R4, ho(to, o) < « implies h(t,z(t)) < e,
t > to+ T, for any solution xz(t) = z(¢,to, o) of (2.1).

The concepts of (hg,h)-stability enable us to unify a variety of
stability notions found in the literature, such as stability of the trivial
solution, partial stability, stability of an invariant set, and conditional
stability, to name a few. See [7, 8, 9] for a discussion of this point.

We denote by [+ and [a]- the positive and negative parts of the
real number «, respectively, i.e., [¢]+ = max{0, a}, [a]- = max{0, —a}
[4]. We assume that the solutions of (2.1) exist for all ¢ > 0.

3. Main results. We state and prove our main results in this
section. Let us start with proving a nonuniform stability result under
weaker assumptions which also shows that, in those cases where the
Lyapunov function found does not satisfy the desired conditions, it is
fruitful to perturb it rather than to discard it.

Theorem 3.1. Assume that
(i) ho, h €T and hy is weakly finer than h;

(ii) for any B > 0 there exists o > 0 such that ho(tg,x) < o implies
ho(ti,z + Ix(z)) < B for k=1,2,...;

(i) there exists 0 < py < p such that h(tg,z) < po implies
h(th,x + Ix(z)) < p for k=1,2,...;
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(iv) Vi €vg - Vi(t,x) is weakly ho-decrescent and satisfies

(3.1) DVi(t,z) < g1(t, Vi(t, z)), (t,z) € S(h,p), t # t,

Vilth, o + Ie(2)) <o Vit 2),  (tk,)€S(h,p), k=1,2,...,

where g1 : Ry X Ry — R is continuous on (ty_1,tk], g1(¢,0) = 0
and im )0 91(60) = g1(tf,u) ezists 1/),(91) : Ry — Ry is
t

>t

nondecreasing and w,(cl)(ﬂ) =0 foralk=1,2,...;
(v) for everyn > 0 there exists Vo, € vy such that

b(h(t,il?)) < %n(tax) < a(hO(t7 I)),

(33) (t.2) € S(h,p) N S (ho, ),

(3 4) D+V1(t7$) + D+V?U(t7x) < gQ(tv Vl(t7$) + VQT/(tJ;))’
' (t,z) € S(h,p) N S (ho,m), t # ti,

(3.5)

Vi(tf, @ + In(@)) + Vay (8 @ + Tu(2)) < 0 (Vilte, @) + Vay (te, ),
(t,l‘) € S(h,p)ﬂSC(hO,n), k = 172a"' ’

where a,b € K, gy : R+ X Ry — R is continuous on (tg—1,tk], g2(t,0) =
0 and Hm; p) (1 ,u) 92(t,v) = ga(t, u) eists, w,(f) : R, — Ry is
t

>ty

nondecreasing and w,(f) (0)=0 forallk=1,2,...;

(vi) The trivial solution of

= g1(t,u), t # ty,
(3.6) @p S((m» k=1,2,...,
u(ty) =uo =
is stable and the trivial solution of
w' = go(t,w), t # tg,
(3.7) wty) =P (wty), k=1,2,...,

w(tar):wOZO
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is uniformly stable.

Then the system (2.1) is (ho, h)-stable.

Proof. Let 0 < ¢ < pp and tp € Ry be given. Without loss of
generality, we assume that t; < tx, £k = 1,2,.... Since the trivial
solution of (3.7) is uniformly stable, there exists dy = do(¢) > 0 such
that

(38) ’UJ(t) < b(E), t > to, if wo < (50,

w(t) = w(t,to, wp) being any solution of (3.7).

The stability of the trivial solution of (3.6) implies that, given
d0/2 > 0 and ty € R, there exists 6* = §*(¢g, &) > 0 such that

(3.9) u(t) < do/2,t > tg provided wup < 67,

where u(t) = u(t, ¢, uo) is any solution of (3.6). Since Vi (¢, x) is weakly
ho-decrescent, there exist constant og > 0 and function ¢¢9 € PCK such
that

(3.10) ‘/1(75,37) < ¢0(t, ho(t, x)), if ho(t,.l‘) < 09-

Also, the fact that hy is weakly finer than h implies that there exist
constant o1, 0 < 01 < 09, and function ¢; € PCK such that

(3.11) h(t,z) < ¢1(t, ho(t, z)), provided hy(t,z) < o,
and
(312) ¢1(t,0’1) < po-

Since a € K and ¢; € PCK, we can find a constant §; = d1(tg, ),
0 < 01 < o1, such that

(313) a(51) < 60/2 and ¢1(t0,51) <e.
By assumption (ii), there exists constant o > 0 such that

(3.14) ho(tk,z) < a implies ho(tg, = + Ix(z)) < &1.
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Choose ug = Vi (to, o). Since ¢y € PCK and inequality (3.10) holds,
there exists constant d; = d3(tg,€), 0 < 62 < min(po, §1,a,01), such
that

(315) ho(to,wo) < 2 implies Vi(to,:l?o) < ¢0(t0,h0(t0,$0)) < 8",

We set § = d2 and suppose that ho(to,z9) < §. Then we have from
(3.11) and (3.13),

(3.16) h(to, o) < ¢1(to, ho(to, z0)) < $1(to,d1) <e
We claim that
h(t,z(t)) < e, t >t

for any solution z(t) = x(t, to, zo) of (2.1) with hg(tg,zo) < J. If this is
not true, then there exists a solution z(t) = x(t, to, zo) with hg(to, zo) <
d, and tg < t* < t* such that t, < t* < tgy1, tm < t* <ty for some
k,m,0 < k < m, satisfying

(3.17) &8 < ho(t, z(tY)), ho(t,z(t)) < 6, t € [to, tk),
(3.18) e < h(t',z(t*),  h(t,z(t) <e,  tE[to,tm]

Since 0 < § < @ and 0 < € < pp, it follows from (3.14), (3.17), (3.18)
and assumptions (ii)—(iii) that

ho(tl,z) = ho(t], zk + Ix(zk)) < 01,
h(tjr_w ;) - h(t:-u Tm + Im(mm)) < Py

where t; = x(t1,), m = z(t,,). Hence, we can find t° and #° such that
tr <tO <t t, <t®<{ and

(3.19)
§ < ho(t,z(t°)) < 81, and ho(t,z(t)) < 61, t € [to,t"].
(3.20) ¢ < (%, z(f°)) < p and h(t,z(t)) <p,  tE€ [to, 1]

Thus, we have

(3.21) (t,z(t)) € S(h,p) N S (ho,08),  te[t° )
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Setting n = & we see by (v) that there exists a Va2, € vy satisfying
(3.3)-(3.5). Hence, letting m(t) = Vi(t,z(t)) + Vo, (¢, z(t)) for t €
[t9, %], we obtain from (3.4)—(3.5),

(3.22) {D+m(ii (t,m(t), te [0+t

92
Dm(ty), ;€ [t°,7).

()

Thus by the comparison theorem [5], we get
(3.23) m(t) < ya(t,t°,m(t%)  te[t ),

where 72(¢,t%, m(t%)) is the maximal solution of (3.7). Also, we can
obtain similarly the estimate

Vi(t,z(t)) < mlt to, Vilto, o)),  t € [to,t°],

71 (¢, to, Vi (to, zo)) being the maximal solution of (3.6). Hence, by (3.9)
and (3.15), we have
Vi(t°, z(t%)) < b0/2.

Also, by (v) and (3.13), we get
Van (2, 2(t°)) < a(ho(t°, z(t°)) < a(d1) < 8o/2.

Hence, it follows that m(t°) < Jp and therefore (3.8) and (3.23) imply
that

m(t’) < 72 (8, t°,m(t%)) < b(e).
But m(°) > Vi, (£ z(f°)) > b(h(f°, z(f°)) > b(c), which leads to a
contradiction. Hence, the proof is complete. a

Remark 1. The function g;(¢,u) = p(t)¢(u), where p € C[R4, Ry]
and ¢ € K, is admissible provided for some py > 0 and each o € (0, pg),

( ) tht1 ( ) 1/’,(‘:1)(0) ds
3.24 / p(s ds+/ — <0, k=1,2,....
tr o ¢(S)

In fact, let ¢y € (¢;,t;41] and 0 < € < po be given. Choose § > 0 such

that § < min(s,i/),(cl)(s)) and suppose that 0 < uyp < §. We claim that
u(t) < e, t > tg, t € (to,tj41], where u(t) = u(t,t9,up) is any solution
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of (3.6). If this is not true, we have u(t*) > ¢ for some t* € (o, ¢j41].
Then we get

€ ds € ds ¢ ds ult™) s
A;1><g)@</; wslawmsl,

S/t* p(s) dSS/thp(S) ds,

to t;

tit1 ¢§1)(E) ds
p(s)ds +/ — >0,
[ [5G

J

contradicting (3.24).

Hence, u(t) < € for t € [to,tj+1]. Let i > j + 2 and assume that
u(t) < e for t € (tj4+1,t;]. Then for ¢ € (¢;,t;41], we have

(3.25) /u ::) % < /t t p(s)ds < /t H p(s) ds.

which implies

i i

Since u(t;) = wgl)(u(ti)), it follows that

/uui) ds /w,‘”w(ti)) ds
wty () Juen o(s)’

which, together with (3.25), implies

u®) g /ti+1 v wt)) g
— < p(s) ds +/ — <0
/u(t,-) B(s) = Jy, u(ts) P(s)

Hence, u(t) < u(t;) < e fort € (t,t;41] and it then follows by induction
that u(t) < € for t > ty. We thus have stability of the trivial solution
of (3.6). If, in particular, p(t) = 1/t, t > 1, ¢(u) = 2u, l,b,(cl) = (1+ag)?
with |14+ ag| < k/(k+1) for all k = 2,3,4,..., then it is easy to check
that condition (3.24) is satisfied and hence u = 0 of (3.6) is stable.
We note that for the corresponding differential equation z’ = 2z/t,
the trivial solution is not stable. This shows that impulse effects do
contribute in stabilization of unstable systems.
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Remark 2. If Vi = 0 and g; = 0 in Theorem 3.1, then we get
the following result which shows the advantage of utilizing a family
of Lyapunov functions in proving uniform stability.

Theorem 3.2. Assume that conditions (it) and (ii7) of Theorem 3.1
hold. Suppose further that

(i) ho,h €T and hy is finer than h;
ii) for every n > 0, there exists a V,, € vy such that
n

Vo (t,z) <a(ho(t, x)), (t,z) € S(h, p)NSC (ho,n),
g(t,Vn(t,w)), (tvx) € S(h,p) n SC(hOan):

t# tk,
‘/"'I(t:’x + Ik(x)) S ¢k(Vn(tk,$)), (tk,x) € S(h’ap) ﬂ Sc(ho,ﬂ),
k=1,2,...,

where a,b € K, g : Ry Xx Ry — R is continuous on (tg—1,tl,
g(t,0) = 0 and lim vy (1, u) 9(t,v) = g(t,u) emists, ¥y, : Ry — Ry
t

t>
is nondecreasing and Py (6) =0 foralk=1,2,...;

(i) the trivial solution of

u = g(t,u), t # ti,
u(th) = Yr(u(ty)), k=1,2,...,
uty) =up >0

s uniformly stable.

Then the system (2.1) is (hg, h)-uniformly stable.

In the following result, the functions g and v are given so that
(ho, h)-uniform asymptotic stability is obtained.

Theorem 3.3. Assume that conditions (ii)—(iii) of Theorem 3.1 hold.
Suppose further that

(i) ho,h €T and ho is finer than h;
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(ii) for every n > 0, there exist an integrally positive function \,(t)
and V,, € vy such that for a,b € K,

Vo(t, @) <a(ho(t,z)),  (t,2)€S(h, p)NS (ho,n),
_)‘Tl(t)ﬂ (taw) € S(hap)ﬂsc(ho,n),

t 7é tka
Vn(tz,m + I (z)) < Vy(tk, x), (tg,z) € S(h,p) N Sc(ho,n),
k=1,2,....

Then the system (2.1) is (ho, h)-uniformly asymptotically stable.

Proof. Tt follows from Theorem 3.2 that the system (2.1) is (ho, h)-
uniformly stable. Then, taking € = pg, we set do = 6(po). Let to € R4
and ho(to, o) < . Then for any solution z(t) = z(t,to, xo) of (2.1),
we have

(3.26) h(t,z(t)) < po,  t>to.

Let 0 < £ < pg and § = §(¢) corresponding to (hg, h)-uniform stability.
Let us prove that there exists a t§ > ¢p such that

(3.27) ho(t, 2(t5)) < 6(e)-
If there is no such ¢, we would have
(5§h0(t,$(t)), tzto.

Then using the assumptions of the theorem, it follows that
t

(3.28) Vi (t,2(t)) < Vi (to, o) — / A(s)ds, €3> to,
to

and hence V,(t,z(t)) = —oo as t — co. This contradicts the nonnega-
tiveness of V; and therefore there exists ¢§ such that (3.27) holds. We
thus have

h(t,z(t)) < e, t > tg,

z(t) = z(t,tg, o) being any solution of (2.1).
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Now choose T > 0 such that

/T An(s)ds > 2a(do).

Then it follows from (3.28) that the interval [tg,to + 1] contains a
number t§ such that (3.27) holds. We thus conclude that the system
(2.1) is (ho, h)-uniformly asymptotically stable. The proof is complete.
O

As an application of Theorem 3.3, we consider the following example.

FEzxzample 3.1. Consider the impulsive differential equation

" +e(t)r' + Bx+y2® =0, t#ty,
(3.29) Ax = 7bk,$, t= tk,

Az =0, t=ty, k=1,2,...
where e € C[R4,R1], 0<e1 <e(t) <ez, 5>0,7v>0,0<b, <1 for
allk=1,2,....

Setting y = z’, (3.29) becomes

! =Y, t#tka
"= —e(t)y — Br —yx3, t#t
(330) Yy C( )y IBx Yz, 7& k>
Az = —byx, t = ty,
Ay =0, t=ty, k=1,2,....

Now, for any 0 < 5 < 1, choose a function ¢, € C'[Ry, Ry] such that

]., 0 <s< 77/2’
31 _
(3.31) bn(s) {07 .
Next we define functions 1/13’ and 1/177 by
(3.32)
o () = {qﬁn(yl), if < /22 + 32 <1 and e(t)y + Bz +yz* > 0,
nv 0, otherwise.
(3.33)

- = ¢W(|y‘)v ile < \/m <1, e(t)y + Bz +’YZ3 <0
by (@,y) =

0, otherwise.
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Construct a Lyapunov function V,(z,y) by

v

(330)  Vyle,y) =%

+ 3027 + et + @y (2,9) — Uy (9)

where u > 0 is a constant to be determined later.

Let By = min{1/4,3/4} and a9 = 2max{1/2,5/2+~v/4,50/2}. Then
it is not difficult to verify that for u < Byn/2,

(3.35) Bo(z® +¥%) < Vy(z,9) <ao(2® +3%), n<Va2+y2<1.

For t # ¢, we obtain from (3.34) that
(3.36)
D*Vy(z,y) < —e(t)y” — u(¥y (z,y) — ¥y (2, 9))(e(t)y + Bz + ya?)

+u(DT Y (x,y) — Dy, (2,9))y.
19, If |y| > n, then it follows from (3.36) that
(837)  D'W(wy) < —am’,  n<Valtyi<lL
20, Suppose that 7/2 < |y| < n. Then if u < (e;n?)/(§M), where
M= mas (D65 )|+ max D 29)
Q= {(z,y) € R%n< Va2 +y?> <1,n/2 < |y| <n},
we have from (3.36)
(338)  D'Vy(z,y) < —en’/5, n<Valty? <L
3%. In case |y| < n/2 holds, then D¥¢;f (z,y) = Dy, (x,y) = 0 and

D+VTI(£7 y)

A

< —e(t)n? — ule(t)y + Bz + ~2°|
< —e1y? — umin{max(0, e;|y| — |Bz + yz3|),
max(0, |8z +~z°| — e2ly|)}.
It is easy to see that the function
F(z,y) = ey’ + umin{max(0, e1|y| — |8z + yz°|),
max(0, |8z +~2°| - e2ly|)}
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is continuous and positive on the set n < (/z2+4+y2 < 1. Set
u = min{Byn/2, (exn?)/(§M)}. Then there exists N > 0 such that

N = max F(z,y)

n<vae?+y? <1
Thus we have
(3.39) DV, (z,y) < —N, n<+az2+y?<1.

Let A\, = min{e1n?, (e1/8)n?, N}. Then it follows from (3.37), (3.38)
and (3.39) that

(3.40) DTV, (z,y) < =Xy, n<+Vz2+y? <1, t#t.

Since 0 < by, < 1 for all k = 1,2,..., a direct calculation from (3.34)
gives

(341) V"I(I+7y+) S‘/’f](xay)a t=tg, k:172a .

Setting hg = h = /22 + 32, b(s) = Bos? and a(s) = aps?, we see that
all conditions of Theorem 3.3 are met and therefore we conclude that
the trivial solution (z,y) = (0,0) of (3.30) is uniformly asymptotically
stable.

We shall next consider a result on asymptotic stability in the same
spirit as that of Theorem 3.1.

Theorem 3.4. Let assumptions (1)—(iii) of Theorem 3.1 hold. Sup-
pose further that

(i) V1 € vy, Vi(t, ) is weakly hyo-decrescent and there exists Vo € vy
such that Va(t, x) is h-positive definite and

(3.42) D Vi(t,z) < —A(t)p(Va(t,z)),  (t,z) € S(h,p), t # t,
(3.43)
m(t;7x+fk(w))§m(tk’x)’ (tk,x)ES(h,p), i:1a27 k:1a27 )

where ¢ € K and A(t) is integrally positive;
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(i1) for every solution x(t) of (2.1) such that (t,z(t)) € S(h,p) the
function

t
Ga)  [IDVaGss(e)]Eds, ke Vo= Vi Va
0

is uniformly continuous on Ry. Moreover, if [-]+ stands in (3.44), then

(3.45)
Vv3(t2‘7m+lk:(x)) < %(tkax)v (tkaw) € S(hvp)7 k= 1,2,...

and if [[]— stands in (3.44), then
(3.46)
Vé(t;rax + Ik(x)) > Vé(tkax)a (tkax) € S(hap)a k= 1727 s

iii) for eve > 0, there exists V,, € vy such that
Ty n n

b(h(t,z)) < Vy(t,z) < al(ho(t, x)), (t,z) € S(h, p) NS (ho,n),
DTVi(t,z) + DTV, (t,2) <g(t, Vi(t, ) +Vy (t, 2)),
(t,2) €S(h, p) N S (ho,m), t # ti,
Vit + In(2) + Vo (¢ + Ik (@) < i (Va(te, 2) + Vi (te, @),
(tg, ) € S(h,p) N S (ho,n), k=1,2,...,

where a,b € K, g : Ry x Ry — R is continuous on (tg_1,tx),

g(t,0) = 0 and lim )4, ,u) 9(t, V) = g(tf,u) exists, ¥, : Ry — Ry
t>t
is nondecreasing and Py (6) =0 foralk=1,2,...;

(iv) the trivial solution of
u' = g(t,u), t # ty,
u(tl) = vr(u(tr), k=1,2,...,
+
o)

s uniformly stable.

Then the system (2.1) is (ho, h)-asymptotically stable and lim;_,

Vs(t,z(t)) exists and is finite for any solution of (2.1).
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Proof. Since (3.42) implies that DtVi(t,z) < 0, it follows from
Theorem 3.1 that the system (2.1) is (ho, h)-stable. Choosing € = py
and designating by dyp = d(to, po), it is clear that we have

(3.47) h(to,z0) < & 1implies h(t,z(t)) < po, for ¢t > to,

where z(t) = z (¢, tg, zo) is any solution of (2.1) with h(tg, zo) < do.

Let x(t) be any solution of (2.1) satisfying (3.47). Define the func-
tions m;(t) = Vi(t,z(t)), i = 1,2,3, so that my(t) = ma(t) + ms(t).
Assumption (i) implies that my(t) is nonincreasing and bounded from
below, and therefore lim; ,.omi(t) = 0 < oo. We claim that
lim; o infma(t) = 0. If this is not true, then there exist constants
d > 0 and T7 > ty such that my(t) > 4§, t > T7. It follows from (3.42)
and (3.47) that

D ma(t) < —X(t)g(ma(t)) < —A(6)$(0),  t =Ty, t#tr,

which, together with (3.43), implies

lim ma(t) < ma(T1) — 6(6) /oo A(s) ds = —oo.

t—o0 T

This is a contradiction.

Suppose now that lim; ., supmso(t) > 0. Then there exists a con-
stant v > 0 such that lim; o, sup ma(t) > 37. Since lim; o, m1(t) =&
and my(¢) is nonincreasing, there exists a constant T, > ¢ such that

(348) g Z ml(t) S o+ Y, t Z T2.

For definiteness, suppose that -]+ stands in (3.44) and consequently
(3.45) holds. Thus we can choose a sequence

Th<ap <B1<-<aj <Bj<--
such that for j =1,2,...,
(3.49) ma(ay)=37, m2(B;) =", y<ma(t) <3y, t € [ay, Bl
From (3.48)—(3.49), it is easy to see that, for j = 1,2,...,

(3.50)  my(aj) —ma(a;) <o —2y,  ma(Bj) —ma(B;) =0 — 1.
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Since my (t) = ma(t) + ms(t), it follows from (3.50) that

Bj
0< < ma(y) ~malay) < [ 1D Vals,a(s) ds

¥

which shows by the uniform continuity of (3.44) that there exists a
constant o > 0 such that

(351) ,8]—04]2(5, j:1,2,

By (3.42), (3.43), (3.49) and (3.51), we then get

oo

lim mq(t) < mqi(T2) — A(8)p(ma(s)) ds

t—o0

< mi(T2) = 6() [ As)ds = =

where I =U32, [, B;]. This contradiction implies that lim; o ma(t) =
0. When [-]- stands in (3.44) and (3.46) holds, the proof is similar.
Since Vz(t, x) is h-positive definite, we get in turn lim;_, o h(¢, 2(t)) = 0.
Thus we conclude that the system (2.1) is (hg, h)-asymptotically stable.

Since lim; oo m1(t) = o and lim; ,oo mo(t) = 0, it follows that
lim;_, o m3(t) = o and this proves the last assertion of the theorem.
The proof is therefore complete. u]

Remark. If there exist measurable functions ¢;(¢) < 0 and ¢2(¢) > 0
such that f(f qi(s) ds is uniformly continuous on R,

Ch(t) §D+‘/3(t,$), t # tk,
Vg,(t},ac + Iy CL')) > %(tkax)a

or

D+‘/3(t,$) S Q2(t)
Va(th, o + Ir(z)) < Va(te, z),

then condition (ii) is satisfied, where

DTVs(t,x) = lim sup(1/6)[Va(t + 0,z + 3/ (¢,z)) = Va(t,@)]-
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If we set V;, = 0, g = 0 and assume that V3 € v in Theorem 3.4, then
we have the following result.

Theorem 3.5. Assume that conditions (i)—(iii) of Theorem 3.1 and
conditions (1)—(ii) of Theorem 3.4 hold. Suppose further that V3 € vy
in Theorem 3.4. Then the system (2.1) is (ho, h)-asymptotically stable.

Proof. Since V3 € vy implies that Vi (¢, z) is h-positive definite, it then
follows from Theorem 3.1 in [9] that the system (2.1) is (ho, h)-stable.
The rest of the proof is the same as that of Theorem 3.4. u]

We conclude our paper by discussing another example.

Example 3.2. Consider the generalized Liénard equation with
impulse effects

2" +a(t)g(z, ")’ +b(t)f(x) =0, t#t,
(352) { Az =0, t =ty

Az = —bya', t=ty, k=1,2,...,
where a : R, — R, is integrally positive, g : R> — R, g(z,2') > L >
0if Va2 + 22 < p, p>0,b: Ry — R, is continuously differentiable,
nonincreasing and fg b(s) ds is uniformly continuous on R4, f : R — R
is continuous and f(z)z > 0ifz #0,0< b <1, k=1,2,....

Setting y = z’, (3.52) becomes

T = t# tr,
"= —aft —b(t t£t
(3.53) Y a(t)g(z,y)y —b(t)f(x), t# tk,
Az = 0’ t= tka
Ay = —bpy, t=ty, k=1,2,....

Since f(z)x > 0, z # 0 implies f(0) = 0, it follows that (3.53) admits
the trivial solution (z,y) = (0,0). Let Vi (t,z,y) = y?/2+b(t) [y f(s)ds
and Vu(t,z,y) = y*/2. Then for t # ty,

DAt 2,9) = ~2a(t)g(e )Va(t9) + (1) | " f(s)ds

< _2La(t)‘/2(taway)7 V z? + y2 <p,

(3.54)
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and

Vit o+ Ay + B9) = (L= b2 24 00) [ 1(s)ds
0

S‘/l(tkawvy% k:1727

(3.55)

Let Vs(t,z,y) = Vi(t,z,y) — Va(t,z,y) = b(t) [y f(s)ds. Then
Va(t,@,y) >0, Va(ty, o+ Az, y+Ay) = Va(tg, z,y), forall k = 1,2,...,
and

(356)  D*Vi(t,z,y) = b(t) /0 F(s)ds + b(Owf(z), £t

Since f(z) is continuous, there exists constant M > 0 such that
fle) <M, if [z[<p.

Then by (3.56) we have

(357)  DVVa(t,z,y) < pMb(t),  t#tk, VA 147 <p.

Clearly, the function fot pMb(s) ds is uniformly continuous on R .

Set h = |y|l, ho = /22 +y2. Then it is easy to see that Vs is
h-positive definite and V; is weakly hg-decreasing. It thus follows
from Theorem 3.5 that the trivial solution of (3.53) is asymptotically
stable with respect to y, and for every solution of (3.53) the function

b(t) Ow(t) f(s) ds has a finite limit.
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