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ON A CLASSICAL BOUNDARY VALUE PROBLEM
INVOLVING A SMALL PARAMETER

STEPHEN J. KIRSCHVINK

ABSTRACT. Differential inequality techniques are used to
provide accurate information throughout the interval [a,b] on
boundary layer solutions of the problem

ey’ = f(t,y)y" +g(t,y) for a<t<b
y(a) =A and y(b) =B,

subject to weak regularity requirements on the data (¢ > 0
is a small positive parameter). Such accurate information
has been previously obtained by asymptotic expansion tech-
niques coupled with the contraction mapping method, but
only subject to more severe regularity requirements on the
data, whereas the differential inequality technique has previ-
ously given such accurate information subject to weak regular-
ity requirements, but only outside the boundary layer, with a
loss of accuracy occurring inside the boundary layer. The de-
tailed approximations of solutions obtained here may be very
useful in studying solutions with other types of singularity
perturbed behavior, such as shock or interior layer behavior.
Problems of this type arise in fluid dynamics.

1. Introduction. In this paper is studied the singularly perturbed
scalar boundary value problem

(1) ey’ =fty)y +glty), a<t<b,
y(a) =A and y(b) =B,

where € > 0 is a small parameter, and where y, f, g, A, and B are real
valued quantities. This problem has been much studied in the litera-
ture, mainly by the method of differential inequalities and the method
of contraction mappings. The former method has provided the exis-
tence of solutions and detailed information on solutions away from the
boundary layer, subject to relatively weak smoothness requirements
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on the data, but detailed information has not been obtained inside the
boundary layer. The latter method has provided existence and detailed
information on solutions throughout the interval [a, b], but only subject
to relatively stronger smoothness requirements. Differential inequali-
ties are used here to obtain detailed information on solutions through-
out the interval including precise and detailed information inside the
boundary layer, subject to relatively weak smoothness requirements on
the data. This result is obtained by defining lower and upper solu-
tions (o and f) in a fruitful way, which may provide useful insight in
attacking other classes of singularly perturbed differential equations.

Solutions possessing a single boundary layer are considered for (1.1),
and in particular interior layers and (interior) turning points are ex-
cluded. Such solutions of (1.1) possessing a single boundary layer have
been studied by many authors including Coddington and Levinson [5],
Brish [2], Wasow [17], Erdelyi [7, 8], O’Malley [14, 15], Chang [3,
4], Howes [10], van Harten [9], and Smith [16]. Most of these works,
however, have made rather strong assumptions on the “boundary layer
jump,” the sign of the function f(¢,y), or on the regularity of the func-
tion f, or have not provided the fine details, quantitatively speaking,
for the solutions y = y(¢, ) inside the boundary layer.

A very general sufficient condition for boundary layer behavior was
given many years ago by Coddington and Levinson [5]. We use the
same assumptions as Coddington and Levinson [5], except that we
define a certain domain D in a slightly different manner which seems
more natural when using differential inequalities. Since we show the
existence of a solution y = y(¢,¢) of (1.1) that is bounded by functions
a(t,e) and B(t,€), namely a(t,e) < y(t,e) < B(t,€) for ¢ in [a,b], we
define the domain D as follows:

D={(t,y):a <t <balte) <y<pBte)l

where a(t,¢) and 5(t,€) are lower and upper solutions of problem (1.1)
given explicitly by equations (1.4) and (1.5), respectively. We will
show that S(t,e) — a(t,e) = O(e) for all ¢ in [a,b] and hence obtain
very detailed approximations for solutions throughout the interval [a, ],
including the boundary layer. See Figure 1.1.

The following theorem is a classic result given by Coddington and
Levinson [5]. It gives sufficient conditions for the existence of a solution
with boundary layer behavior at the left endpoint (¢ = a).
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FIGURE 1.1(a). [A < u(a)].

Theorem 1.1 (Coddington and Levinson). Assume that

(1) the reduced problem 0 = f(t,u)u’ + g(t,u), u(b) = B, has a
solution u = u(t) of class C®]a, b];

(2) f and g are of class CY) with respect to t and y for (t,y) in D;

(3) the reduced solution uw = u(t) is globally stable, that is, there
exists a positive constant k such that f(t,u) < —k for t in [a,b];

(4) the inequality
u(a) — A) - ! f(a,s)ds >0
(u(a) ) /u(a) (a,s)ds

holds for A <n < u(a) if A < u(a), or for u(a) <n < A if u(a) < A.
Then, for each sufficiently smalle > 0, (1.1) has a solution y = y(t, )
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FIGURE 1.1(b). [A > u(a)].
in D such that, for each fized t in (a,b],

lim y(t,e) = u(t)

e—0

and

lim o' (¢, &) = /(t).

lim y'(¢,€) = u'(?)
Under these assumptions Coddington and Levinson showed that this
solution is unique in the sense that there is no other solution of (1.1)
which satisfies the stated limiting relations.

Using the method of differential inequalities, Howes [10] proved the
following theorem which provides only limited information inside the
boundary layer.
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Theorem 1.2 (Howes). Under the assumptions of Theorem 1.1 we
can further conclude that for t in [a,b],

y(t,e) = u(t) + wi(t,e) + O(e)
and
y'(t,e) =/ (t) + wl(t,e) + O(e),

where wr,(t,e) is an O(g)-boundary layer function at t = a. (That is,
wr(t,e) = O(|A — u(a)]) for a <t < a+ cie and lim.,owr(t,e) =0
for each fized t in (a,b].)

In proving Theorem 1.2, Howes defined lower and upper solutions «
and 3, respectively, as

(1.2) a(t,e) = u(t) + wr(t,e) + O(e)
and
(1.3) B(t,2) = u(t) + O(e),

where wy, is a boundary layer function. He then showed problem (1.1)
has a solution y = y(t,¢) satisfying a(t,e) < y(t,e) < B(t,¢) for ¢ in
[a,b]. Thus, detailed information inside the boundary layer is lacking.

We approach the problem by defining bounding pairs such as

(1.4) a(t,e) = u(t) + wi(t,e) + O(e)
and
(1.5) B(t,e) = u(t) + wa(t,e) + O(e),

where w; and ws are unique solutions to the equations
(L6)  cwl(t) = fla,u(a) +wy (D) (1) + ce "=/
and

(1LT) cwd(t) = fla,u(a) +walt))wh(t) — ce™H =/
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satisfying w;(a,e) = A — u(a) and lim._,o w;(¢,€) = 0 for each fixed ¢
in (a,b] for j = 1,2. ¢ and h are positive constants to be determined
below. We show that

(1.8) m[a)g} lw(t,e) —w;(t,e)] =0() forj=1,2,
t€la,

where w is the unique solution of the equation
(1.9) ew”(t,€) = f(a,u(a) + w(t))w'(t)

satisfying w(a) = A — u(a) and lim._,qw(t,e) = 0 for ¢ in (a,b]. Then,
upon showing «(t,e) < y(t,e) < B(t,€), we are able to conclude that

y(t &) = u(t) + w(t,e) + O(e)

and
Y (te) =/ (t) + w'(t, ) + O(e FE=0/%) £ O(e),

which provides detailed information throughout the interval [a, b].

In Section 2 we define the lower and upper solutions (bounding func-
tions) and state a basic existence result from the theory of differential
inequalities. Lower and upper solutions are constructed in Section 3
and used to prove the main result of this paper (Theorem 3.1). Example
3.1 is a model problem which has been studied by many authors in sin-
gular perturbation theory. The analysis proving that equations (1.6),
(1.7), and (1.9) have solutions satisfying condition (1.8) is contained in
the Appendix.

2. A preliminary result. In this section we state a standard result
from the theory of differential inequalities which is used in the proof of
our theorems.

Definition 2.1. Twice continuously differentiable functions «(t) and
B(t) € CPa,b] are said to be a bounding pair of problem (1.1) if the
following properties hold for ¢ in [a, b]:

a(t,e) < B(t,e),

t’
(21) o(a) < A<Bla),  alb)<B<B)
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and

ed > f(t,a)d +g(t, o), B < f(t,B)B +g(t,B).

«a and B are also known as lower and upper solutions, respectively.

Theorem 2.1. Assume that there exist bounding functions a(t) and
B(t) with the properties (2.1), and assume that the functions f(t,y)
and g(t,y) are continuous in the region D = [a,b] X [a, B]. Then the
Dirichlet problem (1.1) has a solution y = y(t,e) of class C™[a,b]
satisfying a(t) < y(t) < B(t) for t in [a,b].

Proof. This result can be found in many references. See Nagumo
[12], Bernfeld and Lakshmikantham [1], Jackson [11], or O’Donnell
[13]. O

3. Existence and approximations. The following theorem
gives sufficient conditions for the existence of a solution y = y(t,¢)
exhibiting boundary layer behavior at the left endpoint (¢ = a); detailed
approximations are also obtained.

Theorem 3.1. Suppose the assumptions of Theorem 1.1 hold. Then
there exists a solution y = y(t,€) of problem (1.1) for each sufficiently
small € > 0 such that for t in [a,d]

(3.1) y(t,e) = u(t) + w(t,e) + O(e)
and
(3.2) Y (te) =u'(t) + w'(t,e) + O(e1=9/8) L O(e),

where w(t,e) is the unique solution of the equation ew” = f(a,u(a) +
w)w' satisfying w(a,e) = A—u(a) and lim._,o w(t,e) = 0 for each fized
t > a. q is a positive constant.

Proof. The proof is similar to that of Howes [10]. For definiteness, we
construct a bounding pair (a, 3) under the assumption that A < u(a).
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If A > u(a), the bounding pair would be defined analogously. Define
for ¢ in [a,b] and € > 0 the functions

O((t,E) = u(t) =+ wl(t7 5) — g'yl_l[e)‘(t_zlbl) _ 1]

and
B(t,e) = u(t) + wa(t, ) + eyl e 2D 1],

Here wy (t,£) and ws(t,€) are exponentially decaying solutions of prob-
lems (1.6) and (1.7) satisfying wq(t,e) < wa(t, €) for ¢ in [a, b] (see the
Appendix). The positive constant [ is an upper bound on

|fy(t,y)u' + gy(t,y)| for (t,y) in D

and

A=—lk"+0() <0
is a root of eA\? + kA +1 = 0. Finally, M is an upper bound on |u” (t)]
for ¢ in [a, b], and + is a positive constant to be chosen below (y > M).

)
It is easy to see that a < 8, a(a,e) < A < B(a,¢), and a(b,e) < B <
B(b,e). The conditions of Theorem 2.1 will be satisfied if, for ¢ in [a, b],

ea > f(t,@)a’ +g(t,a) and eB” < f(t,B)B + g(t,B).

We only consider the inequality for « since the proof for 3 is analogous.
For simplicity, we define e; = eyl lexp(A(t — 2|b|)), so that a =
u+wy +eyl™t —eg.

e’ — f(t,a)a' — g(t,a) = eu” + ew] —eA?e;
—[ft,utw) + fy(enl™ —e1)]
(v 4+ w] — Aey)
= lg(t,u+w1) +gy(enl™" —e1)],

where f, and g, are evaluated at appropriate intermediate points. From
assumption (3), we can write

(33) f(t, U+ wl)/\sl > *k)\El + fy)\slwl,
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where f, is evaluated at an appropriate intermediate point. Using (3.3),
[u"| < M, |fyu' + gy| <1, and eA? + kX + 1 = 0, we can write

ed — f(t,a)a' —g(t,a) = ew) — f(t,u+ wy)w)
— [f(tsu+wi)u' + g(t,u + wi)]

+ fy(81 — Evl_l)wll + fy>\61’u}1
+ (v = M)e +O(e?).

At this point, it is convenient to note that
ewy — f(t,u+wi)wy = ewy — f(a,u(a) + wi)wy — [fe + fyu'][(t — a)wy,

where the terms fi, f,, and v’ are evaluated at intermediate points.
Using assumption (1), we also note that

f(tau + wl)u, +g(t7u + wl) = [fyu, +gy]w1a

where f, and g, are evaluated at intermediate points. The inequality
can now be written

(3.4)
ed — f(t,a)d' —g(t,a) > ew) — f(a,u(a) + wy)w}

—[fe + fyu'](t —a)w) — [fyu/ + gyJwi
=+ fy(El — 6’)/l71)’w,1 =+ fy/\é‘l’wl
+ (v = M)e +O(e?).

Assumptions (3) and (4) imply problem (1.6) has a solution w; =
wy (t,€), as shown in the Appendix. Substituting
ewf — f(a,u(a) + wy)w) = ce "D/,

along with estimates for w; and w} which can be found from equations
(A.1) and (A.2), into inequality (3.4), the result

" — f(t,a)a" —g(t,a) >0
can be easily obtained. Similarly, we find

eB” < f(t,8)B + g(t. B),
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and by Theorem 2.1, there exists a solution y = y(t, ) of problem (1.1)
satisfying

a(t,e) <y(t,e) < B(te) fortin [a,b].
The estimates (1.8), proven in the Appendix, then imply the desired
result, namely,

y(t,e) = u(t) + w(t,e) + O(e) for t in [a,].

The estimate (3.2) on 3’ can be obtained by setting z =y —u—w =
O(e) and substituting into problem (1.1). Using ew” = f(a, u(a)+w)w’
and f(t,u)u’ + g(t,u) = 0, we get the transformed problem

ez — f(t,y)z' = [fi + fyul()](t — a)w' + fyw'z
+ [fyu + gylw + [fyu + gy]z — eu”
Z(a’) = 07 Z(b) = —’(U(b),

where fi, fy, gy, and v/(-) are evaluated at appropriate intermediate
points. The equations (A.7) and (A.6) for w and w' can then be
used in (3.5), and the result follows by arguing in a similar manner
to Coddington and Levinson [5], or Howes [10]. O

(3.5)

Example 3.1. We consider the following model problem which has
interested many writers on singular perturbations; see, for example,
Cole [6], and Howes [10].

ey’ = —yy' +v, 0<t<1

(3:6) y(0,e) = A, y(l,e) = B.

We find conditions on A and B which yield boundary layer behavior at
t = 0. The reduced problem has the solution u(¢) = ¢t + B — 1, which
is globally stable for B > 1, namely f(¢,u) = —(t+ B —1) <0 for ¢ in
[0,1]. If A > u(0) = B — 1, then one sees directly that assumption (4)
is satisfied, namely,

/ (—s)ds <0 for B-1<n<A.
(B-1)

Since all four assumptions of Theorem 3.1 are satisfied, there exists
a solution y = y(t,e) of problem (3.6). The boundary layer function
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w(t,e) satisfies the problem ew’ = —[u(0) + w]w’, w(0) = A — u(0),
which can be solved by quadratures. From (3.1) and (3.2), we then
have the estimates

y(t,e) =t + (B — 1) coth[(B — 1)(t + C1)(2e) "] + O(e)
and

y'(t,e) =1 — ((B —1)%/2¢)esch 2[(B — 1)(t + C1)(2¢) 1]
+0(e /%) + 0(e),

where C; = 2¢(B — 1) coth™'[A(B — 1)~!]. Similarly, if A < u(0) =
B — 1, one directly sees that assumption (4) is satisfied provided
|A| < B — 1. Here one obtains the estimates

y(t,e) =t + (B — 1) tanh[(B — 1)(t + C2)(2¢) 7] + O(e)

and

y'(t,e) = 1+ ((B —1)?/2¢)sech *[(B — 1)(t + C5)(2¢) "]
+0(e7"/%) + 0(e),

where Cy = 2¢(B — 1)~ 'tanh™'[A(B — 1)~!]. Other choices of A and
B yield solutions with boundary layers at ¢ = 1. Interior (shock) layers
are also possible. See Figure 3.1.

If we set t' = a + b — t, Theorem 3.1 can be transformed into a
theorem which allows solutions to have boundary layers at the right
endpoint. This result can be obtained without difficulty, and its
statement is therefore left to the reader. Also, the results follow mutatis
mutandis for problems with an e-dependent right-hand side and e-
dependent boundary conditions, namely, f = f(¢,y,¢), g = g(t,y,¢),
A = A(e) and B = B(e). Only slight modifications are needed
to state the more generalized theorems. For example, we require
f(t,u,0)u’ + g(t,u,0) = 0, and f,g,A and B to be class C!) with
respect to €.

Remark. The assumption that g is of class C'!) with respect to t can
be relaxed. From the proof of Theorem 3.1, one sees that g needs to
be continuous only with respect to .
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FIGURE 3.1.
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APPENDIX

First we show that the boundary layer equations (1.6), (1.7), and
(1.9) each have unique solutions w; = wi(t,£), w2 = wa(t,e) and
w = w(t, ), respectively, satisfying the conditions w(a,e) = A — u(a)
and lim._,p w(t,e) = 0 for each fixed ¢ > a. Integrating equation (1.6)
from positive infinity to t, we see that a first integral is given by

Al e (t,e) = G(wy)wy (t, &) — 2eeh~te h(E-a)/(2¢)
1
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where
Glw) = /0 F(a, u(a) + sw(t)) ds.

Equation (A.1) along with the initial condition w;(a,e) = A —u(a) can
be integrated to give

wi(te) = w1(a)e(1/5) fa G(wy)ds

A2 t t
(A-2) _ %/ e—h(s—a)/(2¢) 1/ f G(wi)dp 4
h a
Conditions (3) and (4) of Theorem 1.1 imply that there exists a positive

constant h such that G(w;) < —h, which shows that w;(¢,¢) decays
exponentially. Also, using the identity

(A.3)  f(a,u(a) + sw(t)) = f(a,ul(a) + swy(t) + s(w(t) — wyi(t))),
one can easily show
(A.4) G(w) = G(w1) + Q(t) - [w(t) — wi(t)],

where Q(t) = fol fy(-)sds, and (-) = u(a) + swy(t) + Os(w — wy) for
0 < 0 < 1; it follows that the function G(w(t))w(t) satisfies a Lipschitz
condition in w, namely,

(A-5) G(wi)wy — G(w)w| < H - [wi(t) — w(t)],

where H is a bound on |G(w;) — Qw|. The representation (A.1) and a
standard continuation result then prove that wy = wi (¢, ) exists for all
t > a and is unique. Similarly, for (1.9) the unique solution vanishing
at infinity satisfies

(A.6) ew'(t,e) = G(w(t))w(t,e)
and
(A.7) w(t,e) = w(a)e™® JlGlws)ds

It is easy to see that wy(¢,€) < wa(t, €) for ¢ in [a, b]. Equations (A.1)
and (A.6) imply that wi(a) < w'(a), and if wy(t1) = w(ty), for some
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t1 > a, (A.1) and (A.6) would also imply that w](t1) < w'(¢1). Hence,
wi(t,e) < w(t,e). A similar argument shows that w;(t,e) < wa(t,e€)
for t in [a, b].

Next we show that

max |w;(t,e) —w(t,e)| =0(e) forj=1,2,
t€la,b]

where wy, we and w are described above. Note that the function
|wi(t) — w(t)| will have a maximum value when wj(t) — w'(t) = 0.
From equations (A.1) and (A.6), we have
(A.8) cw, — ew' = G(wy)w; — G(w)w — 2ceh™ e h(t=a)/(2e)
and a maximum occurs at some t =71 > a, where

G (w1 (T))wi(T) — G(w(T))w(T) = 2ceh™te MT=a)/(2),
Using identity (A.4), one can easily obtain

[wi(T) = w(T)| = O(e) /[G(wi(T)) + w(T) - Q(T)]-

The result will follow if we show the quantity [G(w:1(T)) + w(T)Q(T)]
is bounded away from 0. Since G(wi(t)) < —h, |Q(t)| is bounded, and
w(T) decays exponentially, we see that the quantity [G1(¢) +w(t)Q(¢)]
is bounded away from 0 for ¢ in the interval [a + pe, c0), where p is
a suitably chosen positive constant. Hence, if T is in [a + pe, 00), the
result follows. Now we must show

max |wy(t,€) — w(t,e)] = O(e).
t€la,a+pe]

Integrating (A.8) from a to t, we see that

t
(A.9) ewi(t,e) —ew(t,e) — / [G(w1)wi(s) — G(w)w(s)]ds = O(g?).
Using identity (A.4), one easily obtains from (A.9) the inequality

(A.10)  elwi(t,e) —w(t,e)| < H - /t \wy(s) —w(s)|ds + Hy - €2,
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where H is defined in (A.5) and Hj is a suitable positive constant.

Let r(t) = |wi(t,e) — w(t, €)|, so that (A.10) becomes
t
(A.11) er(t) < H/ r(s)ds + Hye?.

Setting R(t) = fat r(s) ds, equation (A.11) becomes
(A.12) eR/(t) — HR(t) < H, - €2,
which, upon integrating from a to ¢, yields
(A.13) R(t) < Hy - H™'. 2[eHt=a)/e _q),
Substituting (A.13) into (A.11), we obtain
lwy (t,e) —w(t,e)| < Hy -e-eHE7a)/e,
This shows that, for ¢ in [a, a + pe],
lwi(t,€) — w(t,e)| < Hy-e- e =0(e),

as desired. A similar procedure shows

|wa(t,€) — w(t,e)| = Ofe)

for t in [a, 00).

REFERENCES

1. S.R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary
value problems, Academic Press, New York, 1974.

2. N.I. Brish, On boundary value problems for the equation ey’ = f(z,y,y') for
small € (in Russian), Dokl. Akad. Nauk Ukrain SSR 95 (1954), 429-432.

3. K.W. Chang, On Coddington and Levinson’s results for a nonlinear boundary
value problem involving a small parameter, Rend. Accad. Naz. Lincei 54 (1973),
356-363.

4. , Singular perturbations of a boundary value problem for a vector second
order differential equation, SIAM J. Appl. Math. 30 (1976), 42-54.

5. E.A. Coddington and N. Levinson, A boundary value problem for a nonlinear
differential equation with a small parameter, Proc. Amer. Math. Soc. 3 (1952),
73-81.




634 S.J. KIRSCHVINK

6. J.D. Cole, Perturbation methods in applied mathematics, Ginn/Blaisdell,
Waltham, Mass., 1968.

7. A. Erdélyi, Approzimate solutions of a nonlinear boundary value problem,
Arch. Rational Mech. Anal. 29 (1968), 1-17.

8. , A case history in singular perturbations, International Conference on
Differential Equatlons ed. H.A. Antosiewicz, Academic Press, New York, 266-286.

9. A. van Harten, Nonlinear singular perturbation problems: Proofs of correctness
of a formal approxzimation based on a contraction principle in a Banach space, J.
Math. Anal. Appl. 65 (1978), 126-168.

10. F.A. Howes, Boundary-interior layer interactions in nonlinear singular
perturbation theory, Mem. Amer. Math. Soc. 203 (1978).

11. L.K. Jackson, Subfunctions and second-order ordinary differential inequali-
ties, Adv. in Math. 2 (1968), 308-363.

12. M. Nagumo, Uber die Differentialgleichung y"" = f(z,y,y'), Proc. Phys.
Math. Soc. Japan 19 (1937), 861-866.

13. M.A. O’Donnell, Boundary and interior layer behavior in singularly perturbed
systems of boundary value problems, Doctoral Diss., U.C. Davis, 1983.

14. R.E. O’Malley, Jr., A boundary value problem for certain nonlinear second
order differential equations with a small parameter, Arch. Rational Mech. Anal. 29
(1968), 66—74.

15. , On a boundary value problem for a nonlinear differential equation
with a small parameter, SIAM J. Appl. Math. 17 (1969), 569-581.

16. D.R. Smith, Single-layer solutions for the Dirichlet problem for a quasilinear
singularly perturbed second order system, Rocky Mountain J. Math., to appear.

17. W. Wasow, Singular perturbations of boundary value problems for nonlinear
differential equations of the second order, Comm. Pure Appl. Math. 9 (1956),
93-116.

SAN DIEGO STATE UNIVERSITY, 6000 J STREET, SAN DiEco, CA 92182



