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ON WEAKLY LINDELOF BANACH SPACES

S. ARGYROS AND S. MERCOURAKIS

ABSTRACT. In this paper we define and investigate the
properties of a proper class of Banach spaces each member of
which is Lindelof in its weak topology; we call them weakly
Lindelof determined (WLD) Banach spaces. The class of
WLD Banach spaces extends the known class of WCD (weakly
countably determined) Banach spaces and inherits some of
its basic properties: (e.g., each WLD Banach space has a
projectional resolution of identity, and it is also derived from
a small weakly Lindelof subset, etc.).

We also present several examples, in our attempt to clarify
the concept of weakly countably determiness, such as: (i)
a WLD Banach space which is dually strictly convexifiable,
but not WCD; (ii) a WLD Banach with an unconditional
basis, which is not weak Asplund, whose dual space is strictly
convexifiable; (iii) a dual weakly K-analytic Banach space
which is not a subspace of a weakly compactly generated
Banach space. On the grounds of these examples, we answer
questions and problems of Gruenhage, Larman and Phelps,
and Talagrand.

Introduction. The purpose of the present paper is to investigate
Banach spaces related to Corson-compact spaces. Thus we define a new
and wide class of weakly Lindelof Banach spaces (we call them weakly
Lindelof determined-WLD Banach spaces), that extends the class of
weakly countably determined (WCD) Banach spaces [35, 21], and we
study its properties. This class is in a way a definite class with the
features of WCD Banach spaces.

The paper is organized into three sections.

In Section 1, we study the general properties of WLD Banach spaces,
and indicate similarities with WCD Banach spaces. We show in par-
ticular that each WLD Banach space admits a projectional resolution
of identity (and hence an equivalent locally uniformly convex norm)
(Theorem 1.4, Corollary 1.5), and also that is derived from a weakly
Lindelof subset with a unique weak limit point (Theorem 1.6). We
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also characterize in various ways those Banach spaces with an uncon-
ditional basis, which have the property being WLD (Theorem 1.7). An
interesting Corollary is that every weak Asplund Banach space with an
unconditional basis is WLD (Corollary 1.12).

In Section 2 we introduce a special category of Banach spaces with an
unconditional basis, of some importance for the construction of suitable
examples (which appear in the next section). We also establish some
results (mainly) concerning Gateaux differentiability of the norm of
Banach spaces belonging to this category (Proposition 2.7 and Theorem
2.9).

In the third section we present some examples of WLD Banach
spaces answering several questions by Gruenhage Larman and Phelps,
and also by Talagrand. In fact we have constructed: (a) a WLD
Banach space (of the form C(K)) which admits an equivalent norm
with strictly convex dual norm, though it is not WCD (Theorem
3.3). This space is of course weak Asplund (and smoothable). We
answer with this example (of the compact K) a question by Gruenhage
[16]. Furthermore (in contrast with the situation in the case of
WCD Banach spaces) we present: (b) a WLD Banach space with an
unconditional basis which is not weak Asplund, whose dual space is
strictly convexifiable (Theorems 3.6 and 3.8). This example solves a
problem of Larman and Phelps [18]. (c) A WLD Banach space with an
unconditional basis, so that there is no equivalent strictly convex norm
on its dual space (Theorem 3.12). This example is essentially due to
R. Haydon with whom the authors discussed the related problem. We
thank Professor Haydon for his valuable help.

Finally, we give a method of construction of dual WLD Banach spaces
(Theorem 3.16); as a by-product we establish (d) a dual weakly K-
analytic Banach space which is not a subspace of a weakly compactly
generated Banach space (WCG) (Theorem 3.17). Note that this
example solves a problem posed by Talagrand [35].

Notation and terminology. The cardinality of a set A is denoted
by |A|. The (cardinality of the) set of natural numbers is denoted by
w; wy is the first uncountable cardinal.

A topological space X is said to be ccc if every disjoint family of
nonempty open subsets of X is at most countable, and is said to be
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scattered if every nonempty subset of X contains a relative isolated
point.

For a topological space X we denote by C(X) the linear space of
continuous real valued functions defined on X, and by C,(X) the same
space endowed with the topology of pointwise convergence.

Given a set I', the X-product of the real line is the subspace X(T") of
the Tychonoff product R' consisting of points with all but countably
many coordinates equal to 0 and let co(I') = {x € R': for every ¢ > 0
the set o.(z) = {y € T : |z(v)| > ¢} is finite}. [°°(T") is the Banach
space of all bounded real-valued functions on I' with the supremum
norm; [°(T") denotes the subspace of [°°(T") consisting of those z which
have countable support (i.e., o(z) = {y € I : z(y) # 0} is at most
countable). It is clear that co(T"), IS°(T") are closed linear subspaces
of the Banach space [*°(T"), and that ¢o(I') C (') C X(T"). Also,
[*(T') denotes the Banach space of all functions f : I' — R such that
> er [f(7)] < +oo, with the obvious norm.

A compact space K is called a Corson (respectively, Eberlein) com-
pact, if it is homeomorphic to a subset of the space X(I") (respec-
tively, co(I")). The class of Eberlein compacts coincides with the class
of weakly compact subsets of Banach spaces [2, 25].

A (real) Banach space E is called:

(a) Weakly compactly generated-WCG, if E contains a weakly
compact total subset [2, 25].

(b) Weakly countably determined-WCD (respectively, weakly K-
analytic) if E, endowed with the weak topology, is a continuous image
of a closed subset of a space of the form M x I, where K is a compact
space and M a separable metric space (respectively, M a polish space)
[35, 25].

Every WCG Banach space is weakly K-analytic [35, 25], and clearly
every weakly K-analytic Banach space is WCD.

We also consider the following classes of compact spaces: Gulko
(respectively, Talagrand) compacts, i.e., compact spaces K so that the
Banach space C'(K) is WCD (respectively, weakly K-analytic) (cf. [25]).
It is known that K is an Eberlein compact if and only if C'(K) is WCG
[2, 25]; it is also known that every Gulko compact is a Corson compact
(cf. [25]).
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A compact space K is said to be a Rosenthal compact, if it can be
embedded in the space By (M) of first Baire class real-valued functions
on some Polish space M, equipped with the topology of pointwise
convergence.

A set T' in a Banach space E is called an unconditional basis for
FE if it is total in F, and there exists a constant A > 0 so that for
all n, y1,...,7v, in I, scalars ¢y, ... ,c, and numbers ¢1,... ,&, with
g; = %1 for all 4, ||Xe;¢;vi|| < A||2¢; - ;|| The basis T' is said to be
boundedly complete, if for every choice (¢,)yer of scalars such that the
family, {|| >_ cp ¢y 7|l : F is a finite subset of I'} is bounded, the series
2_er Cy * 7 is unconditionally converging.

The Banach space E is said to be weak Asplund if every continuous
convex function defined on an open and convex subset of E is Gateaux
differentiable on a dense Gs subset of its domain. We say that E is
a Gateaux differentiability space (GDS) if every function as above is
Gateaux differentiable on a dense subset (not necessarily a dense Gs
subset) of its domain. Suppose that K is a weak* compact and convex
subset of the dual E* of the Banach space E. A point z* € K is called a
weak™ exposed point if there exists  # 0 in F such that y*(z) < z*(z),
for all y* in K with y* # a* (cf. [18, 27]).

A norm || - || of a Banach space FE is said to be

(a) smooth, if it is Gateaux differentiable at every nonzero vector
of E.

(b) strictly convex if for all z,y € E with ||z|| = ||ly|| = 1, we have
[|(z + y)/2|| < 1, whenever z # y. A Banach space which admits
an equivalent strictly convex (respectively, smooth) norm is said to be
strictly convexifiable (respectively, smoothable).

(¢) locally uniformly convex, if for every sequence (2, )nc. of points of
E and every z € E with ||z,|| = ||z|| = 1, the condition ||(zn+x)/2|| —
1 implies that ||z, — z|| — 0.

Section 1. In this section we introduce the class of weakly Lindelof
determined Banach spaces.

We begin by recalling some known results which inspired the defini-
tion of this new class of Banach spaces.
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Theorem [2]. A Banach space E is WCG if and only if there is
a bounded linear one-to-one operator T : E* — ¢y(T') for some set T,
which is weak® to pointwise continuous. This is the classical theorem
of Amir-Lindenstrauss [2].

Theorem [15]. Let E be a WCD Banach space. Then there is a set
T and a bounded linear one-to-one operator T : E* — 1°(T'), which is
weak” to pointwise continuous.

This deep result due to Gulko (stated in a slightly different form)
motivates many of the results obtained in this area after Talagrand
[35], Vasak [38] and Gulko [15] investigation of WCD Banach spaces.

Theorem [21]. A Banach space E is WCD if and only if there are
a separable metric space M, a compact space K, and a bounded linear
one-to-one operator T : E* — C1(M x K), which is weak* to pointwise
continuous. (For a topological space X, f € C1(X), if and only if f is
bounded and for every € > 0 the set o.(f) ={t € X : |f(t)] > €} isa
closed and discrete subset of X. Note that C1(M x K) CI°(M x K)
21].)

Theorem [3]. For a Corson compact space K the following are
equivalent:

a) K has property (M) (that is, every positive Radon measure on K
has separable support).

b) C(K) is weakly Lindelof.

c) There is a set T’ and a bounded linear one-to-one operator T :
C(K)* = M(K) — 12°(T"), which is weak* to pointwise continuous.

All the preceding results motivate to the following,

Definition 1.1. We call a Banach space E weakly Lindelof deter-
mined (briefly WLD), if there is a set I and a bounded linear one-to-one
operator T': E* — [2°(T"), that is weak* to pointwise continuous.

It follows immediately from the above that, if K is a compact space,
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then the space C'(K) is WLD if and only if K is a Corson compact
with property (M). We also notice the obvious: the property of being
a space WLD is isomorphic invariant.

Note. It should be remarked that this class of spaces has been
studied independently by M. Valdivia [39]. In fact, Valdivia considers
that class of Banach spaces, each member of which has weak* Corson-
compact dual unit ball. It is obvious that every WLD Banach space
belongs to the class of Valdivia. It follows from the results of Valdivia
[39] and also from a further result by J. Orihuela, W. Schachermayer
and M. Valdivia (see Proposition 4.1 of [26]), that the converse impli-
cation is also true. Therefore, a Banach space E is WLD, if and only
if the dual unit ball of E is weak* Corson-compact. We shall prove
in Proposition 1.2 below a more general result than this, by repeating
essentially the same argument as in the proof of Proposition 4.1 of [26].

We discuss in the sequel an alternative purely topological definition
of the class of WLD Banach spaces, which is similar to the definition of
WCD Banach spaces given in the terms of descriptive set theory [38,
35, 25].

For an infinite cardinal o we denote by L(«) the Lindelof space of
cardinality o with the unique (possible) nonisolated point (see [1]). It
is clear that L(a) is a Hausdorff completely regular space.

We notice that:

(i) If @ = w, then the space L(w)¥ is identified with the Baire space
of irrationals; and

(ii) as Alster and Pol have proved, the product M x L(a)¥ is a
Lindelof space for every separable metric space [1].

Now using some results of Alster and Pol [1] and Gulko [29], we can
show the next,

Proposition 1.2. Let E be a Banach space. Then the following are
equivalent:

(a) E is a WLD Banach space;

(b) E in its weak topology is a continuous image of a closed subset
of the space L(a)¥, for some infinite cardinal o;
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(c) there is a (bounded) total subset X of E so that X in its weak
topology is a continuous image of a closed subset of the space L(a)* for
some infinite cardinal o;

(d) the dual unit ball of E is a Corson-compact space in its weak*
topology.

Proof. (b) = (c) and (a) = (d) are obvious.

(c) = (a). Let ¢ : Y C L(a)¥ — (X, w) a continuous onto mapping,
where Y is a closed subset of L(a)¥. Then, by a result of Gulko
(see Proposition 1.4 of [29]), there is a continuous linear one-to-one
mapping Q : Cp(Y) — X(I'), for some set I'. Consider the operator
QoRoS : E* — X(T'), where R : Cp(X) — Cp(Y) is defined by
R(f) = fogfor f € Cp(X), S : E* = Cp(X), by S(z*) = 2*|X for
z* € E*; then it is easy to verify that this operator is linear one-to-
one and weak* to pointwise continuous. We set Z = (Q o Ro S)(E*),
and Q@ = (Q o Ro S)(B), where B is the unit ball of E*, then clearly
Z = Up<,n$; since 2 is a pointwise compact subset of X(T') there
exists e, > 0 for every v € T such that |z(y)| < e, for all z € Q
and v € I We define a linear one-to-one mapping by the rule
®(z)(y) = z(v)/ey, for * € Z and v € T, and easily verify that
the operator T = ® o (Qo Ro S) : E* — 12°(T') is bounded linear
one-to-one and weak* to pointwise continuous. (d) = (b). Since the
unit ball B of E* is a Corson-compact space in its weak®* topology,
there exists by a result of Alster and Pol [1] a closed subset Y of
L(a)® for some infinite cardinal o, and a continuous onto mapping
¢ : Y — Cp(B). Since the space (E,w) is identified (via the natural
mapping ¢ € E — z|B € Cp(B)) with a closed linear subspace of
C,(B), we have the conclusion.

The proof of the proposition is complete. ]

Remarks. 1) It is clear from the above Proposition that the class
of WLD Banach spaces is closed under finite products and for closed
linear subspaces.

2) Similar results hold for the classes of WCD and weakly K-analytic
Banach spaces (see, for instance, Section 1 and also Theorem 4.1 of
[21]).
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3) We don’t know if a Banach space E, which in its weak topology is
a continuous image of closed subset of a space of the form K x L(a)*,
where K is a compact Hausdorff space is WLD.

Using known results, we easily obtain the next

Theorem 1.3. a) Every WLD Banach space is weakly Lindelof and
admits a bounded linear one-to-one operator into some co(T'), and thus
it is strictly convezifiable.

b) FEvery WCD Banach space is WLD.
c) There is a WLD Banach space which is not WCD.

d) There ezists a weakly Lindelof Banach space which is not a WLD
space.

Proof. a) The closed unit ball K = (Bg~,w*) of E* is by definition
a Corson-compact, hence the space C(K) is pointwise Lindelof [1] and
admits a bounded linear one-to-one operator into co(I") [3]. So the
claim (a) easily follows.

b) This claim is an immediate consequence of the definition and the
characterization of WCD Banach spaces via their duals (see [21]).

c) Concerning this claim we notice that in [3] a variety of non-Gulko
Corson-compact spaces with property (M) is given; for every such K,
the Banach space C(K) is WLD but not WCD.

d) Such an example has been constructed by R. Pol [28]. o

Since the dual unit ball of a WLD space is weak* Corson-compact,
the following result is rather expected. Note that this result has also
been obtained in [39]. We give here a rather simpler proof.

Theorem 1.4. Every WLD Banach space E admits a projectional
resolution of identity (P.R.1.), that is a family {P, : w < a < u} of
projections on E, where p = dim F, with the following properties.

a) ||Py]| =1, w<a<pu, P,=idg,

b) PyoPg=PgoP,=PFs,w<p<asy,
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c) dimP,(F) < |a|, w < a < pu, and

d) for every x € E the function o € [w,pu] — Py(x) € E is
continuous, whenever the interval [w, ] has the order and the space
E has the norm topology.

Proof. We briefly describe the proof of this theorem.

Let T be the operator which makes F a WLD space and also let || - ||
be any equivalent norm on E. We set X = T(E*), K = T(Bg~), and
we consider the space X endowed with pointwise topology; hence K is
a compact subset of X. We assume (without restriction of generality)
that I' = Ugexo(z), sodim E = W(K) = |T'|, and we set p = |T'|. Since
K is a compact subset of X, there exists a family {T', : w < a < p} of
subsets of I' with the following properties (see Lemma 1.3 of [3]).

a) I'aCIgforw<a<pf<p,andT, =T,

b) |Tu| < af for w < a <y,

c) if w < a < pis alimit ordinal, then I'y, = Ug<,I's.

d) KT, CK,w<a<uu.

Weset 7o : X = X :rq(z) = 2|, for w < a < p; by using the above
properties and the fact that X = U,<,nK, we conclude that r, is a
retraction of the space X.

We define for w < o < p a norm one projection of the Banach
space E in the following way: P, : E — E such that P,(z)(z*) =
T~ YT (z*)[Ta)(x) for z € E and z* € E*, and we easily verify that
the family {P, : w < a < p} is a P.R.L. for the space E. O

Since the class of WLD Banach spaces contains the closed linear
subspaces of its members (see the remarks after Proposition 1.2), the
above theorem and the known renorming technique of Troyanski-Zizler
(see [36, 40]) have as a consequence the next,

Corollary 1.5. FEvery WLD Banach space admits an equivalent
locally uniformly convex norm.

Remark. Let E be a WLD Banach space. Then it is not difficult
to show that the density character of E is equal to the weak* density
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character of its dual E* (cf. Corollary 3.7 of [3], and also the proof of
Theorem 1.4).

By using a result of Sokolov [34] we show that a WLD Banach
space is derived from a rather simple set. In fact, we get the next
characterization of WLD Banach spaces, which also justifies the term
weakly Lindelof determined.

Theorem 1.6. For a Banach space E, the following are equivalent:
a) E is WLD.
b) There is a bounded total subset L of E such that:

(i) the point 0 € E is the only (possible) weak limit point of L, and
(ii) the set L U {0} is weakly Lindelof.

Proof. b) — a). We set T': E* — [°°(L), so that T'(z*) = (z*(1))ieL-
It is obvious that T' is bounded linear one-to-one and weak* to pointwise
continuous. We shall show that the range of T is contained in the
subspace [2°(L) of [*°(L). So let * € E*. Weset S={l e L:xz*(l) #
0}, and for n < w, S, = {l € L : |z*(I)| > 1/n}, hence S = Up<wSn-

Now suppose that for some ny < w the set S, is uncountable. It is

then clear by our assumption that there is a net (I5)sca C Sy, such
that 5 — 0 weakly, therefore z*(l5) — 2*(0) = 0, which is absurd.

a) — b). Let T : E* — [2°(T") be the operator of Definition 1.1,
and suppose that ||T'|| < 1. We set K = T'(Bg-), and z, : K - R :
zy(xz) = z(y) for vy € T and z € K. By a result of [34] there is a
partition {T';, : n < w} of I so that, for every n < w, we have that:

(i) the set L, = {z, : v € I'y} is a discrete subset of the space
Cp(K), and

(ii) the set L, U {0} is a closed subset of C,(K), where Cp(K)
denotes the space C'(K) endowed with pointwise topology.

We set L = U2, (1/n)Ly,; clearly this set L is contained in the unit
ball of C'(K).

Claim. The set L has, as the only possible limit point in the space
C,(K), the point 0 € C,,(K).
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Proof of the claim. Let f be a limit point of L in the space Cp(K),
so that f # 0. Let U,V be disjoints open neighborhood of f,0,
respectively, in the space Cp(K), and also let (fs)sea be a net in
L converging pointwise to f. It follows that there is dg € A, such
that f5 € U for every 6 € A with § > §p(1). Let € > 0, such that
B(0,e) C V; since ||zy|| <1 for v € T', there exists ng < w so that, if
n > ng, then ||z,||/n < ¢ for all ¥ € T'. Hence,

(2) U (/n)L, € 5(0,e) C V.

n>ng
From (1) and (2) we get that if § > do, then f5 € U,<p,(1/n)Ly, hence
by the properties of the partition {I';, : n < w} we have that f = 0.
The proof of the claim is complete.

Now we consider the natural embedding ® : E — C(K) (we recall
that K is the closed unit ball of E*). Since ®(F) is a pointwise closed
subspace of C(K) and since the set {x, : v € I'} is contained in ®(E),
we conclude that L is the desired set. O

We recall that not every weakly Lindelof Banach space is a WLD
space (see Theorem 1.3d)). But, as the next theorem shows, this is the
case for Banach spaces with an unconditional basis.

This theorem also makes the content of the previous theorem more
clear (cf. also Proposition 1.3 of [33]).

Theorem 1.7. Let E be a Banach space with an unconditional basis
T, so that ||v|| < 1 for v € T'. Then the following are equivalent:

1) The set {0} UT is weakly Lindelof.

9) E is WLD.

3) E is weakly Lindelof.

4) 1Y (wy) does not isomorphically embed in E.
)

5) If A is an uncountable subset of T, then A is not equivalent to
the usual basis of I*(A).

6) There exist w*Gy extreme points in E* (that is, every w* compact
and convex subset of the dual E* of E contains at least one w*Gy
extreme point).
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7) There is a bounded linear one-to-one operator T : E* — [°(A)
for some set A.

Proof. (1) <> (2) is obvious by the previous theorem and the fact that
the set {0} UT is weakly closed in E.

(2) = (3), (3) — (4) and (4) — (5) are clear by definition and
standard results.

We show (5) — (2) and (5) — (6) simultaneously.

It suffices to show that the set o(z*) = {y € ' : z*(y) # 0} is at
most countable for any z* € E*. Indeed, if o(z*) was uncountable,
then there is an uncountable subset A of o(z*) and a positive 4, so
that |z*(y)| > 6 for all v € A. Now since the basis I is unconditional
the set A is equivalent to the usual basis of [*(A), a contradiction.
Now we define the operator T : E* — [°(T'), in the obvious way, that
is T(z*) = (z*(7))yer, which clearly makes £ a WLD space. So we
have proved the implication (5) — (2).

We notice that the compact and convex subset K = T(Bg-) of
¥([-1,1]F) has, by the unconditionality, the following property:

(%) If x € K and y € I°(T') such that |y(v)| < |z(v)| for all v € T,
then y € K.
We shall need the following:

Lemma. Let Q be a compact subset of [—1,1]' with property (x),
and let K be the closed convexr hull of Q. Then we have:

a) K also has property (x);

b) if x is an extreme point of K andy € K is such that [y(y)| > |z(7)]
for all v €T, then y = x, and

c) if K C %([-1,1)1), then every extreme point of K is a Gs point
of K.

Proof. We omit the easy proof of (a) and (b), and we show
¢) Let x be an extreme point of K. We set for any finite subset F
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of o(z) and n < w,
V(z,Fin) ={y € K:|y(y) —x(y)| <1/nfor y € F}.

Since the set o(x) is at most countable, the family {V(z, F,n): F is
a finite subset of o(z) and n < w} is a countable family of open -
neighborhoods of z in the space K. Let y € N{V(z, F,n): F is a finite
subset of o(x) and n < w}, then clearly we have |y(y)| > |z(v)] for all
~ € T, which implies by claim b) of the Lemma that y = z. So since
K is a compact space, we get that z is a G point of K.

The proof of the Lemma is complete. ]

Now we get back to the proof of our implication. Let 2 be a compact
and convex subset of E* for which we assume without restriction of
generality that it is contained in K. By (a) and (b) of the Lemma and
Krein-Milman’s theorem, we can assume that Q has property (), so
claim c) of the Lemma implies the desired result.

(6) — (5). Suppose that there is an uncountable subset A of T
equivalent to the usual basis of ['(A). Then the closed unit ball
Q = [-1,1]2 of the dual of [1(A) is embedded as a weak* compact
and convex subset in E*, a contradiction, because 2 does not have G
extreme points.

It follows that the claims (1) to (6) are equivalent; since (2) = (7) is
obvious, it remains to show

(7) = (5). Suppose for the purpose of contradiction that there exists
a bounded linear one-to-one operator T : E* — [2°(A), and also that
I is an uncountable subset of I' equivalent to the usual basis of I*(I).
Then clearly [°°(I) is isomorphic to a (complemented) subspace of E*,
thus the restriction of 7" on the subspace [*°(I) is a bounded linear
one-to-one operator from [°°(I) to IS°(A); but since I is uncountable,
this contradicts the next result by Dashiell-Lindenstrauss [7].

Lemma. Let I be an uncountable set and Z a Banach space with
co(I) € Z C I°°(I). Suppose that T : Z — [°(A) is a bounded
linear operator such that T'|cy(I) is one-to-one. Then there exists an
uncountable set A C I, a one-to-one mapping f : A — A, and e > 0
such that if B C A with Xp € Z then f(B) C 0./2(T(Xg)).
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Note that the above Lemma is implicitly contained in the proof of
Theorem 2 of [7].

The proof of the theorem is complete. ]

Corollary 1.8. Let E be a Banach space with an unconditional basis.
If E is a Gateauz differentiability space (GDS) (in particular, if E is a
weak Asplund space), then E is weakly Lindelof.

Proof. By a result of [18], every GDS Banach space F has w* Gy
extreme points in E*. So Theorem 1.7 applies to E. u]

Weakly Lindelof Banach spaces with an unconditional basis are useful
because of the following,

Theorem 1.9. If F is a WLD Banach space then (and only then)
there exists a WLD Banach space E with an unconditional basis and a
bounded linear operator R : E — F with dense range.

Before the proof of this theorem, we shall describe some general facts
concerning unconditionality, which we shall use in the proof of it.

Let T be a nonempty set and €2 a pointwise compact subset of the
cube [—1,1]F with the following properties:

(a) ifx € Qand y € [-1,1]F so that |y(y)| < |z(y)| for all vy € T,
then y € Q, and

(b) for every v € I there exists €  such that z(y) # 0. (Clearly
(a) is property (x) used in the proof of Theorem 1.7).

We denote by €2; the closed convex hull of Q in [—1,1]F, and by =,
the projection at the y-coordinate. We set E for the closed linear span
of the family {7, : v € I'} in the Banach space C(2).

Under the above conditions, the following proposition has a routine
proof.

Proposition 1.10. a) The family {m, : v € T'} is an unconditional
basis for the subspace E of C(Q);
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b) there exists a bounded linear one-to-one operator T : E* — [*(I")
which is weak® to pointwise continuous, so that

T(BE*) == Ql.

Remark 1.11. The Banach space E is identified with the completion
of the space Y of all real valued functions on f : I' — R, with finite
support, endowed with the following norm,

1611 =50 { 315 2ol 2 < ).

vyel

Proof of Theorem 1.9. Let T : F* — I°(I') be the operator of
Definition 1.1. We assume that ||T|| < 1, so the compact and convex
X = T(Bp-+) is contained in X([—1,1]!), and also that for any v € T
there is € X such that z(y) # 0. We denote by Q the compact set
Q = {y € [-1,1]: there exists z € X such that |y(v)| < |z(7)] for all
v € I'}, and we notice that Q has properties (a) and (b) above.

We consider the operator @ : C(Q) — C(X) : f — ®(f) = fIX
and set R = ®|E to be the restriction of ® to the subspace E of C(Q)
generated by the set of projections. Then it is easy to prove that the
range of R is contained in the subspace F' of C(X) (recall that X is
homeomorphic with the closed unit ball of F*), and is dense in F. Now
since E has by Proposition 1.10 an unconditional basis, the proof of the
theorem is finished. (The converse of this theorem is obvious because
the dual operator R* : F* — FE* is one-to-one and weak* to weak*
continuous). O

Corollary 1.12. Let F be a WLD Banach space. Then there exist
w* Gs extreme points in F*.

Proof. Let R: E — F be the operator of Theorem 1.9.

Then, since R has dense range, the dual operator R* : F* — E* is
one-to-one and of course weak* to weak* continuous, so Theorem 1.7
implies our claim. ]



410 S. ARGYROS AND S. MERCOURAKIS

Conjecture. Let E be a WLD Banach space. Then every nonempty
weak® compact and conver subset of E* contains a weak™ exposed point.
Otherwise, E is a GDS.

Note that an affirmative answer to this conjecture would imply the
existence (according to Theorem 3.6) of a GDS space which is not weak
Asplund, and hence the solution of two problems by Larman and Phelps
(see Problems 1 and 7 in [18]).

Section 2. In this section we define and investigate the properties of
some special class of Banach spaces with an unconditional basis, which
are useful for the construction of concrete examples.

Let T' be a nonempty set, and A a family of subsets of I' with the
following properties:

(i) if AC B and B € A, then A € A, and
(ii) {y} € AforallyeT.
We define a Banach space E = Ej 1(A) in the following way:

Definition 2.1. Let Y be the linear space of all real valued functions
f on I' with finite support (i.e., o(f) = {y € I': f(v) # 0} is a finite
set). For every f € Y we set,

& Il =sup{ E 1)l 4< A},

€A

It is easy to see that (1) defines a norm on the space Y. The Banach
space E = Ey1(A) is by definition the completion of Y with respect
to the norm defined by (1), which we call the (0,1) norm of E (cf. also
Proposition 1.10 and Remark 1.11).

It is simple to show that the family {e, : v € '}, where

1 =94
ey () = { 0’ z ” foryeT, is an unconditional

(normalized) basis for this space (with unconditional constant A = 1).
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Remark 2.2. We may also define an equivalent norm on Y as follows:

LIRS

YEA

2) N(f) = sup {

We notice that N(f) < ||f|| < 2N(f) for all f € Y. So the completion
of the normed space (Y, N) is the space Ej1(A).

Now suppose that the family A is adequate ([37]), that is, A satisfies
in addition the condition:

(iii) if A C T, and every finite subset of A belongs to A, then A € A.
We set,

K=K(A) ={zec{0,1}' : o(z) € A}

Q=Q(A) ={zxc{0,£1} :o(z) € A}

D =D(A) = {z € {0, -1}" : 5(x) is a maximal set of the
family A}.

It is immediate that K and ) are compact spaces and also that
D,K C Q. For every v € I' we define 7, : Q@ — {0, %1} : m,(z) = z(7)
for z € Q. It is obvious that {m, : v € I'} C C(Q), and also that
this family of functions separates the points of €2; clearly a similar
observation holds for the family {m,|K : v € I'} and the space C(K).

The relation between the Banach space E and the spaces C(€2) and
C(K) is given in the following

Lemma 2.3. (a) The Banach space E is isometric (respectively,
isomorphic) with a closed linear subspace of C(2) (respectively C(K)).

(b) The compact space §2 is homeomorphically embedded as a compact
subset in the unit sphere (Sg~,w*) of the dual space E* of E, and the
set of extreme points of the unit ball Bg~ of E* is the image of D
defined above under this homeomorphism.

Proof. a) We define a linear isometry T : E — C(f2) in the obvious
way, that is, T'(ey) = m, for v € I'. It is easy to see that if f € E and

xz € Q, then
T(f)(x) = =) ()
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Similarly, the space E is isomorphic with the closed linear span of the
family {n,|K : v € I'} in the space C'(K) (cf. Remark 2.2).

b) We consider the dual operator T* : M(Q2) — E* of T, and we
notice that the restriction of T* on the set {éx : © € Q} of Dirac
measures on {2 is one-to-one. Since T* is weak® to weak™ continuous,
we have the conclusion. u]

Remark 2.4. A restatement of Lemma 2.3 (b) is the following: Let
Q1 be the pointwise closure of the convex hull of the set €2 in the
compact and convex set [—1,1]'". Then the closed unit ball (Bg-,w*)
of E* is affinely homeomorphic with the set €2;; indeed, the operator
R:E* —1°°(T) : R(z*)(7y) = z*(ey) for * € E* and v € I, makes the
claim true (cf. the proof of Theorem 1.9).

Lemma 2.5. Let f € E with f # 0. Then the following are
equivalent:

(a) the (0,1) norm of E is Gateaux differentiable at f;

(b) there exists a unique x € Q, so that

f@) =1fll= Y 1f()l;

yEo ()

in that case x € D and o(z) C o(f);

(c) the supremum norm of C () is Gateauz differentiable at f.

Proof. The proof of this Lemma easily follows by the definitions and
standard arguments (cf. [27, 28]). o

Remark 2.6. The above Lemma particularly implies that the Gateaux
derivative of the norm of E at the point f (whenever it exists) belongs
to the set D C 2, that is:

ol -ID(f) =z € D.

Clearly in this case the point z is a weak* exposed point of the unit
ball Bg- of E*.
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We assume in the sequel that the Banach space Ej1(A) is always
defined by an adequate family of countable sets of set I'.

Proposition 2.7. Let A be an adequate family of (countable) sets
of the set ', then the (0,1) norm of the Banach space E = Ey1(.A) is
Gateauzx differentiable at the points of a norm dense subset of E.

Proof. Let f € E and € > 0. We have to prove that there exists g € F,
so that the norm of E is Gateaux differentiable at g and, in addition,
[If —g|| <e. Suppose that f = 0, then we consider a maximal set A of
the family A and let {v, : n < w} be a one-to-one enumeration of A.
We define a function g : I' — R, so that g(v,) =¢/2" forn =1,2,...,
and g(y) =0if v € A.

Then we have that [|0 — g|| = [|g]| = >, 9(m), so Lemma 2.5
implies the claim.

Now suppose that f Z 0. We set S = o(f), and we consider the
family A; = {ANS : A € A} which clearly is an adequate family of
subsets of the set S; so the space F = Fj1(As) is a complemented
subspace of E. Since S is countable, the space F' is separable, hence by
Mazur’s theorem the norm of F' (and every continuous convex function
on F) is Gateaux differentiable at the points of a dense Gs subset
of F. Solet h € F (thus o(h) C S) such that the norm of F is
Gateaux differentiable at h, and ||f — h|| < £/2. By Lemma 2.5, there
exists a unique (necessarily maximal) Ay € Ag with Ay C o(h) so that
Bl = X2, ., IR

Let A be a maximal set in the family A, containing the set Ay (so
ANS = Ap), and also let {7, : n < w} be a one-to-one enumeration of
the set A\ Ag. We define the function g in the following way:

h(v), v€5S
g()=1q¢/2", yeA\Ay, Y=
0, vyeT\(AUS),
and we notice that this is the desired g.

The proof of the Proposition is complete. ]

We set G to be the set of all f € E, so that the norm of F is Gateaux
differentiable at f € E, and also set ® : G — Bg~ to be the restriction
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of the subdifferentiable map of the norm of E at the set G, that is,
®(f) =9(|| - IN(f) for f € G. We conclude by the above proposition
that G is a norm dense subset of E and that ®(G) = D C Bg~ (cf.
Remarks 2.4, 2.6).

We notice that the map ® : G — D is also continuous, whenever G
is endowed with norm and D with the weak* topology, as a restriction
of the subdifferentiable map of the norm of E, which is norm to weak*
upper semicontinuous.

Our aim is to show that ® : G — D is moreover an open map. We
shall need the next

Lemma 2.8. Let f € E with S = o(f), A C S be a mazimal set of
the family A, and B = S\ A. Then we have:

(@) f € G and o(®(f)) = A if and only of 3 p|f(7)] <
ZyeA\Y|f(7)| for any nonempty E' C B and any Y C A so that
YUE € A.

(b) For any nonempty E' C B so that E' € A, it follows that:
Yoer M <inf {3 ca\y [f(0)]:Y C AwithY UE" € A}

Proof. (a) “—=”. Let E' be a nonempty subset of B and Y C A such
that Y U E' € A. We set

s fy)>0

y(v) =19 -1, f(y)<0
0, ~¢EUY

}veE’UY

It is clear that y € 2. We have that

F)= > F) v =D 1FN+ D 1F()]

E'UY

O = A=D1+ D),
A

A\Y Y
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SO

pICHESBRFIGIE

A\Y

Conversely, we define

1, ~y€Aandf(y)>0
z:T s R:z(y)=¢ -1, y€Aand f(y) <0

0, 7v¢A

So o(z) = A and thus z € D C Q. Now it is easily verified that z is
the Gateaux derivative of the norm of E at f.

b) Weset X ={Xy :Y C Aand E'UY € A} C K, and

b:X = R:o0w) = Ifl - 10 <= ) |f(7)|>-
Y

A\Y

It is clear that X is a compact subset of K (and hence of ) and that
¢ is a continuous map. It follows that ¢ attains its minimum at a point
Xy, of X; combining this fact together with the claim (a), we conclude
(b) of the Lemma. O

Theorem 2.9. The map ® : G — D is (continuous onto and) open.

Proof. It is not difficult to see that it is enough to show that ® is
open at the points of the dense subset G1 = {f € G : o(f)\o(d(f))
is a finite set} of G. So let f € G; and ¢ > 0. We set S = o(f),
®(f) =z, A = o(z) and B = S\A. We have to show that the set
V = ®(B(f,e) N G) is a neighborhood of x = ®(f) in the space D.

We assume, without restriction of generality, that B is nonempty and
A is an infinite (countable) set. We set Ap = {X NB: X € A}. It is
then clear that Ap is an adequate family of subsets of the (finite) set
B. Let {E,Es,...,E,} be an enumeration of nonempty sets of the
family Ap. For every k =1,2,... ,n, we set

ak:inf{2|f('y)|:YgAandEkUYGA}.

A\Y
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It follows from Lemma 2.8b that

(1) ak>Z|f(’y)| forallk =1,2,... ,n.
Ey

Now we choose a finite subset A of A so that

(2) Z|f('y)<min{ak—2f('y)|: k:1,2,...,n}.

A\A By

Let K <nand Y C I such that E}, UY € A; then by using (1) and (2),
we get that

(3) D> D).

A\Y

Since A is an infinite set, we may choose the finite set A so that (in
addition to (2)) it satisfies the following condition

(4) S 1) <</2.

A\A

We define U = [{z(7)}yea x {0}yen x {0, £1}NAUB N DL Tt is
obvious that U is an open and closed neighborhood of ®(f) = z in D.
We shall show that U C ®(B(f,e) N G). So let y € U\{z}, and set
Ay = o(y) (hence A; is a maximal set of 4, A; N B = @ and A C A4;).
We distinguish two cases:

I) Ay =A. Weset g:I' —» R such that

f(y), ~Y€AUB
9() =9 f(v), ryeA\Aandy(y)=1
—f(v), ~v€ A\A and y(y) = —1.

Then it is easy to show that ||f —g|| <&, g € G and ®(g) = y.

IT) A; # A. Since A and A; are maximal sets of 4, we have that
A1\A # & and A\A; # @. It is also obvious that A C AN A;. We
consider positive numbers ¢, > 0 for all v € A;\ A so that

(5) Yooer= >

7EAL\A YEA\AL
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and we define g : I' — R such that

f(), YyEAUB

f(v), re(AnA)\Aandy(y) =1
g() =< —f(v), ve€(A1NA\Aandy(y) = -1

€y, v € Aj\A and y(y) =1

—Eq, v € A1\A and y(v) = —1.

Now by using (4), (5) and Lemma 2.8a we may easily show that
[If — 9|l < e g € Gand ®(g) = y. The proof of the Theorem is
complete. ]

Notation 2.10. Let I' be a nonempty set and A, B disjoint finite
subsets of I'. In the sequel we shall denote by Vf the basic clopen set
{1} 4 x {0} x II{0, 1}T\(AVB) of the space {0,1}"; whenever B = @,
we set V4 for the clopen set {1} 4 x IT{0, 1}1\4.

As a first application of the above theorem, we show the next

Theorem 2.11. We assume continuum hypothesis (CH). Then there
exists on the Banach space [*(wy) an equivalent norm which is “densely”
but not “densely Gs5” Gateaux differentiable.

Proof. From CH follows the existence of a compact nonmetrizable
subset L of the space ({0, 1)“') with a strictly positive (regular Borel
probability) measure p (i.e. L is a Corson-compact without property
(M) (see Theorem 3.12 of [3]). Hence there exists an uncountable
subset I of wy such that for all ¢ € I, (Ve N L) > ¢ for some § > 0.
We assume (without restriction of generality) that I = wy, and we set
X={zeL:ifyeLando(xz) Co(y) thenz =y}, and A= {4 C wy:
thereis z € X : A C o(z)}. It is clear that A is an adequate family
of (countable) subsets of w; and that X C L C K = K(A). It is also
obvious that X = {z € {0,1}** : o(x) is a maximal set of A}. We
consider the measure p as a measure on the Corson-compact K, so the
support of p is the space L and pu(V; N K) > ¢ for all { < wy.

Claim. Let L be a compact ccc subset of the space {0,1}L'. Then the
space X ={x € L: ify € L and o(x) C o(y) then x =y} is also a ccc
space.
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Proof of the claim. It suffices to show that the family of nonempty
clopen subsets of X of the form VF N X for F a finite subset of T, is a
basis for the topology of X. Indeed, let U = VF{? N X be a nonempty
basic clopen subset of X, and let x = X4 € U. By the definition of
the space X, for any ¢ € F» there exists a finite subset A; of A so that
VaNVeNX =2, Weset F' = U{A¢: (€ Fo} UFy, so I’ is a finite
subset of A, and we easily verify that € Vg N X C U, which finishes
the proof of the claim.

Since the space L is the support of the measure p, we get that L is a
ccc space; hence by the claim X is also a ccc space which easily implies
that the space D = D(A) is a ccc space. As we have seen, the family
{m¢ : ¢ < w1} is an unconditional basis for its closed linear span (see
Definition 2.1 and Lemma 2.3); since (V¢ N K) > 6 for ¢ < wy, we get
that this family is equivalent to the usual basis of the Banach space
I*(w1). On the other hand, the closed linear span of this set in C(K)
is isomorphic with the Banach space E = Ej1(A). So E ~ [*(w1). It
follows by Proposition 2.7 that the set G of Gateaux differentiability
points of the (0,1) norm of F is a norm dense subset of E. Now if
there exists a dense GG§ subset G; of E on which the norm of FE is
Gateaux differentiable, then G; C G and since the map ® : G — D is
continuous onto and open, we would have from a result of Coban and
Kenderov [5] that the space D contains a completely metrizable dense
subset M. But since D is ccc, M would be ccc and so separable. It
follows that D is separable, which implies that L is a metrizable space,
a contradiction. O

Section 3. The aim of this section is the construction of suitable
examples of WLD Banach spaces which indicate the considerable dif-
ference of this class and the class of WCD Banach spaces.

As is known, every WCD Banach space, E, admits an equivalent
norm, the dual norm of which is strictly convex, so F is in particular
weak Asplund and smoothable (cf. Theorem 4.8 of [21]). It is natural
to ask if the existence of such a good norm on a WLD Banach space
implies “weakly countably determiness.” The answer to this question
is negative as the next example (a WLD Banach space of the form
C(K)) shows. The Corson-compact K given in this example admits a
o-distributively point-finite To-separating open cover, (otherwise K is a
Gruenhage space), though it is not a Gulko-compact; and this answers
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a question of G. Gruenhage [16].

The next simple Lemma is a consequence of the “dual operation.”

Lemma 3.1. Let K be a compact Hausdorff space and S a closed
subspace of K. Then the space M(S) of Radon measures on S is
identified with the weak* closed complemented subspace of M(K) of
all measures p on K which are supported on S. Hence, any measure [
on K 1is written in a unique way, as = po + p1 so that po supported
on S and p1 vanished on that set.

Proof. We consider the operator 7' : C(K) — C(S) : T(f) = f|S
and simply verify that the dual operator T* : M(S) - M(K) is a
linear isometry with range the set of those measures p on K such that
supp () C S, and in addition an isomorphism for the weak* topologies;
so M(S) C M(K). To see that M(S) is a complemented subspace, we
notice that the mapping,

7 M(K) = M(S) : w(u)(f) = /S fdu,

is a linear projection with range M (S). Since m(u) = 0, if and only
if u is concentrated on K\S, we conclude that any measure p on K
has a unique decomposition, p = po + p1 so that supp (uo) C S and
|pa|(S) = 0. s

Lemma 3.2. Let K be a compact subset of {0,1}', defined by an
adequate family of subsets of I'. We denote by S the compact subset
S ={Xgy} : v €T}U{0} of K, then we have:

(a) If u € M(K), then p is supported by S if and only if u(VaNK) =
0 for all A C T, such that 2 < |A| < w (cf. Note 2.10). In that case p is
an atomic measure and hence the space M(S) is identified with I1(S).

(b) There exists an equivalent dual norm N on M(K) such that
N(p) = |po| + ||p1l], where p = po + p1 is the unique decomposition of
W into two measures, according to the previous lemma. Furthermore,
the norm | - | on 11(S) is strictly convez.

Proof. The set S = {X{,} : v € I'} U{0} is closed with unique limit
point, the point 0 € K, so S is a compact scattered subset of K; hence
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M(S) = I1(S) is the space of all Radon measures on K supported by
S

Now we shall prove claim (a). Let p € M (K), such that u(V4NK) =0
for all ACT: 2 < |A| < w, and also let v € T'; u(V,, N K) # 0. Since
Vy =Xy UU{Va 1y € A, 2 < |A| < w}, and since p is regular we find
that u(Vy N K) = p(Xgsy). But K = {0} UU{V,NK : v €'}, so there

exists a sequence of reals rg,71,... ,7y,... and a sequence 7, ... ,¥, of
points of T, so that = Y7 ;7' - dg,, , where zg = {0} and =, = X{,,},
n=1,2,.... The converse of (a) is obvious.

Concerning (b), we notice that Lemma 3.1 implies that M(K) =
I*(S) + L, where L = { € M(K) : p vanished on S}. Since S
is an Eberlein compact, there exists an equivalent dual norm | - | on
M(S) = 11(S), which is strictly convex. We consider such a norm on
11(S), so that |u| < ||p|| for all u € 11(S).

Let u € M(K), then u = ug + u1, where ug € 1*(S) and u; € L, we
define N () = |po| + ||p1]|- It is clear that N is an equivalent norm on
M(K). We shall prove that N is also a dual norm. Let (u;);cr be a

*

net in M(K), with N(u;) <1 for all i € I, and so that u; = . It is
enough to prove that N(u) < 1. Let p; = p? + pu}, where p € 11(S)
and pu} € L for all i € I, and also let A,v be limit points of the nets
(u)ier (uh)ier, respectively, so that N?,jeJ “2 X and le',jeJ “S v for
some cofinal subset J of I; hence, 4 = A+ v. Since the norms ||-|| and
|| on M(K) and ['(S), respectively, are dual norms, and since [1(.9)
is a weak™* closed subspace of M(K), we get that

1 < . . 0
(1) A€l(8), Al < liminfug],
and
.. 1
) ol < tmnt 3]

Let v = vg + vy, then since the measures vy, v; are disjoint,
(3) [[v]] = Tfvol| + [Jval-
Now (2) and (3) imply

4)  N(v) = |vo| + [for]| < [[ool] + [[va]| = [Jo]| < 1i1].n€5nf\lu]1~||-
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Eventually, from (1) and (4), we conclude that
N(i) = N\ + ) < N() + N(v) < liminf [19] + liminf |}
JjeJ jeJ

P 0 1 IR TI
< T inf(lpg] + [lg]]) = Timinf N () < 1.
The proof of the lemma is complete. u]
We shall state the main result.

Theorem 3.3. There exists a Corson and Rosenthal compact space
Q (and hence) with the property (M) such that:

(a)  is not a Gulko compact.

(b) The space M(2) of Radon measures on §2 admits an equivalent
strictly conver dual norm.

(c) Q is a Gruenhage space and hence a fragmentable space (cf. [32]).

The space 2 is a slight modification of an earlier example which
appeared in [35, Theorem 6.58] (see also Theorem 4.4 of [3]). For the
proof of the above theorem, we need a description of 2 and two lemmas.

The space Q. Let N'= {N¢: { < w1} be an almost disjoint family
of subsets of w; we define an adequate family of subsets of w; with the
next rule: A finite subset F' = {(1 < {2 < -+ < (,} of w; is said to be
admissible if and only if

(1) |N¢, N Ne,| > max{k,l — k} for 1 <k<Il<n.

It is clear that every subset of an admissible set is also admissible so
the family,

A= AWN) ={A Cw; : every finite subset of A is admissible},

is adequate, and hence the space K = {Xx4 : A € A} is a compact
subset of {0,1}“t. It is easy to see that if z € K, then z = X4 for
A € A, and order type (A) < w. So K is a Corson-compact of bounded
order type and hence has the property (M) (see Proposition 4.10 of

[3])-
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Now let ¢ : w; — [0,1] be a one-to-one function. We define an
adequate subfamily A’ of the family A in the following way: A subset
A of wy belongs in A, if and only if every finite subset F' = {(; < (» <

- < (n} of A’ is admissible and, in addition,

(2) 6(0) —6(C) <1k for1<k<i<n,

We set Q = {x4:Aec A'}. It is clear that Q is a compact subset of K;
moreover, every A € A’ by (2) has a unique limit point in the interval
[0,1], so A is a countable G subset of [0,1] and hence X4 : [0,1] = R
is a Baire-1 function, implying that 2 is a Rosenthal compact.

Lemma 3.4. There exists an almost disjoint family {N¢ : ¢ < w1}
of subsets of w, so that the Corson-compact ) defined by this family is
not a Gulko-compact.

Proof. The construction of the family {/N; : { < w1} and the proof is
the same as in the example mentioned before (see Theorem 4.4 of [3]).
]

Lemma 3.5. For every Corson-compact K defined by an almost
disjoint family {N¢ : ( < w1} of subsets of w as above, the space C(K)
admits an equivalent (necessarily) smooth norm, the dual norm of which
1s strictly conver.

Proof. We set L™ = {Xy,nk : |A] = n} for n = 1,2,... (cf. Not.
2.10), and also set L = (U2 L™)U{1}. It is clear that the linear span of
the set L is a subalgebra of C'(K) containing the constant functions and
separating the points of K, hence by Stone-Weierstrass theorem it is a
norm dense subspace of C'(K). We consider the (bounded linear one-to-
one) operator T : M(K) — [°°(L) defined by T'(1) = (u(f)) fer which
actually is weak™ to pointwise continuous, and we set D = U, >2L".

Claim. There exists a partition {D,, : m
we define the (bounded linear) operator S : 1

)= g (71Dw)

m=1

,2,...} of D, so that if
)

=1
(L) — 1°°(D) such that
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then S o T[M(K)] is a subspace of the Banach space co(D).

Proof of the claim. We define the following partition of D,

Dm:{XVAﬁK eDmax{\NgﬂNd(#f,(,feA}zm}
form=1,2,....

We shall show that for every * € K and m = 1,2,..., the set
z(m) = {Xvung € Dm: 0:(Va N K) # 0} is finite. Indeed, since
the order type of (z, <) is w, we write the support of z as o(z) = {(1 <
C2<...,Cn <...},als06,(VaNK) # 0 is the same as to say A C o(z).
Now let Xv,nx € 2(m),and A = {(;, < Cnp < - < (n, } € o(z); since
A is an admissible set, we get that

|N<nk N Ny, | > max{ng,n; —ng} for1<k<l<g,
since Xy, nk € x(m), we conclude that
m > max{max{ng,n —ng}: 1 <k <gqg},

which clearly implies that ny < 2m. So z(m) is a finite set.

Since the operator S o T is weak® to pointwise continuous, it follows
from the above that the set S o T'(K) is pointwise and hence weakly
compact subset of c¢o(D) (recall that the weak and the pointwise
topology coincide on bounded subsets of ¢co(D)). We show further that
the range of the operator S o T is contained in ¢y(D).

Set X = {x6; : t € K} C M(K) = C(K)*; then by Krein-
Milman’s theorem, the closed unit ball B of M(K) is equal to the
weak* closure of the convex hull (X) of X, namely B = m*. We
notice that S o T((X)) = (S o T(X)), so by Krein’s theorem the
convex hull (S o T'(X)) of the weakly compact subset S o T(X) of
¢o(D) is weakly relatively compact, hence pointwise relatively compact.
It follows from the weak*-pointwise continuity of the operator S o T'
that SoT(B) = SoT((X) ) C SoT((X))P = (SoT (X)) C co(D);
therefore, S o T(M(K)) C co(D).

We notice that if pu,v € M(K) and u = po + p1, v = vg + vy are
the unique decompositions of y and v according to Lemma 3.1, then
Lemma 3.2a easily implies that S o T'(p) = S o T'(v), if and only if
H1 = V1.
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To finish our proof, we define an equivalent norm || - || on M(K) in
the following way,

elll = (N ())* + (1S o T(u)l D)2,

where N is the (dual) norm defined by Lemma 3.2b and ||S o T'(1)||p
denotes - the Day’s norm of the space co(D). It is clear that ||| - |||

is a dual norm on M(K). It remains to prove that ||| - ||| is a strictly
convex norm. Let p = po + p1, v = vy + v1 are measures on K so that
Nl = vl = [ll(g +v)/2]]] = 1, then by standard arguments we
have that

(1) N(p) = N(v) = N((n +v)/2),

and

(2) IS e T(Wllp =[S o T(v)|lp = IS o T((1 + v)/2)l|p-

By the strict convexity of Day’s norm on co(D), we get from (2)
that S o T'(u) = S o T'(v), namely g3 = v, so (1) implies that
lwol = Jvol = (o + vo)/2|, and by the strict convexity of |- |, we
get that o = vp, which finishes the proof of the Lemma. o

Proof of Theorem 3.3. We consider an almost disjoint family N =
{N¢ : { < wi} of subsets of w, as in Lemma 3.4, and we set 2 to be
the space defined by the adequate family A’ = A'(N) so Q is not a
Gulko compact. Since 2 is a closed subspace of the Corson-compact K
defined by the adequate family A = A(N), we conclude from Lemmas
3.1 and 3.5 that M(Q) admits a dual strictly convex norm. Hence,
claims (a) and (b) have been proved.

Now we prove claim (c¢). We recall that a topological space Q is
said to be a Gruenhage space (see [16] and Definition 2.1 of [32]), if
there exists a family U = U,,,U,, of open subsets of Q so that for all
z,y € Q with  # y there exist n € w and V € U,, which separate z,y
and ord (z,U,,) < w or ord (y,U,) < w (where ord (z,U,,) denotes the
cardinality of the set {V € U, : z € V}).

We set for ( <wjandm =1,2,..., Ve = U{Vie,n N2 ¢ < <wy

and |¢(¢) — ¢(n)| > 1/m, and Up, = {Vem : ¢ < wi}. We also set
Up={VeNQ:¢{ <wi}
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It is easy to verify that the family U = U,<wU, makes 2 a
Gruenhage space. It then follows by Proposition 2.2 of [32] that Q
is a fragmentable space, that is, there is a metric d on 2 so that, for
every € > 0 and each nonempty subset Y of 2 there is a nonempty
relatively open subset U of Y such that d-diam (U) < e. The proof of
the theorem is complete. ]

The WLD Banach space C'(K) described in Theorem 3.3 is “dually”
strictly convexifiable and thus (by using standard results) weak As-
plund and smoothable. Now we give an example of a WLD Banach
space F with an unconditional basis, whose dual space is strictly con-
vexifiable, which has neither of these properties. This example provides
a solution of a problem of Larman and Phelps (see Problem 6 of [18]):

“If the Banach space E is weakly Lindelof in its weak topology, is it
a weak Asplund space?”

Theorem 3.6. There exists a Corson-compact space K with property
(M), such that:

a) K does not contain a dense G5 metrizable subset and (hence)

b) the Banach space C(K) is neither weak-Asplund nor smoothable,
and

c) C(K) contains a closed linear subspace E (so E is weakly Lindelof)
with an unconditional basis, which is not weak Asplund nor smoothable.

We first give a description of the space K.

A finite subset A = {t1 < t2 <--- < t,} of the unit interval I = [0, 1]
is called admissible, if and only if

tn —tm < 1/m for m < n.

It is clear that if A is admissible then every subset of A is also
admissible; so the family

A={ACT: every finite subset of A is admissible},
is adequate. It follows that the spaces
Q={zec{0,£1} :0o(z) € A}, and K ={xa:Ac A},

are compact.
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We notice that if A is an infinite set belonging in A, then A in its
natural order is well ordered with order type A which is equal either
tow (0 A={t1 <ta < - <t, <--+},n<w)ortow+1 (and
so A ={t1 <ty <---<t, <--- < t})itis obvious that, in the
second case, we have t = lim,, ., t,. So K and ) are Corson compact
spaces. Moreover, it follows by the above remarks that every A € A
is a scattered subset of I, so X4 : I — R is a Baire-1 function, which
implies that K and ) are Rosenthal-compacts; thus these spaces have
the property (M).

For the proof of (a) of the above Theorem, we shall need two simple
lemmas.

Lemma 1. Let A be a nonempty admissible set. If a = max A < 1,
then there exists b € (a, 1) so that the set AU {t} is also admissible for
any t € (a,b).

Proof. Let A={t; <ty <---<ty},s0a=t,. Wesett  =t,+1/m
for m < n. It is easy to see that ¢/, > a for all m < n, so if
b = min{l,#},...,t),} then we have a < b. Now it is easy to verify
that this b satisfies the desired property. u]

Lemma 2. Let A be a nonempty admissible set with a = max A < 1,
and also let b € (a,1). Then there exists an admissible set B O A with
¢ # B\A C (a,b), so that if T' € A and B C T, then supT < b.

Proof. Let A = {t; < ty < -+ < t, = a}. Then it is easy to
show that there exists € > 0 so that for every t € (a,a + ) there is a
strictly increasing sequence (tx)x>n+1 C (a,t) converging to t, so that
{tn :n € w} € A Lett € (a,a+ ¢) such that t —a < (b —a)/2, and
also let A > n with 1/A < (b— a)/2. We set

B:{tl <ty < "'<t)\},

and we easily verify that this is the desired B. O

The above Lemmas imply the following facts:

1) Theset D = {z € Q : o(z) is a maximal set of A} is a dense
subset of Q (and the set D N K is a dense subset of K).
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2) If V= VP N K is a nonempty basic clopen subset of K, with A
nonempty and ¢ = max A < 1, then there exists b € (a,1) such that
BN (a,b) =2 and AU {t} € A for every t € (a,b).

It follows that we may associate to every basic clopen set V of K an
open interval (a,b) C I as in (2) above.

We are now ready to complete the

Proof of Theorem 3.6. a) Let Gy 2 Gy 2 -+ 2 G, 2 ---,
n < w a sequence of dense open subsets of K, so that the (dense
Gs) G = NpewGy, is metrizable, and also let d : G X G — R be a metric
on G, with d(z,y) < 1 for all z,y € G. We set Vy = Vjo3 N K, and
we construct a decreasing sequence V; D Vo D --- DV, D --- n<w
of nonempty clopen subsets V,, = Vﬂ" N K of K so that A,_1 C A,
0<ap<apt1 <bpi1 <b, <1,and also

d-diam (GNV,) <1/n,

and
G OV1,Go D Vo, ... ,Gp D Vy, ... for n < w.

Suppose that the set V,,_; has been chosen for some n > 1, and let
(@n—1,bn—1) C I be the corresponding interval (according to fact (2)).

From Lemma 2, there exists an admissible set A/, D A, ; with
¢ # A, _\A, 1 C (an_1,bp_1) such that if I' € A with A/, ; C T,
then we have supI’ < b,_;. We set W = Vj”’l N K. Then W is a

n—1

nonempty clopen subset of V;, 1. Since (G, N W) N G is a nonempty
relatively open subset of G, there exists a nonempty basic clopen subset
V, of K such that

6# VNG C(G,NW)NG,

and
d-diam (V,, N G) < 1/n.

It is clear that we may assume that V,, C G,,NW. So we have V,, C G,,
and V,, C W C V,,_1; the second inclusion implies A, D A, _; # A, _1,
S0 Gp—1 < @y < by_1. Now let b, € (an,b,_1) with (a,,b,) N B, = &,
and so that the set A U {¢} is admissible for all ¢ € (an,b,). The
induction is complete.
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Set A = Up<yAp. Since (A, )n<w s an increasing sequence, (Vy,)n<w
is a decreasing sequence of clopen sets, and X4, € V, C G, for
n < w, we conclude that X4 € Ny<wVn € NpewGn = G C K. Our
construction implies that the set A has the form A = {t; <tz <--- <
tn <---}C[0,1). Let t = lim#,; since A,, C A for n < w, we find that
sup A =t € (an,by) for all n < w, so Xaugy € Vi for n < w, and thus
Xau{t} € Mn<wVn. But this is absurd because d-diam (GNV,) < 1/n
for all n < w, and so

d—diam< N Vn> =0.

n<w

We notice that an easy modification of the previous proof shows that
the space 2 does not contain a dense G5 metrizable subset.

b) Concerning this claim, we notice that if the Banach space C'(K)
was weak-Asplund, then by a result of Coban and Kenderov [5], the
compact space K would contain a dense G5 metrizable subset, which
contradicts claim (a). Now to show that C'(K) is not smoothable, we
may use a recent deep result by Preiss and Phelps [30] according to
which every smoothable Banach space is weak-Asplund. However, we
shall give (after the proof of claim (c)) a direct proof of this fact.

c) Weset E = Ey1(A). Then E has an unconditional basis and
E C C(K) (cf. Definition 2.1 and Lemma 2.3). We alsoset G = {f € E:
the (0,1) norm of E is Gateaux differentiable}, and ® : G — D to be
the restriction of the subdifferentiable map of the norm of E on G.
Assume that F is weak Asplund. Then the set G contains a dense G
set of points of F, so since ® is a (continuous) open and onto map
(according to Theorem 2.9), by the above mentioned result of [5] the
set D also contains a dense completely metrizable subset. But D is
dense in Q (see the fact (1)), therefore Q contains a dense completely
metrizable (hence dense G5 and metrizable) subset, which contradicts
claim (a). o

Remarks. 1) Let K be a nonmetrizable ccc Corson-compact space
with property (M) (if we assume CH, there exist several examples of
this type according to Theorem 2.3 of [3]). Then in a similar way we
may show that the space C(K) satisfies Theorem 3.6.
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2) We notice that: (a) Theorem 3.6 answers in the negative question
Q1 in [3, p. 222], and (b) the above mentioned result of [5] gives an
affirmative answer to question Q2 (p. 222 of [3]).

Now we give a direct proof of the fact that C'(K) is not smoothable.
It is enough for this to show that the Banach space E = Ej1(A) is
not smoothable. We shall use a Lemma due to M. Day, and which is
implicitly contained in the proof of Theorem 9 of [6].

Lemma. Let (E,||-||) be a Banach space and also let | - | be an
equivalent norm on E, so that ||z|| > |z| > m||z||. For every x with
|lzl| =1, we define E, ={y € E: |lyl| = 1 and [y| < |z|-m|lz—yl[/4},
then:

a) FE, is a norm-closed subset of E, and x € E;

b) ify € E,, then E, C Eg;

c) if (z,) is a sequence of norm-one points of E, so that for each n,

ZTni1 € By, , then (z,) is norm converging to some x € E, and z is in
all E, .

If, moreover, we suppose that | - | is a smooth norm, then we have:

d) if = is a norm-one point of E so that there exists z € E with
[|Ax + pz]| = |A| + |p| for all A, € R, then there exists y € E, with
y=tz+ (1 —t)z for somet € (0,1), such that |y| < |x|.

Proposition 3.7. The Banach space E is not smoothable.

Proof. We assume, for the purpose of contradiction, that there is an
equivalent smooth norm | - | on E such that ||z|| > |z| > m/||z||.

Let z € E with ||z|| = 1, so that the support of z, o(z) = {t €
I : z(t) # 0} is an admissible set, and also let a = max(o(z)). We
consider, using Lemma 1, b € R, so that a < b and with the property
that o(x) U {t} is admissible for all ¢t € (a,b). We set

E, = E’(x, (a,b))
={y e E;:0(y) € A,o(z) Co(y), and o(y)\o(z) € (a,b)}.
We notice that:

(i) each E, is a nonempty norm closed subset of E.



430 S. ARGYROS AND S. MERCOURAKIS

(ii) for any E, there exists y € E, such that the support of y is an
admissible set and |y| < |z|: (Indeed, let ¢ € (a,b), and also let z = e,
then |[|Az + py|| = |A| + |p| for all A\, u € R. So by (d) of Day’s lemma,
there exists y = tz+ (1 —t)z € E,, for some ¢t € (0,1) such that |y| < |z|.
Now it is obvious that this is the desired y).

(iii) Let y € E(z, (a,b)) such that the support of y is an admissible
set. If ' = max(o(y)) and &' € (¢, b), then E(y, (a',b")) C E(z, (a,b)).

We set 29 = ey and E,, = E(xg,(0,1)), and then we construct
inductively a decreasing sequence

EmlgEmgg"'Ean"'a n < w,

where Ezn = E(zn, (an, by)), so that for any n = 1,2, ..., we have

o(Tn-1) G 0(Tn),
0<an<an+1<bn+1<bn<l,
r, € E,

n—1"?
and ~
|zn| —inf{|z| 2z € By, ,} < 1/2™.

Indeed, suppose that the set E~M71 has been chosen for some n > 1.
From remark (ii) above there exists z,, € F,_,, the support of which
is an admissible set, with o(z,-1) G o(,) such that
(1) |2, —inf{|z| : 2z € E,, ,} <1/2™

Set a, = max(o(z,)) so a, € (ap_1,b,_1). By using Lemma 1, there
is b, € (an,bn—1) such that o(z,) U {t} € A for any t € (an,b,). We
define F, = E(xn, (an,by)), and the induction is complete.

From Day’s lemma, the sequence (z,,) is norm converging to some z €
E; it is clear from the above construction that o(z) = Up<wo(z,) € A
and also that this set has the form o(z) = {t; < t2 < -+ < t,, <
---} C[0,1). We set t = limt,, and we notice that ||z|| = 1 and that
o(z)U{t} € A, hence || \x + pes]| = || + |u| for all A, u € R. So Day’s
lemma implies that there exists y € E, (of the form y = t'z+ (1 —t')e,
for some ¢’ € (0,1)) such that |y| < |z| (2). Since a,, < t < b, for n < w,
and since o(y) = o(z) U{t} € A, we have that y € F,_, n < w; so from
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(1) we conclude that |y| = lim |z,| = |z|, which obviously contradicts
(2). O

Remark. Since every WCD Banach space admits an equivalent
smooth norm (Theorem 4.8 of [21]) the above result particularly implies
that the space K is not a Gulko-compact. On the other hand, it is easily
seen that K is a pointwise compact subset of the Banach space Cy(I)
endowed with supremum-norm of all bounded functions f : I — R such
that for every € > 0, o/ (f) = &, where o.(¢) = {t € I : |f(¢)| > €},
and o/ (f) denotes the second derived set of the set o-(f) (see [7]). It
should be noticed that the pointwise compact subsets of the space C2(I)
are quite near to the class of Gulko-compact (see [22]), and also that
this space is strictly convexifiable (see [7]). By using strict convexity
of the Banach space C2(I), we may show the next

Theorem 3.8. The dual space E* of the Banach space FE is strictly
convezifiable.

Proof. It is enough by standard results to prove that there is a
bounded linear one-to-one operator T': E* — Cy(I).

For this purpose, we define T': E* — [*°(I): T'(z*) = (z*(e¢))ter. It
is clear that T is bounded (||T|| < 1) linear one-to-one, and weak*
to pointwise continuous. Let B be the closed unit ball of E*; we
have to prove that T(B) C Ca(I) (1). We notice that the ball B
of E* endowed with weak* topology is affinely homeomorphic with the
pointwise compact and convex subset 7'(B) of the ball of {°°(I).

By Lemma 2.3 and Remark 2.4, the set of extreme points of T'(B) is
the set D(= {xz € Q: o(x) is a maximal set of A}). It follows that, to
prove (1), it is enough to show the following

Claim. The pointwise closure X in the space [0,1]! of the convex
hull of the set K = {X4 : A € A} is contained in the space Ca(I).

Proof of the clatm. We shall prove that for any f € X and n < w,
the set 0y /,,(f) has at most n limit points in I; so we assume that for
some f € X and n < w, the set o1/, (f) has n + 1 limit points. In this
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case we may clearly find a natural number m and n 4+ 1-many disjoint
sets F1,...,F,t1, so that:

(i) |Fx| =m, Fx Co1/p(f) for k=1,2,... ,n+1, and

(i) fl1<k<l<n+landte Fy,t € F,then |t—t| > 1/m. We
set F'= Ut Fj, and p = > icr 0t (namely, u(g) = >, g(t) for every
g €1°°(I)), and then we get that

(2) p(f) > (1/(n+1)-(n+1)-m=m.

Now let A = {t1 <tz < -+ < tg} be an admissible set with ¢ > m.
Ifm <k <l <gq then t; —tx < 1/m, so (ii) implies that the set
{tm < tm1 < -+ < tg} N Fy is nonempty for at most one index
k=1,2,... ,n+1. Therefore, the set FNA has at most (m—1)+1=m
elements. But since p : [°°(I) — R is a continuous linear functional,
when [*°(I) is endowed with pointwise topology we conclude that

u(g) <m for all g € Q,

which contradicts (2). O

Remark. Though the space Cy(I) is strictly convexifiable, it does not
admit an equivalent strictly convex norm | - | that is pointwise lower
semicontinuous (namely, with the property that for each r > 0 the r-
closed ball of (C2(I),]-|) is a pointwise closed set). Since in that case
(by using the properties of the operator T of the previous theorem),
the space E* would admit an equivalent dual strictly convex norm,
and thus F would admit an equivalent smooth norm, a contradiction
according to Theorem 3.6(b) (cf. Theorem 4.5 of [21]).

Using the above results, we give another proof to a result of [7,
Theorem 2 (i)].

Corollary 3.9. There is no bounded linear one-to-one operator
@ : Cy(I) — ¢o(T), for any set T.

Proof. Suppose that for some set [' there exists such an operator
D : Co(I) = co(I"). Set R =P oT : E* — ¢o(I') where T is the
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operator of Theorem 3.8. Then, clearly, R is a bounded linear one-to-
one operator. However, since F has an unconditional basis, such an
operator cannot exist; because in that case by a result by W. Johnson
(Proposition 1.3 of [32]) the space E would be WCG, so the closed
unit ball B of E* in its weak™ topology would be an Eberlein compact
(see Proposition 34 of [32]); which implies that 2 C B is an Eberlein
compact, a contradiction. a

Note. We may prove in a similar way a stronger result, namely:
there is no bounded linear one-to-one operator T' : Co(I) — C1(X)
for any countably determined topological space X (the space C1(X) is
defined in Section 1).

The next example proved by Haydon (see the introduction) is a WLD
Banach space E (with an unconditional basis) so that the dual E* of
FE is not even strictly convexifiable. For this purpose, we shall use
a combinatorial construction due to Todorcevic [37]. We begin by
recalling the definition of a tree.

A tree is a partially ordered set (T, <) such that for s € T the set
{t € T :t < s} is well ordered. A chain in T is a set C C T which
is totally ordered by <. An antichain in 7" is a set A C T, consisting
of pairwise incomparable elements. A branch of a tree T' is a maximal
chain of T. A path of T is any chain of T" which is also an initial segment
of T. If t € T, then t* denotes the set of all immediate successors of ¢
in T. In any tree, we use normal interval notation so that, for instance,
(s,ul = {t € T : s <t < wu}; also for convenience we introduce two
“imaginary” elements, not in Y, denoted 0 and oo, with the property
that 0 < t < o0.

For a tree (T, <) we set:
Ar ={C CT:C is a chain},
and

Br={CeAr:s<teC—se(}.

It is clear that Ar is an adequate family of subsets of 7" and that
Br is the set of all parts of T. We also set: E = Ep(Ar) and
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P=P(T) ={z € {0,£1)T : o(x) € Br}. Note that P is compact and
that E embeds isometrically in C(P).

Proposition 3.10. If every branch of T is countable, then P is a
Corson-compact with property (M).

Proof. 1t is obvious that P is Corson, so let u be a positive measure on
P, with support S. Define T), = {t € T there is z € S with z(t) # 0}.
Then T), is a sub-tree of T (that is, if s < ¢t € T}, then s € T},).

For t € T, set ¢(t) = p({z € P : z(t) # 0}). Then T, = {t €
T : ¢(t) # 0} and ¢(t) > E{¢p(u) : u € t*} for all t. We shall
show that T, is countable. To do this, it is enough to show that
for no € > 0 is the set {t € T : ¢(t) > e} uncountable. By a well-
known combinatorial principle (the theorem by Dushnik and Miller
[9, Theorem 44, p. 475], see also [23]) any uncountable subset of T
contains either an uncountable chain or an infinite antichain. The first
possibility is impossible because all branches of T' are countable. The
second possibility cannot also hold here since Z{¢(t) : t € A} < ||pl],
for any antichain A in T

The proof is now complete since S is obviously homeomorphic to a
subset of {0, £1}7x, u]

We say that a tree (T, <) has property (*), if there is no sequence
(A;)new of antichains in 7" such that

T = UnEw UC\tEAn (0, a].

Lemma 3.11. There ezists a tree (T, <) with property (x).

Proof. The existence of a tree with property () has been shown by
Todorcevic. We shall give an outline of its construction and refer the
reader to [37, Theorems 9.13-9.14 and Lemma 9.12] for more detailed
proofs.

So, let A be a subset of w; such that A and w;\ A are both stationary
(o subset of w; is called stationary if it intersects every closed and
unbounded subset of wy). We define T to be the set of all subsets ¢ of
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A that are closed in wy. We write ¢t < s if ¢ is an initial segment of
s, and note that (T, <) is an uncountable branching tree (that is, t*
is uncountable for any ¢ € T'). The tree 7' has no uncountable branch
since, if it did, A would contain a closed unbounded subset. i

Note that Todorcevic has proved among other things that the com-
pact space P = P(T) does not contain a dense metrizable subset (cf.
Theorem 3.6 (a)).

Theorem 3.12. Let (T,<) be a tree with property (x), then the
Banach space E* = E*(Ar) has no equivalent strictly convex norm.

For the proof of this theorem, it is convenient to refine the tree T so
that a property stronger than (x) holds. We set

T { t € T: there is no sequence (A,) of antichains in [¢, oo]}
B such that [¢,00) = Uney Usea, [t a)

Then 7" (is a nonempty sub-tree of T' which) has the following property:

If (A,,) is a sequence of antichains in 7" then
(%) ¢, oo)\< U U (0,a]> # @, for every t € T".
nEw acA,
We now assume 7' = T" and note the following equivalent formulation

of (xx).

If : T — R' is a decreasing function, then there is
(%) a maximal antichain A in T such that 6 is constant on

each set [a,00) with a € A.

Lemma 1. If T satisfies (xx) and ¢ € E**, then there is a mazimal
antichain A in T such that (¢, x) = 0 whenever x € R™ and |z < X(q,)
for some a € A and b € [a,0).

Proof. Define 6 : T — R by
0(t) = sup{(¢,y) :y € RT and |y| < X(t,q] for some u € [t,00}.
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Evidently 6 is decreasing, so that by (#x) there exists a maximal
antichain A with 6 constant on each [a, o) (a € A). We claim that the
constant value must in each case be 0. For suppose otherwise, and let
N be a natural number with N > 2||¢||/g(,). Set to = a and, given
tn, choose t,41 > t, together with 1 with |z,41] < X(tn,tns) and
(¢, n+1)(1/2)0(a) (recall that 6(t,) = 6(a)). Note that || EnNzl Ynl| <
1 so that (¢, ZnN:1 yn) < ||9||, a contradiction. O

Now let ||| - ||| be any equivalent norm on E* when ¢t € T and
y € {0, £1}7T satisfies |y| < X(0,t], define

lllzl|| = =z € {0,+1}*,2/(0,t] = y|(0,] and there is
w(t,y) = sup . :
u >t with 2| < X(g,u]

Lemma 2. Given s € T and z € {0,+1} with |z] < X049,
there exists a mazimal antichain A in [s,00) such that |||y]|| > |||z|||
whenever y € {0,%+1}7, and there exist a € A, t € [a,00) with
y|(07a] = w‘(oaaL ‘y| < X(O,t]'

Proof. We choose ¢ € E** such that |||¢||| = 1 and (¢, z) = |||z|||.
We then choose A so that (¢,z) = 0 whenever |z| < X(4,4 for some

a€A,te (a,00). O

Lemma 3. Given s € T, ¢ > 0 and z € {0, £1}7 with |z| < X(0,4,
there exists a mazimal antichain B in [s,00) together with elements y,
(b € B) of {0,+1}T such that:

(1) wblo,s] = (0,55

(i) lyl < X(0,)5

(i) [yslll = w (b ) — ¢,
for all b e B.

Proof. For any t € (s,00), there exists u € [t,00) and z with
20, = =l 2] < X,us 12|l = w(t,z) —e. Thus, if we take
an antichain B in (s, 00) maximal subject to the existence of elements
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y (b € B) satisfying (i), (ii), (iii), the antichain B will actually be
maximal. o

Finally we prove Theorem 3.12.

Proof of Theorem 3.12. We consider the following: A sequence
(An)necw of maximal antichains in 7" and elements y,, a € Upey,An
of {0, £1}T satisfying

(i) for each a € A, thereis b € A,,11 with a < b,

(i) if @ < b, then ys|(0,0] = Yal(0,a;

(i) fa € An, b € Apyyanda < b, then [llgalll < 121l < 2"+l
for any z € {0,+1}" satisfying 2|04 = y» and |z| < X(g,y) for some
u € [b,00).

We start by letting Ag be the set of minimal elements of 7', with
Yo = 0 for all a € Ag. If A, has been defined, together with y,
(a € A,) we work repeatedly with each a € A,. For such an a we
start by applying Lemma 2, with s = a, * = y,, to find a maximal
antichain A’ in [s, 00) such that |||z||| > |||ya||| whenever z € {0, £1}T
and z|(0,a] = Yal(0,a’}> 2| < X(0,¢) for some a’ € A’, t € [a’,00). Next,
for each a’ € A’ we apply Lemma 2, getting a maximal antichain A” in
(@', 00) together with elements y,~ (a” € A”) such that the conclusion
of Lemma 3 holds. It is clear that if we take the union of these sets A’
for all a’ and a, we obtain a maximal antichain which has the properties
we require for A, 1.

By our hypothesis about 7', there exists a u € T'\ Uncw Uaca, (0,al.
For each n € w there is a unique a, € A, with a,, < u, and we

can define an element z of {0, +1}7 by 2|(0,an] = Yanl(0,an]y M € W,
Z|Y\Unew(07an] = 0. This element z satisfies |z| < X(0,u) and [ Yans Il <
21l < [[Yans|ll + 27" for all n, so that [|[z]|| = limn—co [||Ya, |-

Moreover, any 2’ satisfying |2'| < X(0,u]» 2'|(0,u) = 2|(0,u) has [[|2'[|| =
|||z]||- In particular, if we define 2% by

{zi\(oyu) = z|(0,u),zi(u) = il,zi|Y\(0,u) = 0},

we have |[|z%]|| = |||z]|| = |\|Z+i|||, contradicting strict convexity of

2
-1l o
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In the sequel we define a class of dual WLD Banach spaces by
using a quite general method of construction of Banach spaces with an
unconditional boundedly complete basis (and so dual Banach spaces)
mentioned in a paper by D.N. Kutzarova and S.L. Troyanski [17].
Roughly speaking, we associate to each (totally disconnected) Corson
compact space K with property (M), a WLD Banach space E with
an unconditional boundedly complete basis in such a way that K is
embedded in the unit ball of E* as a weak® compact subset. This
result particularly implies, by using standard arguments, that if K is
Talagrand compact, which is not an Eberlein compact, then F is a
weakly K-analytic Banach space which is not a subspace of a WCG
Banach space; and this solves a problem posed by Talagrand [35,
Problem 4.6 c], “Is a dual weakly K-analytic Banach space a subspace
of some WCG Banach space?”.

Definition 3.13 [17]. Let I" be a nonempty set and A a family of
subsets of I' as in Definition 2.1.

We set
E=E3(A)={f:T = R:||f|] < +},
where
211/2
Il = Sup{[z < > f(’y)l) } : T finite, A; finite

i€l “y€EA;

forallie I,A;NA; = 3,1 # 7, andAie.A,iGI}.

It is rather easy to see that (E,|| - ||) is a Banach space, having the
set {e, : v € I'} as an unconditional boundedly complete (normalized)
basis. So (E,|| - ||) is isomorphic with the dual of the subspace F of
E* | which is generated by the family of biorthogonal functionals of the
family {e, : v € T'} (see Proposition 1.b.4 of [19]).

Now suppose that the family A is adequate, and set K = K(A) for
the compact space defined by A.

Then we have the following

Lemma 3.14. a) There is a bounded linear one-to-one operator
T:E — C(K) such that T(ey) = my, vy € L.
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b) The compact space K is homeomorphic with a weak* compact
subset of the closed unit ball Bg+ of E*.

c) If A is a nonempty subset of T' such that the family {e, : v € A}
is equivalent to the usual basis of ' (A), then (and only then) the family
{my : v € A} is equivalent to the usual basis of I*(A).

Proof. a) We define T'(e,) = m., for v € I'. Then it is easy to see that
this correspondence can be extended to a bounded linear one-to-one
operator to the whole E such that ||T'|| = 1.

b) This is similar to the proof of claim (b) of Lemma 2.3.

c) We recall that a family {e, : v € '} of vectors of a Banach space E
is said to be equivalent to the usual basis of {!(T) if there is a constant
0 > 0 such that

(1) Z Ay ey

YEA

25 Z ‘)"Y‘a

YEA

for every finite subset A of I' and every choice of scalars {\, : v € A}.

Now suppose (without restrictions of generality) that A =T, and let
d > 0 be a constant such that the family {e, : 7 € '} satisfies (1). We
shall show that

(2) Z Ay - Ty

YEA

> 6% M-
1

0, YEA

Set f = Zve 4 Ay - ey for some finite nonempty subset A C ' and
some choice of (nonzero) scalars {\, : v € A}. By the definition of the
norm of E, there is a family {A;, ..., A,} of pairwise disjoint nonempty
subsets of A, each of them belonging in the family A such that

®  lhe=(( X |A7|)2+---+ (% |A7|)2)1/2.

YEAL YEAR

We set a; = > 4, [M[/ 2 ealAy] for i =1,2,...,n. Then from (1)
and (3), we get that

(4) 2 <al+---+a?

n-
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We assume (without restriction of generality) that «, is the largest
of numbers ay,...,a,, then since a; > 0 for ¢ = 1,2,...,n and
Yo a; <1, we get from (4)

Z<ai+ o +aZ <aglar+ ot ay) < ap.

It follows that

(5) Do M=) N,

YEA, YEA

therefore, ||fllo, = sup{d . cplA] : B € A} > > 4 M| =
23 vea |Ay|, which is the desired inequality (2).

For the converse of the claim (c), we notice that if A is a nonempty
finite subset of ' and {\, : v € A} is a choice of scalars, then

2D DIV PP :HT<ZM6V>H

7€EA YEA VEA
<7l ZAv'ev = ZA"/'e’Y’
yEA yEA
which implies the conclusion.
The proof of the Lemma is complete. O

Corollary 3.15. If A is an infinite subset of I' such that {ey : y €
A} is equivalent to the usual basis of I'(A), then there is an infinite
subset Ay of A with Ay € A.

Proof. Set Kn = {Xana : A € A}K. Tt is obvious that Kx is a
compact subset (in fact, a retract) of K. From the claim (c) of Lemma
3.14, we have that the family {m, : v € A} C C(Ka) is equivalent
to the usual basis of [1(A). Hence there is A € A so that AN A is
an infinite set, otherwise the space Ka would be a scattered compact
space, and thus /! (w) is not isomorphic with a closed linear subspace
of the space C'(Ka). It follows that the set A; = AN A is the desired
set. a
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Note. As Professor S. Negrepontis noticed (it is easy to verify that)
Corollary 3.15 is in fact a restatement of a fundamental combinatorial
result on the existence of convex means due to Ptdk [31] (see also
Section 1 of [4] and [24]).

Theorem (Ptdk). Let I' be an infinite set, A a family of subsets
of ' and § > 0. We assume that for every nonnegative real-valued
function f on T with finite support and such that 3 f(y) =1, there
exists B C T with B € A such that 3 . f(v) = 6. Then there are
a sequence {7y, : n < w} of distinct elements of I', and a sequence
{B, : n < w} of members of A such that {y1,...,} C Bpn for all
n e w.

Note that Ptdk proved his result by a direct argument. We can now
state the main result of this last unity.

Theorem 3.16. Let I' be an infinite set and let A be an adequate
family of subsets of T'. We set K = K(A), and E = Ej 3(A), then we
have:

a) The space C(K) is WCG if and only if the space E is WCG;

b) the space C(K) is weakly K-analytic if and only if the space E is
weakly IC-analytic;

c) the space C(K) is WCD if and only if the space E is WCD.

d) the space C(K) is WLD if and only if the space E is WLD (if
and only if C(K) is weakly Lindelof).

Proof. We set L = {m, : v € T}U{0}. Since the family A is adequate,
the set L is a pointwise closed subset of C'(K) with only (possible) limit
point the point 0 € C(K) (cf. [37, Theorem 4.1]).

a) Suppose that C(K) is a WCG Banach space. It follows then from
a result of Talagrand [35, Theorem 4.2 (b)] that L is a countable union
of pointwise (and hence weakly) compact sets, say L = Up<y,Ly. Let
I,={yel:n, €Ly}, sowehave I' = Up<,I'n,. Now using Lemma
3.14 c), we may easily show that each set {e, : v € 'z} (n € w) is a

weakly relatively compact subset of E, which clearly implies that F is
WCG.
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Conversely, if we assume that E is WCG, then by a result of Johnson
(see Proposition 1.3 of [33]) the subset {e, : v € T} U {0} of E is a
countable union of weakly compact sets, hence by Lemma 3.14 a) the
subset L = {my : v € T} U {0} of C(K) is a countable union of weakly
compact sets, and so C(K) is WCG (cf. also Theorem 4.2 of [35]).

b) We denote by ¥ the Baire space w® of irrationals, and we set for
01,00 € X, 01 < 03 if 01(n) < og(n) for n < w. It is clear that oy < o9
if and only if ¥(o1) C X(o2), where for ¢ € X the set X(o) denotes
the compact subset g <, {1,2,... ,0(x)} of ¥. Now if we assume that
the space C'(K) is weakly K-analytic, then the weakly closed subset
L of C(K) can be written in the form: L = U{L, : ¢ € X} where
L, is weakly compact for all ¢ € ¥, and for 01,02 € £, Ly, C L, if
o1 < 0. We may show as above that the set, L, = {e, : m, € L}
is a weakly relatively compact subset of E for o € . We have clearly
{ey:7€Tl} =U{L, : 0 € ¥},and also L,, C L,, if 01 < o2. Since the
set {e, : vy € I'} is a basis for E, a result of Talagrand (see Proposition
6.13 of [35]) implies that E is weakly K-analytic.

For the converse, we notice that Lemma 3.14 a) implies that the
subset L of C'(K) is weakly K-analytic, hence by Theorem 4.2 of [35],
C(K) is weakly K-analytic.

c) This implication is proved as the previous one, using the following

(unpublished) result, obtained in [20]; For a Banach space E the
following are equivalent:

1) E is weakly countably determined, and

2) there is a separable metric space M, and a total subset L of E,
that can be written in the form, L = U{Lg : K € K(M)}, where Lg
is weakly compact for all compact subsets K of M, and Lk, C Lk, if
K, C K, for K1, Ky € K(M); (where K (M) denotes the set of compact
subsets of M).

It is clear that this result generalizes Proposition 6.13 of [35].

d) We define a bounded linear one-to-one operator ® : E* — [*(T),
so that ®(z*) = (z*(ey))yer. It is obvious that ® is weak* to pointwise
continuous.

Assume that the set A = {y € ' : |z*(e,)| > €} is uncountable for
some z* € E* and some ¢ > 0. It is then followed by unconditionality
and Lemma 3.14 c) that the space ['(A) embeds into C'(K); since A is
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uncountable, the space C'(K) cannot be weakly Lindelof.

Now we assume that E is weakly Lindelof; then the above defined
operator has as a range the space [2°(T") (cf. the proof of Theorem
1.7), hence the closed unit ball B of E* in its weak* topology is affinely
homeomorphic to a pointwise compact and convex subset of [2°(T"), and
therefore has the property (M) (see Lemma 3.3 of [3]). Now claim b)
of Lemma 3.14 finishes the proof of d).

The proof of the theorem is complete. ]

Theorem 3.17. There exists a dual weakly K-analytic Banach space
E, which is not isomorphic with a closed linear subspace of any WCG
Banach space.

Proof. We counsider a totally disconnected Talagrand compact space
K which is not an Eberlein compact (as it is known M. Talagrand [35]
was the first who constructed such an example), and we assume without
restriction of generality that K is defined by an adequate family of sets.
Indeed, since K is totally disconnected is homeomorphic to a pointwise
compact subset of Cy(Y), consisting of characteristic functions, for
some K-analytic topological space Y (see Proposition 3.4 of [21]). We
set Q@ = {X4: there is B C Y with A C B and xp € K}. It is
easily seen that (2 is a pointwise compact subset of C1(Y") (and hence
Talagrand compact) defined by an adequate family A of sets and which
contains space K. By Theorem 3.16 b) the space E = E4 2(A) is a dual
weakly K-analytic Banach space, and by Lemma 3.14 b) the space 2
is homeomorphic with a weak* compact subset of the dual ball B of
E*. Now since K is not an Eberlein compact, and since a continuous
image of an Eberlein compact is again an Eberlein compact (Theorem
6.34 of [25]), we conclude that E is not isomorphic with a closed linear
subspace of a WCG Banach space. u]

Remark. Note that Fabian and Troyanski [11], and more recently
Fabian [12], have proved that if E is a Banach space so that E* is
WCD, then:

a) the space E admits an equivalent locally uniformly convex norm
[11], and
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b) the space E* admits an equivalent dual locally uniformly convex
norm [12].

The above authors used Theorem 3.17 to show that (a) and (b)
are real extensions of previous corresponding results by Godefroy,
Troyanski, Whitfield and Zizler (see [13] and [14], see also [8]).

We conclude with two related questions. Suppose that the dual E*
of a Banach space F is WLD.

Q1: Does E admit an equivalent locally uniformly convex norm?

Q2: Does E* admit an equivalent dual locally uniformly convex
norm?
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