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NOTES ON ANALYTIC FEYNMAN
INTEGRABLE FUNCTIONALS

IL YOO AND KUN SOO CHANG

ABSTRACT. In this paper we establish the analytic Feyn-
man integrability (and the Fresnel integrability) for a very
large class of functionals on multi-parameter Wiener space.
Many previous results in the literature, including results by
Chang, Johnson, Park and Skoug, then follow from our results
as corollaries.

1. Introduction. In a recent expository essay [9], Nelson calls
attention to some functionals on Wiener space which were discussed in

the book of Feynman and Hibbs [6] and in Feynman’s original paper
[5]. These functionals have the form

11)  F(z) :exp{/OT /OT W (s1, 595 2(s1), 2(s2)) ds1 dSQ}.

In [8], Johnson and Skoug examine the Feynman integrability of
functionals on Wiener space of the form

(12) r@)—ew{ - [ ' (A()E(5),5(s)) s},

Since then, Chang, Johnson and Skoug [3], and Park and Skoug [10]
extended the theory to include functionals of the form

P =e{ = [ [ A wlon), o)

(1.3)
(z(81)y---,2(spn))) dsy - dsn}.

Received by the editors on July 31, 1991 and in revised form on February 28,
1992.

1980 Mathematical Subject Classification. Primary 28c¢20.

Key words and phrases. Wiener measure space, analytic Wiener integral, ana-

lytic Feynman integral, Paley-Wiener-Zygmund integral, Fresnel integral, stochastic
integration formula.
esearch supported in part by the Korea Science and Engineering Foundation

and the Ministry of Education.

Copyright ©1993 Rocky Mountain Mathematics Consortium

1133



1134 I. YOO AND K.S. CHANG

Throughout this paper, we consider the analytic Feynman (and Fres-
nel) integrability of certain generalized functionals on multi-parameter
Wiener space and formulate the counterparts of the results in [3, 8,
10] for multi-parameter Wiener space.

Remark 1.1. 1t is interesting to note that, while the functionals
considered in [3, 8, 10] only involve the one-parameter Wiener process,
the functionals we consider involve multi-parameter Wiener process.
However, the proofs in [3, 10], as well as our proofs, involve various
multi-parameter Wiener processes in a most natural way.

2. Preliminaries. Let Cny = Cpn(P) denote N-parameter
Wiener space, that is, the space of real valued continuous func-
tions z(s1,...,s5) on P = [0,T]V such that z(0,ss,...,sn) =
z(s1,0,83,...,88) =+ = x(s1,...,8ny-1,0) = 0 for all (s1,...,sn) in
P, and let my be Wiener measure on Cy. Let v be a positive integer,
let C% = x{Cn, and let m%; = x{my. A subset E of C¥ is said to be
scale-invariant measurable provided pE is Wiener measurable for every
p > 0. For a rather detailed discussion of scale-invariant measurability,
see [2, 3, 8, 12].

Definition 2.1. Let F' be a complex valued functional on C}; which
is s-almost everywhere defined and scale-invariant measurable, and
such that the Wiener integral

T = / FA23) dm¥ (2)
Cx

exists for all A > 0. If there exists a function J*()) analytic in

Ct = {\ € C: ReX > 0} such that J*(\) = J(}) for all A > 0,

then J*(A) is defined to be the analytic Wiener integral of F over C¥%,

with parameter X\, and for A € CT we write

(2.1) /C " P @)ams, (2) = ().

v
N

Definition 2.2. Let ¢ be a nonzero real parameter, and let F' be a
functional whose analytic Wiener integral (2.1) exists for A € C*. If
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the limit (2.2) exists, we call it the analytic Feynman integral of F over
C%; with parameter ¢, and we write

anf 4 anw
(2.2) / F(@)dm¥%(#) = lim F(@)dm% ()

v A——i v
cN v C'N

where \ approaches —igq through CT.

Notation. We introduce the notation f([xg],) for the function
f(z1,...,x,) of n variables, f([zg]n;[yk]m) for the function f(zq,...,
ZTniY1,- -, Ym) of n 4+ m variables.

Let My (v) = My (L5 (P)) be the collection of complex valued count-
ably additive measures on B(LY), the Borel class of L§(P). Then
Mp(v) is a Banach algebra under the total variation norm where the
convolution is taken as the multiplication. Let Sy (v) be the space of
functionals on CY; expressible in the form

ey F@=[ p{z_j [ i) () | )

v
2

for s-a.e. & € C% and p € My(v) where fpv([sk]N)Zl;([sk]N) means
the Paley-Wiener-Zygmund integral [2, 3, 10, 11, 12]. The follow-

ing theorem is a well-known result whose proof is similar to that of
Theorems 2.3 and 5.1 in [2].

Theorem 2.3. Sy(v) is a Banach algebra, and every element F in
Sn(v) is analytic Feynman integrable, and for nonzero real g,

(2.4) /Ca:f F(Z)dmiy (%) = /Lz exp {(I/qu) Jil |Uj||§} dp ().

Next we give the necessary information for our discussion of the
Banach algebra F(H) of Fresnel integrable functions. The fundamental
work on the space F(H) was done by Albeverio and Hoegh-Krohn [1].
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Let Hy be the set of all functions r : P — R for which there exists v
in Ly(P) such that

rllsidn) = [ T / :vatk]mdtl---dm

for all (s1,...,sx) in P. The inner product on Hy is defined by
(25) (7'17 7"2) = /[D*Tl([sk]N)][D*TZ([SIC]N)] d51 e dSN
P

where D*(-) = OV (-)/0s; ...0sn. Then Hy, equipped with this inner
product, is a real separable Hilbert space. Let HY, = x{Hy denote the
space of functions 7 on P to RY, each of whose components belongs to
Hy, and let M(HY) be the collection of complex valued countably
additive measures on B(HY ), the Borel class of HY. Given g in
M(HY), f is defined on HY; by

aF) = | exp{i(F,h)} du(h).

HE

Let F(HY) = {4 : p € M(H%)}. Then, letting ||4]| = ||p|], we know,
as in [1], that F(HY) is a Banach algebra, and the Fresnel integral
F(f1) is defined for i in F(HY) by

)= [

Remark 2.4. Albeverio and Hoegh-Krohn’s space F(H) of Fresnel
integrable functions consists of Fourier transforms of finite Borel mea-
sures on H [1]. Also the spaces F(H) and S are isometrically as Banach
algebras which was shown by Johnson [7]. Similarly, we know that the
Banach algebra F(HY;) is isometrically isomorphic to the Banach al-

gebra Sy (v).

exp{<—1/2>g||hj||2}du(ﬁ»

v
N

3. Feynman integrabilities of certain functionals. In this
section we discuss the analytic Feynman and Fresnel integrability of
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certain generalized functionals on N-parameter Wiener space and for-
mulate the counterparts for this Wiener space containing the important
results in [3, 8, 10].

Theorem 3.1. Let m be a positive integer, let n = mN, and
let P = [0,T]N, Q = [0,T]", and 7 a finite Borel measure on Q.
Let p; : P — Ly(P) be Borel measurable for j = 1,...,m, and let
0:Q x R™ — C be such that, for all §= (s1,...,8,) € Q,

B ol O = [ e {id >0 Ty fdoc(Fel)

where oz € M (R™), the measure algebra of R™, (jj =(uj1,... ,Ujy) €
RY,
(3.2)

for every E € B(R™),03(E) is a Borel measurable function of §,
and
(3-3) llosl| € L1(Q, B(Q),7)-

Then the function F : C%(P) — C defined by

34 7@ = [ 6(fsles ([ ersn () Eslind))

7</P‘Pm([5(m1)N+k]N)([tk]N)a;j([tk]N)>:_1]>_d77(§)

belongs to the Banach algebra Sy(v) and hence is analytic Feynman
integrable.

Proof We first define a Borel measure p on @ x R™ by u(E) =
Joos( E®))dn(5) for E € B(Q x R™). Then p is an element of

M(Q x R™). Now let ® = (®4,...,9,) : @ x R™ — LY(P) be
defined by

O ([teln) = 5[kl [Vielm) ([te] n)

= Z vij<pi([8(i_1)N+k]N) ([tk]N)

i=1
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for 5 = 1,...,v, and let 0 = po ® !. Then o belongs to My(v)
and, for p > 0, it follows from the change of variable theorem and the
unsymmetric Fubini theorem that, for a.e. # in C%(P),

174

ron)= | o(1suhn s (o [ sl Wl (01)) e

<p/PSom([S(m—l)N-I-k]N)([tk]N)Zl;]'([tk]N)B:_1> dn(s)
_ /Q [ [ p{pig | ellsyndm)en)

& (1)) | dos([Til)] (@
[ p{pz_j [ o301 1) b s il

-/ o p{pz_; [ w1l do@,

Thus the function F is in Sy (v), which completes the proof of Theorem
3.1 |

The above theorem is a generalization of Theorem 1 in [4]. Moreover,
this theorem insures that various functional on C%,(P) are in the
Banach algebra Sy (v) which is an extension of the Banach algebra
S introduced by Cameron and Storvick [2].

Next we state a stochastic integration formula established by Park
and Skoug (see [11, Corollary 2.2] or [12, Corollary 2.2]). This formula,
which follows from a very general Fubini theorem by Park and Skoug
[11, Theorem 2], plays a major role in the proof of our main results.

Theorem 3.2. Let N € {1,2,...,n}, P=[0,T|V, Q = [0,T|", and
v € Ly(Q). Then for a.e. (z,y) € Cn(P) x Cpn(Q) we have that

/ o((sklm)e([s5,] )30 ([5k]n)
Q

([ I*V(S)vqm]n)@([tk]n)) T ([siu]w)



ANALYTIC FEYNMAN INTEGRABLE FUNCTIONALS 1139

where E(s) = En([si,]n) is obtained from @ = [0,T]|" by replacing
all ig-th factors by [s;,,T] fork=1,2,... ,N.

Theorem 3.3. Let m be a positive integer, let n = mN, and let
P =10,T]N and Q = [0,T)". Assume that for s-almost everywhere &
in C%(P)

(3.5)
F(7) = exp{ - / / (A(581) @E([58I0)s - -, F(5meyvss])s

E((58I)s - » E(5mty s l))) disr - d}

where {A([sk]n) = (aij([sk]n)) @ (s1,...,50) € Q} is a commutative
family of vm x vm real, symmetric, nonnegative definite matrices
such that the eigenvalues p1([Sk]n),- .- Pvm([Sk]n) are each elements

of L1(Q). Then the functional F is in the Banach algebra Sy(v) and
hence is analytic Feynman integrable.

Proof. Let B = (b;;) be a vm x vm orthogonal matrix such that
BA([sk]n)B~! = P([sk]n) throughout @ where P([sy],) is a vm x vm
diagonal matrix with nonnegative entries p1([sk]n),- - -»Pvm([Sk]n), the
eigenvalues of A([sg]n)-

Let p > 0 be given. Then for a.e. & € C%(P), we obtain that

Flpi) = exp{ -7 [ L / CPBE(sk)), o [ 5emarysil),

B(f([sk]N), ey f([s(m—l)N-i-k]N))) d81 te dsn}

—en{ - /OT---/OTipmsk]n)

2
|:Z bjix1+(i—1)mod(u)([SN[#H_]C]N)] d51 e dsn}
i=1
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— /CH(Q).../CH(Q) exp {zp\/ﬁ:ﬁlg
S e )

INEE ek
. d$1+(i1)mod(u)([5N[%]+k]N)} dm,, (yl) - -dmy, (yum)

where the last equality above follows from the Fourier transformation
formula, Paley-Wiener-Zygmund theorem, and Theorem 3.2.

Next we define 7' = (11,...,T}) : Crh(Q) X -+ - x Cr(Q) — L4(P) by

To([yx]m) ([sk]n)

m—1 vm
“VEX Y [ bl )
1=0 j=1"E7 ([sk]w)
fora=1,...,v, where E([si]n) = En([sni+k]n). Then each Ty, is in

Ly(P) and p = [m,)*™oT~! is an element of My (v), and, for almost
everywhere & € C%,(P), we have, using the change of variable theorem,
that

Pen = [ e {pg [ (i) vl § (o)

Thus the functional F is an element of Sy (v) which completes the proof
of Theorem 3.3. o

Corollary 3.4. Under the hypotheses of Theorem 3.1 and Theorem
3.3, the product of functionals (3.4) and (3.5) also belongs to the Banach
algebra Sy (v) and hence is analytic Feynman integrable.

Remark 3.5. The Theorem and Corollaries in [8, Section 3] now follow
from Theorem 3.3 and Corollary 3.4 by letting n = 1. Also, Theorem
4.1 and Corollary 4.5 in [3] follow from Theorem 3.3 and Corollary 3.4
above by letting n = 2 and N = 1. Moreover, Theorem 3.1, Theorem
4.1, and Corollary 3.4 in [10] now follow by letting N = 1 in Theorem
3.3 and Corollary 3.4 above.
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Next we consider the Fresnel integrability of certain functionals on
HY.. Recall that we briefly described the space F(HY/) of Fresnel
integrable functions in Section 2. Using Theorem 3.1 and Theorem
3.3 and the isometrically isomorphic property of Sy(v) and F(HY),
we obtain the following theorems.

Theorem 3.6. Let n and 6 be as in Theorem 3.1. For i in HY;, let

86) O =ex{ [ [ 0t Anlsin)oo

Ay Awﬂ[s(mnmm)} dn(s)

where Ar([sk] ) = 7(s1,---,8n8) — 7(81,--,8i-1,0,8i41,...,8n) for
it = 1,...,N. Then the function F belongs to the Banach algebra
F(H).

Theorem 3.7. For each 7 in HY;, let

(3.7) f)—exp{ / / 1 An([sel),

ANT([ (m— 1)N+k] )

(Ar ANF(sEIN), -y Ar - ANF([S(m1yn41]))) ds1 -+ dsn}

where A;r([sk]w) is as in Theorem 3.6 and {A([sk].)} is as in Theorem
3.3. Then the function F is in the Banach algebra F(HY), that is, F
s Fresnel integrable on HY;.

Remark 3.8. Corollaries 4.6 and 4.7 in [3] now follow from Theorems
3.6 and 3.7 above by letting n = 2 and N = 1. Moreover, Theorem 5.1
and Corollary 5.1 in [10] follow by letting N =1 in Theorems 3.6 and
3.7 above.

REFERENCES

1. S. Albeverio and R. Hoegh-Krohn, Mathematical theory of Feynman path
integrals, Lecture Notes Math. 523 (1976).



1142 I. YOO AND K.S. CHANG

2. R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman
integrable functionals, Lecture Notes Math. 798, (1980), 18-67.

3. K.S. Chang, G.W. Johnson and D.L. Skoug, The Feynman integral of quadratic
potentials depending on two time variables, Pacific J. Math. 122 (1986), 11-33.

4. , Functions in the Banach algebra S(v), J. Korean Math. Soc. 24 (1987),
151-158.

5. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics,
Rev. Mod. Phys. 20 (1948), 367-387.

6. R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals,
McGraw Hill, New York, 1965.

7. G.W. Johnson, The equivalence of two approaches to the Feynman integral, J.
Math. Phys. 23 (1982), 2090-2096.

8. G.W. Johnson and D.L. Skoug, Notes on the Feynman integral II, J. Funct.
Anal. 41 (1981), 277-289.

9. E. Nelson, The use of the Wiener process in quantum theory, in The collected
works of Nobert Wiener (P. Masani, ed.), Vol. III, MIT Press, 1964.

10. C. Park and D.L. Skoug, The Feynman integral of quadratic potentials
depending on n time variables, Nagoya Math. J. 110 (1988), 151-162.

11. , A note on Paley- Wiener-Zygmund stochastic integrals, Proc. Amer.
Math. Soc. 103 (1988), 591-601.

12. D.L. Skoug, Feynman integrals involving quadratic potentials, stochastic
integration formulas, and bounded wvariation for functions of several variables,
Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 17 (1987),
331-346.

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, KANGWONDO 222-701,
KOREA

DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120-749, KOREA



