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NEUTRAL STRUCTURES ON
EVEN-DIMENSIONAL MANIFOLDS

PETER R. LAW

ABSTRACT. The notion of a neutral structure on an even-
dimensional manifold M, defined to be a G-structure on M
for which the structure group is the neutral orthogonal group
NO(n) of all isometries and anti-isometries of the pseudo-
Euclidean space R™™", is introduced. A neutral structure is
weaker than an O(n,n)-structure, though it may reduce to
such. The obstruction to such a reduction is shown to be an
element of H'(M,Z2) and there is a close analogy with the
notion of orientability. The basic differential geometry of neu-
tral structures is presented, including a Gauss-Bonnet-Chern
theorem. Results concerning neutral Einstein structures in
four dimensions are obtained.

1. Introduction. The existence of anti-isometries for the pseudo-
Euclidean space R™™ allows one to enlarge the orthogonal group
O(n,n) by including anti-isometries and so obtain a group I call the
neutral orthogonal group and denote NO(n). In [15], NO(n) was
shown to be the appropriate symmetry group for defining a notion of
angle between any two non-null vectors in the Lorentz plane. Because of
the neutrality of the signature of the pseudo-Euclidean metric for R™",
and explicitly due to the existence of anti-isometries, it seems natural
to regard all non-null vectors as on an equal footing independently of
their “character,” i.e., whether they be time-like or space-like. In other
words, it appears natural to regard NO(n) as a symmetry group on
R2" and study that geometry of R™" which is invariant under the
action of NO(n).

More generally, NO(n) may be employed to define a G-structure
on even-dimensional manifolds. Such a “neutral structure” generalizes
the notion of a global neutral metric, i.e., a metric of signature type
(n,n). Since O(n,n) is of index two in NO(n), the question of whether
a reduction to NO(n) reduces further to O(n,n) is analogous to the
question of orientability of manifolds.
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In Section 2, the relevant theory of G-structures is presented in a form
suitable for exposing the basic features of neutral structures. Section 3
contains some non-existence results and a simple example. In Section 4
I discuss the elementary differential geometry of neutral structures and
establish a Gauss-Bonnet-Chern formula, while in Section 5 I consider
neutral Einstein structures in four dimensions, thereby providing a se-
quel to my previous paper [16]. In particular, an appropriate analogue
of the Thorpe-Hitchin inequality of the Riemannian case is studied.

As regards notation, R?*? denotes the pseudo-Euclidean space con-
sisting of R™, n = p + ¢, equipped with the inner product

g(u,v):u1v1+...+upvp_..._unvn

where (u*) and (v') are components of the vectors u and v with respect
to the standard basis of R™. In any RP?, a vector u for which the
squared norm g(u,u) is positive, negative, or zero, is called time-like,
space-like, or null, respectively. A unit vector is a vector of squared
norm plus or minus one. A pseudo-orthonormal basis is a basis of unit,
mutually orthogonal vectors. Such a basis is said to have standard
configuration if the time-like elements of the basis are listed first. For
signature of type (n,n), a pseudo-orthonormal basis for which the first
n elements are of like character, i.e., all time-like or all space-like,
(whence the remaining are of like character also) is called configured.
The notion of standard and non-standard configuration should then be
obvious from the previous sentence.

2. Orientation structures and neutral structures. The theory
of G-structures outlined below not only suffices for the treatment of
neutral structures but also incorporates the G-structure formulation of
orientability (cf. [11, p. 5]) and other notions of orientability such as
time-orientability (cf. [19, pp. 240-242]).

Definition 2.1. Let M be a connected smooth n-manifold, L(M) its
bundle of linear frames, and G a Lie subgroup of GL (N;R). Suppose
M has a G-structure, i.e., there is s a subbundle F (M) of L(M) with
structure group G. (One also says F(M) is a reduction of L(M), and
that the structure group GL (n;R) has been reduced to G.) Let H
be a normal, Lie subgroup of G with finite index m. Define M to be
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H-orientable relative to F'(M) if there is a subbundle B(M) of F(M)
with structure group H.

If M is H-orientable it is not difficult to see that F(M) partitions,
under the action of H, into m distinct subbundles, each with structure
group H. The selection of a particular subbundle constitutes a choice
of H-orientation (relative to F'(M)) for M. See also (2.6) below.

Proposition 2.2. With notation as above, if G/H is Abelian (no
restriction of course for m < 5) then the G-structure defines an element
w of HY(M, G /H) which is the obstruction to H-orientability (relative
to the given G-structure).

Proof. The argument is fairly standard. With respect to a simple
cover U := {U;} for M (in the sense of [13, pp. 167-168]), let f;; be
the transition functions on U; N U; for the trivialization of F'(M) with
respect to . Define a Cech 1-cochain with respect to this cover by
v;;(U; N Uj) := the coset of H in G to which f;; belongs on U; N Uj.
This is well defined (i.e., the coset f;;(z)H is independent of z in U;NU;
and the cocycle condition for the transition functions implies that v;; is
indeed a 1-cocycle). This assignment is well defined under the process
of restriction to refinements.

Moreover, if V := {V;} is another simple cover of M, by passing to
a simple cover W := {W,} which is a common refinement of ¢/ and
V, one finds that the 1-cocycles induced on W from the trivializations
with respect to &/ and V differ by a coboundary: if W, is contained in
Up(a) and in V() say (where ¢ and ¢ are mappings from the indexing
set of W to those of U and V), respectively), restrict the trivializing
sections oy (q) : Upa) = F(M) and oy () : Vi) = F(M) to Wy so
that 04(q)(2) = 0y(a)(2)fa(z) for some f,(z) in G but with the coset
Vo := fo(z)H independent of z in W, then on a nonempty intersection
Wo N Wg,

Vip(a)p(8) = VBVa(a)p(8) (Va) -

Thus, an element w of H'(M,G/H) is determined independently of
the simple cover.

Obviously, if M is H-orientable with respect to F(M), then by
standard theory one can find a simple cover of M such that the
transition functions for the trivializations of F'(M) take values in H
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and w will be trivial in H'(M,G/H). Conversely, if w is trivial, there
exists a simple cover U with respect to which v;; is a coboundary:
vij = vj(v;)”! for some 0-cochain v;. If o; : U; — F(M) are the
trivializing sections and f;; the transition functions, writing v; as f;H,
and using the fact that G/H is Abelian, the coboundary condition
amounts to

fij(2) = (fi) " thij(2) £,
hi;j(z) in H, for each z in U; NU;. From o0;(z) = 0;(2) fij(2), one then

deduces
o;(2)(f) 7" = [oi(2) (fi) ' has (2),

i.e., there are trivializing sections for F'(M) with respect to which the
transition functions lie in H. Thus, the required reduction of F(M)
exists. |

The following simple results from group theory will be needed.

Lemma 2.3. Let G be any group, A any Abelian group, and C the
commutator subgroup of G. Then:

(i) Hom(G,A) ~Hom (G/C,A) as groups.

(ii) The set of subgroups of G of index two are in bijective corre-
spondence with the nontrivial elements of Hom (G, Zz).

Proof. (i) follows easily from the fact that C is contained in the
kernel of each element of Hom (G, A). The correspondence of (ii) is the
assignment ¢ — ker(¢) where ¢ is a nontrivial element of Hom (G, Z).

Lemma 2.4. If M is a connected smooth n-manifold and A is any
Abelian group,

H'(M,A) ~ Hom (H,(M,Z),A) ~ Hom (m; (M), A).

Proof. Since M is a connected manifold, Hy(M,Z) = Z. Ext (Z,A) =
0, since Z is free, and so the first isomorphism follows from the universal
coefficient theorem of algebraic topology. The second isomorphism
follows from (2.3)(i). ]
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Proposition 2.5. With notation as in (2.1), and supposing G/H
is Abelian, M is H-orientable if M is simply connected or if only
Hy(M,Z) is trivial. If m = 2, whence G/H = Zy, M is H-orientable
if m (M) (or Hy(M,Z)) has no subgroup of indezx two.

Proof. Follows immediately from (2.2)—(2.4). O

Being a subgroup of G, H acts on F(M). The quotient F of F(M)
under this action of H is naturally identifiable with the bundle with
fiber G/H associated to F(M) [13, p. 57]. Since H is normal in G, E
is in fact a principal G/H-bundle.

Proposition 2.6. With notation as above, the bundle E is an m-fold
covering space of M which is itself H-orientable (in a sense made clear
in the proof). M is H-orientable if and only if E is trivial as a bundle
over M, in which case the possible H-orientations of M correspond to
the m distinct global sections of E over M.

Proof. Let mg : E — M Dbe the projection. As E is locally
diffeomorphic to M, one can identify the bundle L(E) of linear frames
over E with the pullback bundle (7g) *(L(M)). The bundle F(E) :=
(rg)~1(F(M)) is a reduction of L(E) with group G. The assertion
of the proposition is that E is H-orientable with respect to F(E).
By standard theory [13, p. 57], F(FE) admits such a reduction if
and only if the associated bundle with fiber G/H admits a global
section. As noted above, this associated bundle is identifiable with
F(E)/H = (np)”(F(M))/H = (7g)~" (F(M)/H) = (rg)~" (E). But
e — (e, e) is a global section of the last bundle.

Finally, by the same standard theory, M is H-orientable if and only
if E = F(M)/H admits a global section, i.e., if and only if F is trivial,
whence E = M x G/H.

Examples 2.7. The following examples are well-known.

(i) G = GL(n;R) and H = GL*(n; R) give rise to the usual notion
of orientability. The cohomology class w in H'(M,Z) is identifiable
with the first Stiefel-Whitney class of M.
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(i) G =O0(p,q). Let R and I be the linear transformations of R",
n = p + q, whose matrix representations with respect to the standard

basis of R™ are

where J, is the k x k diagonal matrix J, := diag (-1,1,...,1). With
SO™(p, q) the identity-connected component of SO(p,q), O (p,q) :=
SO*(p,q) U RISO* (p,q) and O, (p,q) := SO*(p,q) URSO" (p, q)
are subgroups of O(p,q). H = O™ (p,q) gives rise to the notion of
“time orientability” while H = O (p,q) gives rise to the notion of
“space orientability.”

The existence of an O(p, q)-structure entails the decomposition of
the tangent bundle TM as an orthogonal sum of a time-like, rank p
subbundle T and a space-like, rank g subbundle S. For the first Stiefel-
Whitney classes, one has, in H(M, Z5), w1 (M) = wi(T) + w1 (S)(*).
For both time-orientability and space-orientability, G/H = Z,, and the
associated cohomology class may be identified with w;(T") and wy(S),
respectively. The decomposition of TM is not, of course, unique, but
if T ® S is another such decomposition of T'M, then so are T® S and
T®S. Applylng the Whitney product formula to TeS=TaS8
shows w (T') = wy (T). Similarly, w1 (3) = w;(S). From (), one easily
deduces that any two of ordinary orientability, time orientability, and
space orientability entail the third.

Taking H = SO™ (p, q) gives rise to a notion I shall refer to as “semi-
orientability.” Note that G/H = Zs X Zs in this case and there are four
orientation classes on an SO™ (p, q)-orientable manifold equipped with
a metric of type (p, q). The Z, factors of G /H are naturally identifiable
with O*(p,q)/H and O, (p,q)/H and by elementary group theory
may then be identified with G/O* (p,q) and G/O (p, q), respectively.
Thus,

(+x) H'(M,G/H)~ H'(M,G/O"(p,q)) x H'(M,G/O(p,q)).
If pu,7, and o are, respectively, the obstructions to H—, O*(p,q)—,

and O, (p, q)-orientability, it follows from their definition and (**) that
i = 7+ o. From this follows the relation between semi-orientability
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and the other three kinds of orientability. One can also think directly
in terms of the bundle F/(M) and its components of course.

(iii) An almost complex structure on a 2n-dimensional manifold M
is a reduction to GL(n;C) (more precisely, a reduction to the real
representation of GL(n;C) in GL(2n;R)). Let G = O(n;C) and
H = SO(n;C). Then, once again G/H = Z,. H-orientability may
be referred to as complex Riemannian orientability. Such G-structures
are actually intimately related to neutral geometry as will be discussed
elsewhere.

I turn now to the notion of neutral structures. For the remainder of
this paper, M shall denote a connected, 2n-dimensional smooth real
manifold.

Definition 2.8. A neutral structure on M is a reduction N (M) of the
frame bundle L(M) with structure group NO(n). A neutral structure
will be called reducible if there is a further reduction of N(M) to a
subbundle with structure group O(n,n) and irreducible otherwise.

Given a simple cover U = {U;} of M together with trivializing
sections o; : U; — N(M), a neutral metric g; may be defined on U; by
regarding o;(x) as constituting a pseudo-orthonormal basis appropriate
to a metric of type (n,n) with standard configuration. The fiber
N, (M) then consists of the configured pseudo-orthonormal frames of
gi(z). Note that with these conventions for the construction of g;, the
cover {U;} only determines g; up to sign. Moreover, on a nonempty
intersection U; N Uj, either g; = g; or g; = —g;. (This procedure
is completely analogous to the construction of a metric of type (p,q)
from a reduction of the frame bundle with structure group O(p,q).)
A collection {U;,g;} constructed as just described will be called a
representation of the given neutral structure. A neutral structure is
reducible if and only if it may be represented by a global neutral metric,
i.e., g; = g; on each nonempty intersection U; N Uj.

A manifold equipped with a neutral structure will be called a neutral
manifold.

Proposition 2.9. Suppose M carries a neutral structure N(M).
Then there ezists a connected two-fold covering w: S — M such that
S is equipped with a global neutral metric g which is, up to sign, locally
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equal to the pullback via m of any local representative g; of N(M) on
M.

In particular, let {U;} be a simple cover of M which is also admissible
for the two-fold covering (i.e., 7~ (U;) is a disjoint union of two open
sets, Ui+ and U, say, each of which is diffeomorphic to U; via ) and
let {U;, g;} be a representation of the neutral structure of M. Then the
restriction of g to each of Uf and U;” equals, up to sign, m*g;.

Notice that, given (5, g), (S, —g) satisfies the above conditions equally
well. The neutral structure is reducible if and only if S is disconnected,
each component being either isometric or anti-isometric to M.

Proof. This result is just (2.6) applied to the case of neutral struc-
tures. Hence, S is N(M) factored out by the right action of O(n,n).
If o; : Uy - N(M) is the section used to construct the represen-
tation g;, let U;” be the equivalence class of [N(M)|y]/O(n,n) =
[N(M)/O(n,n)]| which contains the image of o;. Defining g;" := g;
on Uf and g; := —g; on U; , one may readily check that these local
neutral metrics defined on S agree on intersections of the elements of
the covering {U;",U;"} and thus constitute a global neutral metric g.
O

3. Examples? With G = NO(n) and H = O(n, n), reducibility
of a neutral structure N(M) is just O(n,n)-orientability. The coho-
mology class w in H'(M,Zy) of (2.2) constitutes the obstruction to
reducibility. The formalism of Section 2 therefore provides an approach
to determining the impossibility of irreducible neutral structures.

Examples 3.1. By (2.5), if M is simply connected it cannot admit
an irreducible neutral structure. This includes R?", S?, (which cannot
admit a global neutral metric either [ 21, (27.18) and p. 207] and so
admits no neutral structure whatsoever), and CP™. Furthermore, any
complex submanifold of complex codimension one in CP™, n > 3, is
connected and simply connected according to the Lefschetz theorem
[8, p. 159]. There are, of course, a variety of theorems guaranteeing
simple-connectedness, e.g., [19, p. 321], [14, pp. 365, 368, and 370],
and [5, p. 325].

Let M and N be connected, simple connected n-dimensional mani-
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folds equipped with Riemannian metrics g and h, respectively. Then
the product metric g + (—h) on M x N is a neutral metric and so de-
fines a reducible neutral structure. But w1 (M X N) = m (M) x 71 (N),
and so M x N is simply connected and admits no irreducible neu-
tral structure. More generally, consider manifolds M and N of di-
mension p and g, respectively, with p + g = 2n, both connected and
such that H'(M,Z;) = H'(N,Zy) = 0. By the Kiinneth formula,
HY(M x N,Z;) = 0, and thus M x N admits no irreducible neutral
structure. This includes SP x S? where p + ¢ = 2n and both p and ¢
are greater than one.

As HY(S! x 8?71 Zy) = Z,, this leaves open the possibility that
St x §2n—1 admits an irreducible neutral structure. On the other hand,
with n > 2, suppose S' x 82"~ does admit an irreducible neutral
structure and let (S, g) be the two-fold covering space of (2.9). Then
m1(S) injects into 71 (S! x S?"~1) = Z as a subgroup of index two. It
follows that 7 (S) = Z and is injected into 71 (St x S?"~1) = Z as 2Z.
If A:S! — S!is the antipodal mapping, then (A x identity) : S! x
S2n—1 5 81 x 827~ js a two-fold cover with the same induced mapping
of the fundamental group as just described for S — S! x 827~ Thus,
from covering space theory, S must be diffeomorphic to S! x S2"~1;
whence the latter space admits an irreducible neutral structure only if
it admits a reducible neutral structure.

Can S! x 8§2"~1 admit a global neutral metric? Since S',S® and S”
are parallelizable, S' x S2"~! has trivial tangent bundle for n = 1,2
and 4 and thus may be split as the sum of equal rank subbundles. In
these cases, at least, S! x S2»~1 does admit global neutral metrics. For
the case S' x S, a neutral metric is also Lorentzian and the result is, of
course, well known. A simple irreducible neutral structure on S! x St
will be exhibited below.

Example 3.2. The even-dimensional real projective spaces RP?"
have H!(RP?", Z,) = Z, whence the obstruction to irreducible neutral
structures is lacking. If, however, RP?" had a neutral structure, then
by (2.9) there exists a two-fold covering S carrying a global neutral
metric. As m1(S) injects into 71 (RP?") = Z5 as a subgroup of index
two, m1(S) must be trivial and S is diffeomorphic to the universal
covering space of RP?", viz., S?". As already noted above, however,
S2" does not admit a global neutral metric whence RP?" does not
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admit any neutral structure. RP™ x RP™ does not appear to be barred
as a candidate, however.

Example 3.3. Consider R x S! with coordinates (¢, z) where z is
the natural angular coordinate. Let S be covered by two open sets U
and V which when parametrized by z take the form U = (0,7) and
V = (7 — 46,27 4+ §) and such that U NV has the form (0,6) U (7 — 4, 7)
with respect to the parametrization on U. Let ¢ : [0,7] — [0,1]
be a monotonically increasing smooth function which is identically
zero on a neighborhood of 0 containing (0,0) and identically one on
a neighborhood of 7 containing (7 — 4, 7).

Now, with respect to the relevant coordinates, define metrics

Ccos sin
gl(tvx) = ( 4 y >a

siny —cosy

where y := o(z)m, on R x U, and

92(t, @) == <(1) _01>

on R X V. Then g; and g, are Lorentz metrics such that g; = g2 on
(0,0) in U and g1 = —g2 on (7 — §,w) in U. Although {U,V} is not a
simple cover of S!, it is obvious that the above defines an irreducible
neutral structure on R x S!. Since the metrics are independent of ¢,
passing from R to S! via t — exp (it) yields an irreducible neutral
structure on S x S1i.

By unwinding the second factor once (by regarding it as the image of
S! under the antipodal mapping) one obtains a global Lorentz metric on
S! x S! as required by (2.6) (cf. (3.1) also). This global metric is not
time-orientable, but time-orientability can be achieved by unwinding
the second factor of S! x S! one more time in the same fashion (again,
as required by (2.6), but as applied to time-orientability).

Problem. Find an example of a manifold admitting an irreducible
neutral structure that does not admit a neutral metric.

4. Differential geometry. Let M be a neutral manifold of
dimension 2n, and let {U;,g;} be a representation of the neutral
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structure. Obviously, every point of M has a neighborhood on which
the differential geometry is just that of a neutral metric. Hence, it is
the global geometry of M that is of interest. Since, in effect, there
is a neutral metric defined on M up to sign, a simple approach to
discovering which of the basic notions of differential geometry remain
valid for a neutral manifold is to determine which are independent of
a change of sign of the metric. It is convenient to employ the abstract
index notation of Penrose [ 20, Chapter 2].

Proposition 4.1. M admits a unique, torsion-free connection which
preserves all local metric representatives of the neutral structure. Call
it the Levi-Civita connection of the neutral structure.

Proof. The classical construction [13, p. 160] of the Levi-Civita
connection is independent of the sign of g. O

Corollary 4.2. The Levi-Civita connection defines a Riemann cur-
vature tensor R%.q on M, which locally equals the Riemann curvature
tensor of any local metric representative. Consequently, the Ricci cur-
vature tensor Rpq := R%aq and the Weyl conformal curvature tensor
Cy.; are globally defined.

Remarks 4.3. (i) In terms of local coordinates, (4.1) may be viewed
as the fact that Christoffel symbols of a metric are independent of its
sign. At a more abstract level, the assertion of (4.1) follows from a
result of Weyl (refined by E. Cartan, Klingenberg, and Kobayashi &
Nagano) by virtue of the fact that the Lie algebra no(n) is of course
just the Lie algebra so(n,n) [12, p. 86].

(ii) The various quantities in (4.2) have their usual symmetry
properties since these are valid locally. Those that are independent
of metrics may, of course, be stated for the tensors in the forms that
are globally valid on M (the same is true of the Bianchi identity).
Although Rgpcq is defined only up to sign, R(gp)c.q = 0 is unambiguous.

(iii) On U; one can define R; := (g;)®°Ra, a local Ricci scalar
curvature, but it is defined only up to sign as far as the neutral structure
is concerned. Nevertheless, the quantity R;g; is globally defined whence
the notion of an Einstein neutral manifold makes sense. This topic will
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be pursued in the next section.

(iv) The Killing equation is well defined on M, and its solutions are
indeed the infinitesimal automorphisms of the neutral structure.

Now suppose M is oriented. Then there exists a nowhere-vanishing,
2n-form w on M which is positive on frames with the prescribed orien-
tation. This defines a function f : N(M) — R* by f({Fi,..., Fan}) =
w(Fy,...,Fy,). Now f~1(R") defines a subbundle SN (M) of N(M)
with structure group SNO(n). By the determinant formula, f is con-
stant on the fibers of SN(M) and thus induces a strictly positive
function on M, also denoted f. Define the volume form 7 := w/f.
With respect to local oriented coordinates (z!,...,z?") on U;, n =
V/|det (g;)| dz! A --- A dx®" and this is independent of the sign of g;.

I now wish to establish a Gauss-Bonnet-Chern formula for neutral
manifolds. If N is a 2n-dimensional manifold with a global neutral
metric g, then for n even the Gauss-Bonnet-Chern formula states (cf.
[16]):

{2
(4.4) v = U0 [

T 93ngnp)
where
(. o i1%2j1]2 i2n—192nj2n 152
Tn = (7721---22n77j1---32nR N e n)n

and R4 and 7 (with and without indices) are the Riemann curvature
tensor and volume element, respectively, of the given metric g. If n is
odd, both v,, and x(M) vanish.

On a neutral manifold M, the form 7, may be constructed onU; with
respect to g;. For n even, one observes that -, is invariant under a
change of sign in g;. Hence, for n even, -, is actually well defined
locally and yields a globally defined 2n-form on M. Does it represent
the Euler class of M?

One can adapt Chern’s [6] argument to the present context, and I
shall just point out the underlying reason for this even though I shall
provide a simpler proof below. As O(p) x O(q) is a maximal compact
subgroup of O(p, q), an O(p, q)-structure on a manifold may always be
reduced to an O(p) x O(q)-structure. Since O(p) x O(q) is a subgroup
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of O(p+4q), to any O(p, q)-structure there is an associated Riemannian
structure. This is a crucial aspect of Chern’s argument. Although an
irreducible neutral structure does not have a neutral metric, it still
has an associated Riemannian structure. This follows by observing
that NO(n) has a natural maximal compact subgroup which is also a
subgroup of O(2n).

Proposition 4.5. Let M be a compact, oriented, 2n-dimensional,
neutral manifold and S a two-fold covering of M as in (2.9). S is a
compact, orientable, 2n-dimensional manifold with a neutral metric.
The tangent bundle T'S on S may be regarded as the pullback, by the
projection ™ : S — M, of the tangent bundle TM of M. Specify an
orientation on S by requiring w*n to be the volume form on S. Then
7w has degree two. The following diagram is a commutative diagram of
linear isomorphisms:

H2 (M) —=— H"(S)

I o

R—*2 R

where H*"(M) and H?"(S) are de Rham cohomology groups.

Proof. It is well known that integration on a compact, orientable
manifold is a linear isomorphism of the top de Rham cohomology group
to R. Commutativity of the diagram follows from the degree theorem
of integration theory in differential topology. ]

Theorem 4.6. Let M be a compact, orientable, 2n-dimensional
neutral manifold. If n is odd, X(M) is zero. If n is even

(_1)n/2

where 7y, ts defined as above and is a globally defined 2n-form on M.

Proof. Only the case of an irreducible neutral structure need be
considered. With the notation of (4.5), let e(M) and e(S) be the
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Euler classes of M in H*"(M) and S in H?"(S), respectively. By
naturality, 7*(T'M) = T'S entails that e(S) = 7*(e(M)). From the
diagram in (4.5), X(S) = 2x(M). Thus, if n is odd, since S carries a
metric g of signature type (n,n), then, by the Gauss-Bonnet-Chern
theorem for pseudo-Riemannian manifolds cited earlier, X(S) = 0,
whence X(M) = 0. For n even, let ¢, denote the coefficient in front of
the integral in the Gauss-Bonnet-Chern theorem for g on S and v, (g)
the integrand. Thus, ¢,V (g) represents e(S). But it is clear from (2.9)
and (4.5) that v,(g) = 7*(v»). From the diagram in (4.5) and the fact
that the mappings are isomorphisms, it follows that c,7, represents
e(M). O

Corollary 4.7. If M is a compact, orientable, two-dimensional
neutral manifold, then M is homeomorphic to the torus.

The Pontryagin classes of a manifold N may be represented by forms
built out of the curvature of any connection. Avez [4] writes these
forms explicitly in terms of the Weyl conformal curvature tensor of the
Levi-Civita connection of an arbitrary metric on IV to make manifest
the conformal invariance discovered by Chern and Simons [7]. From
(4.2), it is clear that the expressions given by Avez remain valid for
the Levi-Civita connection of a neutral manifold. Thus, if a neutral
manifold is conformally flat, its Pontryagin classes are zero.

If N is a compact, orientable, four-dimensional manifold equipped
with a neutral metric g, then [3] the first Pontryagin class is represented
by the four-form c© where

1
(4.8) ci=s 0= (R R0 nege )
and R%.q and 7 are the curvature tensor and volume form, respectively,
of g. Consequently, the Hirzebruch signature theorem yields

(4.9) (M) =mf3= 555 [ ©

It is evident that © is actually well defined locally on a neutral four-
dimensional manifold by (4.2) and gives rise to a globally defined four-
form.
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Theorem 4.10. Let M be a compact, oriented, four-dimensional
neutral manifold. The form © in (4.8) is globally defined, [1/327%)©
represents the first Pontryagin class of M and

1

Proof. The proof is similar to that of (4.6), noting that if ©(g) is the
form in (4.8) for (S, g) then ©(g) = 7*O. O

5. Neutral Einstein structures. Einstein manifolds are of con-
siderable interest (cf. [5]). The four-dimensional case is special because
of the characterization of the Einstein condition as the commutativ-
ity of the Hodge star operator * and the curvature endomorphism on
A?(R??) (hereafter denoted A?). In this section results of [16] are gen-
eralized from the case of Einstein neutral metrics (cf. [16]) to Einstein
neutral structures.

First note that changing the sign of the metric on R?? does not alter
the induced metric on A% or the Hodge star operator on the latter
space. The curvature endomorphism R will change sign, but this does
not affect whether it is Einstein or note, or its subsequent classification
according to type (cf. [16]).

Rewriting the integrands of the integral formulae in (4.6) (with n = 2)
and (4.10) in endomorphism language yields

Yo = 2*r(Ro*oRox)n 0 =2%r(RoxoR)y

where tr denotes trace of the endomorphism. From Section 4, these 4-
forms are globally defined on any compact, oriented, four-dimensional
neutral manifold M (indeed, the independence of these formulae of
the sign of a metric is evident). At a point of M, and with respect
to a metric representative of the neutral structure, the curvature
endomorphism for M Einstein has the form

(4 3)

where A and D are self-adjoint endomorphisms of R? with tr (4) =
tr (D) = R, the Ricci scalar curvature of the metric representative (cf.
[16]).
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The penultimate equations therefore become
7o = 2t (A2) + 4 (DB)]y © = 2[tr (A7) — tr (D))
whence, from (4.6) and (4.10), one obtains

(V) + 57) = 1 [ (e

3 1

(5.1)
XN = 57N) = gz [ (0P

Writing A =: WT + (R/12)1 and D =: W~ + (R/12)1, W+ and W~
are traceless. They are the curvature endomorphisms of the self-dual
and anti-self-dual parts of the Weyl conformal curvature, respectively.
Thus,

(5.2) tr(A%) =tr[(WT)2]+R%/48,  tr(D?) = tr[(W )?]+R2%/48.

These results are exactly as in [16] for neutral Einstein metrics and,
as there, further deductions may be made based on the classification
of curvature endomorphisms. As demonstrated in [16], there are 4
types (Ia, Ib, II, and III) of self-adjoint endomorphism of R'?, and
thus 16 types (of the form Ia x II, for example), for the curvature
endomorphism corresponding to the types of A and D or, equivalently,
W+ and W~. Consult [16] for the fact that for any self-adjoint
endomorphism P of RM?, tr (P?) is nonnegative except perhaps when
P is of type Ib. From these facts and (5.2), one deduces the following
result.

Theorem 5.3. Let M be a compact, oriented, four-dimensional,
Einstein neutral manifold. Let Wt and W~ be determined by any
local metric representatives of the neutral structure.

(a) If W is never of type Ib, then —x(M) + (3/2)7(M) > 0.
(b) If W~ is never of type Ib, then —x(M) — (3/2)7(M) > 0.

(¢) If (a) and (b) hold, then —x(M) > (3/2)|7(M)|. In particular,
X(M) <O0.

As already noted in [16], the geometric significance of prohibiting
type Ib in the curvature, or more generally requiring the relevant trace
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to be nonnegative if type Ib occurs, deserves investigation and will be
pursued elsewhere. I end with some further simple deductions.

Corollary 5.4. Let M be as in (5.3).

(a) If W is of type la everywhere, then X(M) = (3/2)7(M) if and
only if R* and W both vanish.

(b) If W~ is of type Ia everywhere, then X(M) = —(3/2)7(M) if and
only if R?> and W~ both vanish.

(c) If M is of type la x la everywhere, then X(M) = 0 if and only if
M is flat, in which case 7(M) = 0.

(d) If M is of type III x III everywhere, then 7(M) vanishes and
X(M) = [-R?/2%3mr2]Vol (M).

Proof. (a) follows from (5.1), (5.2) and (2.3)(a) of [16]. Similarly for
(b). For type Ia x Ia, the integrands in (5.1) are nonnegative whence
the vanishing of X(M) entails the vanishing of 7(M) and so of the
integrands, and (c) follows from (2.3)(a) of [16] again. For type III x
I, tr (A2%) = tr (D?) = R?/48 (cf. [16], (2.3)(d)) so (d) follows from
the expression for v, and O given just before (5.1) and (4.6) with n = 2.
]

Corollary 5.5. If M is a compact, oriented, four-dimensional,
Ricci-flat, half-conformally-flat, neutral manifold, then X(M) =

3/2)7(M) or —(3/2)1(M) according to whether W+ or W~ vanishes.
(3/2)7( g

Proof. For example, if W~ = 0, then tr (D?) = 0 by (5.2), whence
X(M)=—(3/2)7(M) from (5.1). ©O

Now specialize to the case in which M is compact, oriented, four-
dimensional and carries a neutral metric. Suppose further that in
addition to orientability, M is orientable in any other of the senses
discussed in (2.7)(ii). Then, in fact, M is orientable in all those senses.
In particular, M admits a nonsingular field of oriented two planes.

Such fields, with possibly finitely many singularities, have been stud-
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ied by Hirzebruch and Hopf [9] (also described in [22, p. 659]). The
existence of a field of orientable two-planes, on a compact, oriented,
four-dimensional manifold, without singularities, requires [9, Satz (4.3)]
the vanishing of the following two expressions:

a—37(M) - 2x(M), B —37(M) + 2x(M)

where, by a result on page 90 of [10], « = 7(M)+8j and 8 = 7(M)+8k,
for some integers j and k. One easily deduces that X(M) = 7(M) moda
and X(M) and 7(M) are both even. This is a special case of a result
due to Atiyah [1, Theorem (3.1)]. The following results are analogous
to results in [17, 18] based upon corrections discussed in [16].

Corollary 5.6. Let M be a compact, four-dimensional manifold with
an SO™(2,2)-structure that is Einstein. Then:

(a) X(M)=7(M)moda, and both are even as just shown.

(b) By Poincaré duality and connectedness, X(M) = 2 — 2by + b,
where the b; are the Betti numbers. Thus, by is even. If X(M) = —2k <
0, then 2by =2+ 2k 4 b2 so by > 0, i.e., M is not simply connected.

(c) If =x(M) = (3/2)|7(M)]| (cf. (5.3)(c)), then T(M) = X(M) + 4k,
where k is a positive integer and k = 0 if and only if 7(M) = xX(M) = 0.

(d) If the curvature endomorphism R = W, then (M) = 8m
and X(M) = —12m for some integer m, while if R = W, then
T(M) = —8m and X(M) = —12m, for some integer m. Ezcept perhaps
when W or W~ is type Ib, m must be nonnegative.

() If R has type III x III and R is nonzero, then 7(M) = 0 and
X(M) = —4k, k > 0. Furthermore, Vol (M) = 2837k/R>.

Proof. For (c), write 4k = 7(M) — X(M) > 7(M) + (3/2)|7(M)| > 0.
Putting £ = 0 in this inequality forces (M) = 0 and X(M) = 0.
For (d), if R = W, then —x(M) = (3/2)7(M) by (5.5). By (a),
4k = 7(M) — x(M) = (5/2)1(M), ie., 7(M) = 8k/5, whence k
must be divisible by five and 7(M) = 8m, for some integer m. Then
X(M) = —12m. If w' is not type Ib, then m must be nonnegative
by (5.3)(c). If R = W, the appropriate assertion follows similarly,
or simply from the result just established by reversal of orientation.
Finally, (e) follows from (5.4)(d); in particular, X(M) must be a strictly
negative multiple of four. O
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In a rather different vein, I conclude with a variation of a result of
Avez [2].

Proposition 5.7. Let M be a compact, orientable, four-dimensional
manifold equipped with a metric g of signature type (p,q) with both
p and q nonzero. Suppose that at each point x of M, the sectional
curvatures of nondegenerate two-planes in T, M are bounded, either
below or above. Then (M,g) is a space of constant curvature and
(=1)P/2x (M) > 0 with equality if and only if (M,g) is flat. If g is
Lorentzian, X(M) is zero so (M, g) is flat. If g is neutral, X(M) < 0.

Proof. The condition on the sectional curvatures at x entails their
constancy at z [19, pp. 229-230], whence by Schur’s lemma M is a space
of constant curvature and hence an Einstein space. For an Einstein
space, the integrand 7, in the Gauss-Bonnet-Chern formula [16, (3.1)]
is a positive multiple of (R*“¢R,p.q) (cf. the formula for 2 preceding
(5.1)), which for a space of constant curvature is a positive multiple of
R?, where R is the Ricci scalar curvature. The results now follow from
the Gauss-Bonnet-Chern theorem [16, (3.1)]. o
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