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CONJUGACY CRITERIA FOR
SECOND ORDER DIFFERENTIAL EQUATIONS

ONDREJ DOSLY

ABSTRACT. Oscillation properties of linear differential
equations of the second order

(%) (r(@)y")" + p(z)y =0,

z €= (a,b), 00 <a<b< oo, are viewed as a perturbation
of the disconjugate equation

(%) (r(z)y")" =0.

Sufficient conditions on the coefficients r(z),p(x) ensuring
that (%) possesses a nontrivial solution having at least two
zeros on I are obtained. It is shown that conjugacy criteria
for (*) are different in the case where the principal solutions
Ya,Yp Of (**) at a and b are linearly independent or linearly
dependent.

1. Introduction. In the present paper we deal with the second
order differential equation of the form

(L.1) (r(x)y") + p(z)y =0,

where z € I = (a,b), —0o < a < b< oo, reCYI), r(z) >0 forz el

Recall that two points 1, 2 € I are said to be conjugate relative to
(1.1) if there exists a nontrivial solution y of this equation for which
y(z1) = 0 = y(z2). Equation (1.1) is said to be conjugate on I whenever
there exists at least one pair of points of I which is conjugate relative
to (1.1); in the opposite case equation (1.1) is said to be disconjugate
on I.

The problem of disconjugacy of (1.1) on a given interval has a long
history and disconjugacy results are exhibited in any monograph on
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linear differential equations, cf., e.g., [6, 12, 14]. On the other hand,
much less attention has been paid to conjugacy criteria for (1.1).

Tipler [15] proved that the equation
(1.2) Yy +p(z)y=0

is conjugate on R = (—00, 00) if

ta
(1.3) lim inf / p(z)dz > 0.

t1}—ootztoo Ju

This criterion was improved by Miiller-Pfeiffer [9, 10] which showed
that (1.1) is conjugate on I = (a,b) if for some (and hence for every)
cel,

(1.4) /cbr_l(w) do = o0 = /:r—l(m) de,

to
1.5 lim inf z)dzr >0
( ) tila t21h /t1 p( ) -

and p(x) # 0 on I. The result of Tipler was proved using some proper-
ties of the Riccati differential equation corresponding to (1.2), and the
result of Miiller-Pfeiffer is based on the application of the variational
principle of Courant to the quadratic functional corresponding to (1.1).
The conjugacy criteria for (1.1) and (1.2) has been extended to higher
order equations and to linear Hamiltonian systems in [3] and [4].

To make some analysis of the above given criteria, further definitions
and auxiliary results are needed. Let (1.1) be disconjugate on I. There
exists a unique (up to a multiple by a nonzero real constant) solution
yp of this equation such that fb r~!(z)y, ?(z) dz = co. This solution is
said to be principal at b. The principal solution of (1.1) at a is defined
in a similar manner, cf. [6]. If the principal solutions of (1.1) at @ and b
are linearly independent, equation (1.1) is said to be 1-general on I; in
the opposite case (i.e., y, = kyp, k being a nonzero real constant) (1.1)
is said to be 1-special on I, cf. [2] (the number 1 in these definitions
reflects the fact that (1.1) is disconjugate on I, i.e., every solution of
this equation has at most one zero on I).
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It will be shown below (in Remark 4) that the one-term equation

(1.6) (r(@)y’) =0

is 1-special on I = (a,b) if and only if (1.4) holds. The result of
Miiller-Pfeiffer states that an addition of the term p(z)y to (1.6), with
p having essentially nonnegative mean value on (a,b) (i.e., (1.5) holds)
and p(z) # 0, makes the perturbed equation (1.1) be conjugate on
(a,b). Going through the proof of this statement, one may easily see
that the method used there does not apply to the case when (1.6) is
1-general on I.

The aim of the present paper is to prove a sufficient condition for
conjugacy of (1.1) which is weaker than (1.4) and (1.5) (with strict
inequality). This criterion is based on the combination of the Riccati
technique and the transformation method and offers a unified approach
to the investigation of conjugacy of (1.1) regardless of whether (1.6) is 1-
special or 1-general on I. We also introduce the method of investigation
of conjugacy of (1.1) in the case when (1.6) is 1-general via certain
associated equations of the form (1.1) where (1.6) is 1-special.

2. Main result.

Theorem 1. Suppose that there exist c € I, ¢1 > 0, €9 > 0 such that

(2.1); &1 /Cle(ac) exp {2/z () :/Ctp(s)dssl: dt} dx > /2,

(2.1)s & /:r_l(m) exp {2/;7«—1@)

Then (1.1) is conjugate on I.

: ;
/ p(s) ds+ ey dt} dz > /2.

Proof. Suppose that (2.1)1 2 hold and (1.1) is disconjugate on I. De-
note by w(z) the solution of (1.1) given by the conditions u(c) = 1,
u'(c) = 0. Since (1.1) is disconjugate on I, u(z) does not vanish at
least on one of the intervals (a,c) and (¢, b). Suppose that this interval
is (¢,b). Let v(z) be the solution of (1.1) given by the initial conditions
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v(c) =1, r(c)v'(c) = e1. Then v(z) > u(x) for x € (¢, b) since the exis-
tence of zp € (¢, b) such that v(x¢) = u(zo) contradicts the Sturm sepa-
ration theorem for zeros of linearly independent solutions. The function
w = 1v' /v is defined on (e, b) and satisfies the Rlccati equation w’ +
r= (z)w? + p(z) =0, ie., w(z) =1 — [ r~H(s)w?(s)ds — [ p(z) ds,
hence v(z) = v(c) exp{ [’ 7"_1 )[ fct(r_l(s)wz(s) +p(s)) ds+e1]dt} <
exp{ [ r71(t)[- fctp(s) ds + e1]dt}. Let a(z) = arctanv(z)/u(z).
Since u(z) # 0 on (c,b), this function is well defined on this inter-
val, o = [L+ (v/u)?]~t - r tu=2(rv'u — ru'v) = e;r~H(u? +v%) ! and

(b ) < 7/2. We have u?(z) +v*(z) < 2v%(z) < 2exp{2 [ 7~ (t)[e1 -
f p(s)ds]dt}, hence a(z) = w/4 + [T err™ (t)(u?(t) + v?(¢)) "t dt >
m/4+(e1/2). [T (t) exp{2 fct r=Y(s)[fS p(t1) dty —e1] ds} dt and, ac-
cording to (2.1);, a(b—) > m/2, a contradiction. A similar contradic-
tion is obtained supposing u(z) > 0 on (a,c). The proof is complete.
]

Corollary 1. Suppose that (1.4) holds and there exists ¢; € I,
1 =1,2, such that

S @)Y pls) ds)dt

2.2 lim inf = =c; >0
(22)s atb JEr () dt “

[T i)y p(s) ds) dt
2.2 1 c AL =y <0.
(2.2)2 ala P Fri) dt =

Then (1.1) is conjugate on I.

Proof. Suppose that (2.2); holds. There exists 71 € (c,b) such that
fczrfl(t)(ftp ds)dt/ [Tr1(t)dt > (3/4)c1 whenever z € (T1,b),
hence [T 77 %( f p(s)ds — 3/4)01] dt > 0. Now let &1 = (1/4)cy
and d € (Th,b). We have &1 fc r= (@) exp{2 [ r71(¢ fcp s)ds —
e1]dt}dr = & chl r(z)exp{2 [ r’l ) dt ftp ds — &1]dt}dz +
€1 f;l r~i(z)exp{2 [T r1(¢ f p(s)ds — (3/4)c1 + (1/2)e1] dt}dx >
K+e f;l r(z) exp{de; [T r7(t) dt} = K +e le exp{4et} dt — oo
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as d - b+, K = chl r~'(z)exp{2 [ r‘l(t)[fct p(s)ds — 1] dt}dz,
d = fcd r=L1(t) dt. Similarly, we prove that e, [;r !(z)
exp{2 [ rL@)[[’ p(s) ds + €3] dt} dz tends to infinity if d — a+ and

c

62:—(1/4)62. O

Remark 1. The conjugacy criterion (1.4), (1.5), with strict inequality,
(in this form it was proved in [9]) is a special case of Corollary 1.
Indeed, let (1.5)—with strict inequality—hold. There exists a real-

valued function p(z) € C(I), p(z) < p(z) on I, such that f;ﬁ(m) dx =
limtlia inftﬂb j;tlz p(m) d.Z'

Since f:ﬁ(m‘) dz > 0, there exists ¢ € I such that f:ﬁ(m) dz > 0,
[ P(z)dz > 0, cf. [15]. Now, using (1.4) and the L’Hopital rule, we

get limgry ([T r= () dt([1(B(s) ds)dt/ [T (t) dt = limgy [T 5(t) dt
> 0. Hence, liminf,y [7 771 (t) ([T p(s) ds) dt/ [T r='(t) dt >
limgpy, [T 770 (¢) (fF B(s) ds) dt/ [ r=* (t)dt > 0. Similarly,
limsup o0 [0 77 (t) (fctp(s) ds) dt/ [T r=t (t) dt < limgy, [T r7(2)
(! B(s)ds)dt/ [T r=1(t)dt < 0.

Remark 2. Note that the disconjugacy criterion given by Theorem
1 is—similar to the Tipler criterion for (1.2)—really a focal point
criterion. Indeed, the proof of Theorem 1 establishes that there is a
focal point to ¢ in (¢, b) under condition (2.1); and, analogously, (2.1).
implies the existence of a focal point to ¢ in (a,c). Theorem 1 then
follows from these two focal point results.

Remark 3. In [3] and [4] we studied similarity between oscillation and
conjugacy criteria for self-adjoint differential equations and systems.
This similarity consists of the fact that replacing a condition requiring
some integrals of the coefficients of the equation to be divergent (which
is sufficient for oscillation) by a condition requiring these integrals
to satisfy some inequalities (usually to be positive), gives sufficient
condition for conjugacy of the investigated equation. For example,
condition (1.3) is dual to the Leighton-Wintner oscillation criterion
which states that (1.2) is oscillatory at infinity if [~ p(z)dz = co. In
the sense of this similarity, the conjugacy criterion given in Theorem 1 is



854 0. DOSLY

dual to the oscillation criterion of Rab [11] and Corollary 1 corresponds
to the criterion of Wintner [16].

3. Perturbations of 1-general equations. As we have already
mentioned in Section 1, 1-special equations on a given interval are in
a certain sense oscillatory unstable; an addition of the term p(z)y to a
1-special equation (1.6) with the function p(z) which is “only slightly
positive” on I causes conjugacy of the “perturbed” equation (1.1). In
the case where equation (1.6) is 1-general, one cannot expect a similar
situation as is shown in the following example.

Example 1. Consider the equation

(3.1) (€*y) + Xe**y =0, 0<A<1

as a perturbation of the equation (e2*y’)’ = 0 which is 1-general on R.

Equation (3.1) is disconjugate on R (since the transformation y = e *u
transforms (3.1) into the equation u” —(1—\)u = 0), even if the integral
of the potential Ae?* over R is infinity, i.e., f_oooo e dx = oo.

Remark 4. Observe that equation (1.6) is 1-general on I whenever

at least one of the integrals fb r~Ya)dz, [ r~'(z)dc is convergent.
Particularly, the pair of functions

(1, [2rL(t) dt), if [*r 1< oo, [,r ! =00,

(Yarvp) =  ([Fr71(t) dt, 1), if [ 7' < oo, [Pr! =00,
Crttydt, [Cr ) de), i [r ot <oo, [Prl< oo

(f, rH(t) dt, [,/ r () dt), o ; :

form the principal solutions of (1.6) at a and b, respectively.

In contrast to the criteria given by (1.4) and (1.5), Theorem 1 does
not need any assumption concerning the kind of disconjugacy of (1.6)
on I (1-special or 1-general). However, in some particular cases it may
be difficult to find €1, &5 for which (2.1); 2 holds. For this reason, while
investigating the conjugacy of (1.1), the criterion (1.4), (1.5) sometimes
seems to be more convenient, but it requires (1.6) to be 1-special on I,
i.e., (1.4) to hold.

In this section we introduce two methods of investigation of conjugacy
of (1.1) on a given interval in the case where equation (1.6) is 1-general
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on this interval. The first method is based on the so-called hyperbolic
transformation of the second order equations, cf. [8], and the second
method depends on the computation of the least eigenvalue of a certain
differential operator corresponding to (1.6).

Theorem 2. Let equation (1.6) be 1-general on I, and let y,,yp be
its positive principal solutions at a and b for which r(y,ys — yay;) = 1.

If

lim inf / 12[4p<x>ya<w>yb<w> — (r(@)ya(@)p(2) ] dz > 0

and
4p(z)ya()yp(z) — (r(@)ya(z)ys(z)) " £ 0 on (a,b)
then (1.1) is conjugate on I = (a,b).

Proof. Denote h = (2y,13)/2. The transformation y = hu transforms
(1.1) into the equation (¢~ 'u’)" + (ph? — q)u = 0, where ¢ = (rh*)~1,
and the equation

(3.2) (¢ M) =0

is 1-special on I. Indeed, the transformation y = hu converts (1.1) into
the equation (h%ru’)’ +h((rh')’ +ph)u = 0, cf. [1], and one can directly
verify that h(rh’)’ = —(rh?)~'. Moreover, (y»/vs)" = —(ry?) ! =
—(ryays) ' (Us/Ya), hence ys/ya = const exp{— [“(ryays) *dt}. A

yp is the principal solution at b and y, is linearly independent of s,
Yb/Ya — 0 as x — b, cf. [6, p. 355]. It follows that fb(ryayb)_l dx =
2 fb q(z) dz = oo. Similarly, one can prove that [ g(z)dz = co. Now
consider the equation (¢~u’)" + (ph? — q¢)u = 0 as a perturbation of
1-special equation (3.2) and apply (1.4) and (1.5). As the above trans-
formation preserves oscillation behavior of the transformed equations,
the proof is complete. i

Example 1 (continuation). Since y, = 1, y» = e 2%/2 are
principal solutions of the equation (e2*y’) = 0 at a = —oo and
b = 0o, by Theorem 2 the equation (e*y’)’ + p(z)y = 0 is conjugate

on R = (—o00,00) if [ (p(z)e?* —1)dx > 0 and p(z) # €**.
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Theorem 3. Let one of the following assumptions be satisfied.

fr_l Ydz = A < o, ce(ab)zssuchthatfr_1 z)dr =
f 1"71 Ydz = A/2,

/ab cos <” / 17 (s)ds/ A> [p(2) — 7*/(Ar(x))] da > 0

and p(m) # 72 /(A%r(z)).
) [T (= da:<oo,f r~i(z)dz = oo, ¢ € (a,b),

/ab [(/CLIH)Z/(H (/1)2” [p(w)3r1(2w)2/
(e (L)) e
and p(z) # 3r~(z) /[1+ (f r~1)2.

Then (1.1) is conjugate on I = (a,b).

Proof The transformation of the independent variable y(z) = z(t),

t =t(z) = [ r~(s) ds transforms (1.1) into the equation
Z4+r(z)p(x)z =0, -=d/dt, te(—A/2,A/2),

z = z(t) being the inverse function of ¢ = t(x). Since n%/A? is

the least eigenvalue of the differential operator I(z) = —d?/dt*(z),

z(—A/2) =0 = z(A/2), the equation
+ (7% /A%z =0
is 1-special on (—A/2, A/2) (the function y_ 4/ = ya/2 = cos(w/A)t is

the principal solution of (3.5) both at —A/2 and A/2). The transfor-
mation z = (cos(n/A)t)u transforms the equation

E+(m/A)z + [(r(2)p(x) — (1/4)*)]z =0

into the equation

(cos?(wt/A)u) + cos?(nt/A)(r(z)p(z) — (7/A)*)u =



CONJUGACY CRITERIA 857

Now the statement follows from (1.4) and (1.5) using the substitution
dt = r~1(z)dz.

ii) The transformation y(z) = 2(t), t = [ r~!(s)ds, transforms
(1.1) into the equation Z + r(z)p(xz)z = 0 with ¢ € (0,00). The last
equation is equivalent to the equation

(3.3) 5431+ "2z + (r(z)p(z) — 3(1 +t*)"2)z = 0.

Since the equation # + 3(1 + %) "2z = 0 is 1-special on (0,00) (yo =
Yoo = t/(1 +1%)1/2), the transformation z = ¢(1 4 t?)~'/?u transforms
(3.3) into the equation

<1i—t2“> + li—tz(r(x)p(w) —3(1+t%)"?)u=0.

Now the statement follows using the same argument as in part i). ]

Remark 5. 1) In part ii) of the previous proof, we used the fact that
Ao = 3 is the least eigenvalue of the so-called Fridrich’s extension of the
minimal differential operator generated by the expression I(z) = (1 +
t2)22,t € (0, 00). The corresponding eigenfunction is ug = t(1+t2)~1/2,

ii) We get a similar result to ii) of Theorem 3 if fb r~1(z)dz < oo,
[,rH(z) de = oc.

Example 1 (continuation). Using Theorem 3 one can directly
verify that the equation (e?*y’) +p(z)y = 0 is conjugate on R whenever

I 1262
@) -2 >
/oo 1+ dete {p(x) (1+ aet)z | @20

and the integrated function does not vanish identically on R.

4. Concluding remarks. i) Using the transformation theory of
second order differential equations, one can produce various modifica-
tions of conjugacy criteria from the preceding sections. For the sake
of simplicity, we restrict ourselves to equations of the form (1.2). The
transformation

o) =esplg@ut), 1= [ " expl2g(s)} ds
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transforms equation (1.2) into the equation @ + p(t)u = 0, where
B(t) = exp{4g(z)}(p(z) + g"(x) + (¢'(z))* and = = z(t) being the in-
verse function of t = t(z) = [“ exp{—2g(s)}ds. If g(z) = (1/2)In f(2),
f e C¥R), f(x) > 0, [Ff Y a)de = oo = [° f'(x)dz,
then ¢t = foz f71(s)ds and p(t) = f2(x)(p(z) + (1/2)f"(z)f1(x) —
(1/4)(f'(x))®f~2%(z)), = = z(t). Now, according to (1.5), equation
(1.2) is conjugate on R if there exists a function f having the above
given properties, such that

lim inf / @) - (@)@ + 5 @) de >0

t1loo taToo 1 4

and the integrated function does not vanish identically on R.

ii) Until now we have studied perturbations of one-term differential
equation (1.6). Again, using the transformation theory of second order
equations, it is not difficult to extend the obtained results to two-term
equations. Particularly, let equation (1.1) be 1l-special on I = (a,b)
and consider the equation

(4.1) (r(x)y") + (p(z) + po(x))y =0

as a perturbation of (1.1). Let yo be the solution of (1.1) which is
simultaneously principal at a and b. The transformation y = you
transforms (4.1) into the equation (rygu')’ + y2pou = 0, whereby
[,ryg) " = o0 = fb(Tyg)_l. Now it suffices to replace r and p in
the previous results by ryZ and poy3, respectively. This idea has been
used in the proof of Theorem 3.

iii) The problem of conjugacy of (1.1) on a given interval is closely
related to the problem of existence of a nodal domain of the Schrédinger
partial differential equation

(4.2), Ayu+p(z)u=0,

z=(z1,...,2,) € R", A, = Y1 (0%/0x2), n > 2, p(x) is a locally
Holder continuous real-valued function defined on R™. It has been
shown in [13] that the influence of the potential p on the existence of a
nodal domain of (4.2),, is considerably different if n = 2 and n > 3. By
transforming the Laplace operator into the spherical coordinates, we
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get A, = (d/dr)(r"~Y(d/dr)), r = (31, 2?)'/2. Now we can see the
reason for this difference. If n = 2, the equation (ru') =0 (' = d/dr)
is 1-special on (0, 0), hence a “small” nonnegative function p(r) (i.e.,
[ B(r)dr > 0, p(r) # 0) suffices for the conjugacy of the equation
(ru’) +p(r)u = 0 on (0,00) and hence also for the existence of a nodal
domain of (4.2),, where p(z) and p(r) are connected by the relation
p(r) = f\z|:rﬁ(x) dw, w being the surface of the sphere |z| = r, cf. [10].
If n > 3, the equation (r"~!u')" = 0 is 1-general on (0, o), and in order
to get conjugacy of the equation (r"~'u')’ + p(r)u = 0 on (0,00), the
potential p(r) must be “much more positive” than for n = 2.

iv) Let us investigate the possibility of extending the results of
Theorem 1 to the higher order self-adjoint differential equation

(4.3) (r(z)y™) ™ + p(z)y =0,

re C"(I),p e C(I), r(z) >0on I. In the proof of Theorem 1, we
have used the fact that the oscillation behavior of (1.1) depends on the
behavior of the integral

b
(4.4) / Tﬁl(x)(u2(x) —i—vz(x))*ldx,

where u and v are linearly independent solutions of (1.1).

Let y1,...,y2, be linearly independent solutions of (4.3) satisfying
certain additional assumptions (reflecting the fact that the “Wron-
skian” of these solutions equals 1) and let U(z) and V(z) be the
Wronski matrices of y1,...,yn and yni1,..-,Y2n, respectively (i.e.,
U = (wij)ij=1,.n Wij = yj(-%l), V is defined analogously). It was
proved in [5] that (4.3) is conjugate on I (i.e., there exists a nontrivial
solution y of (4.3) and zy,zy € I such that 3 (z;) = 0 = y@ (),
i=0,...,n —1) whenever

b
(4.5) / r @) e (U(z)UT () + V(2)VT (z)) e, dz > nr,

where the superscript 7' denotes the transpose of the matrix indicated
and e, = (0,...,0,1) € R". The open problem is how to formulate
condition (4.5) in terms of functions r and p, similar to the reformu-
lation of the behavior of (4.4) in terms of r and p made in Theorem
1.
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v) Similar to [10, 13], the results concerning conjugacy of (1.1) on
a given interval (the existence of a nodal domain of (4.2),,) can be used
in order to study spectral properties of certain self-adjoint differential
operators associated with these equations. Particularly, the existence
of a pair of conjugate point (a nodal domain) implies the existence of
at least one negative eigenvalue of these differential operators.
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