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ON THE SECOND EIGENVALUE
AND THE SECOND EIGENFUNCTION
OF A CLASS OF SELFADJOINT
SECOND ORDER LINEAR SYSTEMS

CHAO-LIANG SHEN

ABSTRACT. The multiplicity of the second eigenvalue
and the sign properties of the components of the second
eigenfunction of the second order linear system y''+ AP (X )y =
0, y(—1/2) = y(1/2) = 0, where P(z) is a 2x 2 positive definite
matrix-valued function with positive entries, are investigated.
Sufficient conditions for the nondegeneracy of the second
eigenvalue and the constant sign property for the components
of the second eigenfunction are obtained.

1. Introduction. Let P(z) be a continuous real n X m positive
definite matrix-valued function defined on the interval a < z < b.
Suppose P(z) = (pij(z)), pij(x) > 0 for z € [-1/2,1/2]. Tt is
interesting to consider the following eigenvalue problem

y'(z) + AP(z)y(z) = 0,

(- y(~1/2) = y(1/2) =0,
where y(z) is an R™-valued function. The eigenvalue problem (1.1) is
much more complicated than the classical scalar Sturm-Liouville eigen-
value problem. For the scalar Sturm-Liouville problem, all eigenvalues
are nondegenerate, and the number of nodal points of the n'" eigen-
function is related to n in a clear way. But these scalar results are
no longer true for (1.1) except for the first eigenvalue ;. In [1,2,3]
S. Ahmad and A.C. Lazer proved some interesting results which tell
us that under the assumption on the coefficient matrix P(z) the first
eigenvalue A; of (1.1) is nondegenerate, and the components of the first
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eigenfunction have the same sign and are nonvanishing in the interval
a<x<b.

In this paper we study the second eigenvalue and the second eigen-
functions of (1.1). For technical reasons we only consider the case n = 2.
We find conditions which guarantee the nondegeneracy of the second
eigenvalue A2, and we also find that, under some further conditions, we
can describe the sign of the components of the second eigenfunctions
of (1.1) explicitly. To be more precise, we consider (1.1) with

(1.2) P(z) = [b(w) C(w)] ’

where a(z),b(x) and c(z) are strictly positive C'-functions defined on
the interval —1/2 < z < 1/2. For each z, we use p;(z) and ps(z)
to denote the largest and the smallest characteristic values of P(z),
respectively. For a given scalar-valued positive function p(z) we use
the notation v, [p] to denote the n'® eigenvalue of the string equation
with density function p(z):

u(z) + vp(w)u(a) = 0,
(1.3)
u(=1/2) = u(1/2) = 0.

We prove the following two theorems among other results:

Theorem 2.2. Suppose P(z) is of the form (1.2) and is positive
definite with positive entries for each x in [—1/2,1/2]. If ve|p1] >
v1[p2], then the second eigenvalue of (1.1) is nondegenerate.

Theorem 3.1. Suppose b(z) is a real analytic symmetrically de-
creasing function in [—1/2,1/2], a(z) and c(z) in (1.2) are constants
a and ¢, and a > ¢ > b(z) > 0 for all x in [-1/2,1/2]. Let
v(z) = col(vi(z),va(z)) denote a second eigenfunction of (1.1). If
vala + b] > v1[ps], then the second eigenvalue of (1.1) is nondegenerate
and vi(x)v2(x) < 0 for all © in the interval (—1/2,1/2).

In Section 2 we present the proof of Theorem 2.2. In Section 3, by
using the Ahmad-Lazer comparison theorem and some detailed analysis
about the second eigenfunction, we prove Theorem 3.1.
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2. The multiplicity of the second eigenvalue. Let P(z) be the
2 x 2 positive definite matrix

where a(z), b(x) and c¢(x) are C''-positive functions on [—1/2,1/2]. The
(geometric) multiplicity of the second eigenvalue Ay of (1.1), or more
precisely, of

Yy + Aa(z)ys + Ab(z)y2 = 0,
(2.1) Yy + Ab(z)y1 + Ae(z)ys = 0,

y;(=1/2) =y;(1/2) =0,  j=1.2,

is not as clear as its Sturm-Liouville analogy, even in the case when
a(x), b(xz) and c(z) are constants. The situation is explained in the
following theorem.

Theorem 2.1. P as above. Suppose a,b and c are positive constants
and p1 > p2 are the two characteristic values of P. Then

(i) the second eigenvalue Ao of (2.1) is nondegenerate if 4py > p;
(ii) the multiplicity of Aa is 2 if 4ps = p1.

Proof. Let u, v be the normalized characteristic vectors of P belonging
to the characteristic values pi,p2, respectively. Using w and v to
construct an orthogonal matrix U whch diagonalizes P:

UlPU_{pl 0].
0 p2

Let 2(z) = U~'y(z). Then (3.1) is diagonalized into the following
equations

2 Az =0, 25+ Apazy =0,

(22) 2i(—1/2) = 2z;(1/2) = 0, i=1,2.

Now it is clear that the sequence of eigenvalues of )\, of (2.1) is just
the sequence which consists of vy, [p1], Vm[p2], which are arranged in
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ascending order. From this sequence we can imagine the possibility of
degeneracy of the eigenvalues of (2.1). Notice that v,[p;] = n?m?/p,
Vmlpa] = m*n?/pa.

For the Ay, it follows from the works of Ahmad and Lazer ([3, Propo-
sition 2], [1, Theorem 1]) or, under our assumption, just observing the
ascending sequence consists of vy, [p1] and v,,[ps], that \y = 72/p; is
nondegenerate. As for Ay, the Minmax principle tells us that

(2.3) Un[p1] < vnlp2l, n=12,....

Thus, if v1[p2] < v2[p1], then (2.3) implies that

vi[p1] < vilp2] < wvnlp1]

for all n > 2. Hence, if v1[p2] < vo[p1], then Ay = vi[p2] and it is
nondegenerate. Since v [p2] = 72 /p2, va[p1] = 472 /p1, (i) follows from
the last statement. As for (ii), simply notice that 4p2 = p; implies that
vi[p2] = va[p]. o

The result in (the proof of) Theorem 2.1 (i) can be generalized as
follows.

Theorem 2.2. For each x in [—1/2,1/2], let pi(z), respectively
p2(z), denote the largest, respectively smallest, characteristic value
of the 2 x 2 positive definite matriz-valued function P(z). Suppose
a(z),b(x) and c(z) are strictly positive in [—1/2,1/2] and

vilp2] < va[p1].

Then the second eigenvalue Az of (3.1) is nondegenerate. In partic-
ular, if maxp; < 4minpy, then Ao is nondegenerate, where max p;
(respectively, min ps) denotes the mazimum of py (respectively, mini-
mum of ps) in the interval —1/2 < z < 1/2.

Proof. For &€ = col (£1,&2) in R?%, we have

(2.4) p2(2)[€7 + €] < (P(2)€,€) < pu(2)[€] + &3],

where (u, v) denotes the inner product of the vectors v and v. Thus, if
we use D;(z) to denote the 2x 2 diagonal matrix with diagonal elements
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equal to p;(x), and use the notation an ) to denote the nth eigenvalue

of the equation
V" 4+ aDDi(z)w =0, v(-1/2)=v(1/2) =0,

then

Hence, by the minmax principle, we have
a® >\, >all).

Since ozngl = aéiz = vy [p;], we have

(2.5) A2 <wifpa],  wefp1] < As.

Thus, if v1[p2] < va[p1], we have A; < Ag < A3. On the other hand, as
a(x),b(z) and c(x) are strictly positive, Ahmad and Lazer’s theorem
([3, Proposition 2], [1, Theorem 1]) tells us that A; is nondegenerate.
Thus, A\; < Az < As, i.e., Ay is nondegenerate. This proves the first
part of the theorem.

As for the second part of the theorem, we notice that min ps < pa(z),
p1(z) < max p; imply

vi[p2] < vi[min po], va[max p1] < ve[p1].
Since vq[minpsy] = 72/ min ps, ve[maxp;] = 472/ maxp;. Thus, if
max p; < 4min py, then v[ps] < va[p;1], and the second part follows
from the result in the first part. a

The readers might notice that the matrix P we discussed in Theorem
2.2 is an oscillatory matrix. As for oscillatory matrices we have
very precise information about the sign of the components of their
characteristic vectors (see [4, 5]), for example, the two components of
the characteristic vector corresponding to the smallest characteristic
value of a 2 x 2 oscillatory matrix have opposite signs.

Now let P be as that in Theorem 2.1 (i) and u,v, U be as those in the
proof of Theorem 2.1(i). Let u = col (u1,uz), v = col (v, vs), where
uy,us > 0, v1 = —ug, v9 = uy. Then, for the constant matrix P, the
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second eigenvalue of (2.1) is 72 /p, and the corresponding eigenfunction

ur  —u2 0 —U COSTT
y(@) =1, = ;
2 Uul COSTTX Ul COSTTT
the two components of y(z) have opposite signs for —1/2 < z < 1/2.

Does this phenomenon also appear when P(z) is not a constant matrix?
We shall study this question in the next section.

3. The components of the second eigenfunction. To answer
the question at the end of the last section, we shall prove the following
theorem.

Theorem 3.1. Suppose a and ¢ are positive constants, b is a positive
real analytic function on —1/2 <z <1/2 such that

(i) a>c>b(z) >0, -1/2 <z <1/2,
(i) b(—z) =b(x), —1/2 <z < 1/2, and b(z) is decreasing in [0,1/2]
(i) vola+b] > v1[p2], where p2(x) is the smallest characteristic value
of the matriz P(x).
Let (A, v(x)) denote the second eigenpair of (3.1), v(z) = col (vy(z),
va(x)). Then vi(xz)va(x) < 0 in the interval —1/2 < x < 1/2.

Notice that the condition (i) implies a + b > pj, then the condition
(iii) and Theorem 2.1 imply that the second eigenvalue A in Theorem
3.1 is nondegenerate.

To prove this theorem, we shall need a sequence of lemmas. The first
one was due to S. Ahmad and A.C. Lazer (see [3, Theorem A, Theorem
C and Proposition 2]) but is reformulated according to our purpose.

Proposition 3.2. Suppose a(x),b(z), c(z) are positive functions on
[-1/2,1/2] as those in (2.1). Let Ay be the first eigenvalue of (2.1).
Then, for u > A1, there is a nontrivial solution z(z) = col (z1(x), z2(x))

of
(3.1) 2" (z) + puP(z)z(xz) =0

such that z(—=1/2) = z(8) = 0 where
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(i) —-1/2<B8<1/2,
(i) zi(z)>0,-1/2<z<f,i=12
(i) 2/(—1/2) >0, 2(8) < 0,i=1,2.
Furthermore, B is the first conjugate point of —1/2 relative to (3.1).

We refer the proof of Proposition 3.2 to [3].

Lemma 3.3. Let A\ be the first eigenvalue of (2.1). Then vi[p1] <
)\1 S 141 [a]

Proof. Let u(x) = col (uy(z), uz(z)) denote the first eigenfunction of
(2.1). Then

V2 ()2 de

Laplaldr nlp), =12

f_lﬁz p1u? dzx

Hence, the second inequality of (2.4) implies that Ay > vy [p1].

Let ¢;1(x) be the first eigenfunction ¢” + va(z)p = 0, p(—1/2) =
©(1/2) = 0. Let u(x) = col (¢1(x),0). Then

1/2 1/2
ol - [alede [ de
1lal = = = M-
f71/2 ap} dz f_lﬁz < Pu,u > dzx

We note that Lemma 3.3 is independent of the interval [-1/2,1/2],
i.e., if we replace [—1/2,1/2] by [a, (], the result of Lemma 3.3 still
holds.

Proposition 3.4. We make the same assumptions as those in the
first part of Theorem 2.2, and we also assume that a(x),b(z) and c(x)
are even functions in —1/2 < & < 1/2. Then both components of the
second eigenfunction of (2.1) are even functions.

Proof. Let (A\g,v(x)) denote the second eigenpair of (2.1), v(z) =
col (vy(z),v2(x)). Since a(z),b(z) and c(x) are even functions in
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—1/2 < z < 1/2, the function v(—z) is also an eigenfunction of the
eigenvalue Ao. Since Ay is nondegenerate, we have v(—z) = av(z),

wehre o is a real constant. a = 1 or —1 since fiﬁz |v(—z)|? dx =

f_lﬁz |v(z)|? dz. Suppose that o = —1. Then we have v(0) = 0. Let
w(z) be the restriction of v(z) on 0 < z < 1/2. Then (A2, w) is an

eigenpair of the following problem:
2"+ pP(z)z =0, z(0) = 2(1/2) = 0.

Let py1 be the first eigenvalue of this problem. Then Ay > p;. On
the other hand, by Lemma 3.3 we have p1 > vi[p1]p,1/9)]- Since
a(z),b(z) and c¢(z) are even functions in —1/2 < z < 1/2, p; is an
even function. Hence, v1[p1]jo,1/2]] = v2[p1], the latter is the second
eigenvalue of the string equation y”" +vp;y =0, y(—1/2) = y(1/2) = 0.
Thus, Ay > 12[p1], and by the assumptions and (2.5) we have Ay >
va[p1] > vi[p2] > A2, which is absurd. Thus, v(z) = v(—=z), i.e., both
components of v(z) are even functions. O

Lemma 3.5. We make the assumptions of Proposition 3.4. If
v(z) = col(vi(z),v2(x)) is the second eigenfunction of (3.1), then
col (vf(—1/2),v5(—1/2)) # col(0,0).

Since (2.1) can be written as a first order system, Lemma 3.5 is just a
consequence of col (v1(—1/2),v3(—1/2)) = col (0, 0) and the uniqueness
theorem of first order system.

From now on, the notation v(z) = col (vi(z), v2(x)) shall be reserved
for the second eigenfunction of (3.1). The assumption in Proposition
3.4 will also apply to the following lemmas.

Lemma 3.6. If the a(z),b(x), c(x) in (2.1) are real analytic functions
in —1/2 < z < 1/2, then there ezists € > 0 such that vi(z) # 0,
va(z) # 0 for all x in the interval (—1/2,—1/2 +¢).

Proof. By the assumptions on a, b, ¢, v1(z),v2(z) can be expanded
into Taylor series with respect to z = —1/2. If the assertion failed, then
either v;(z) or vy(z) would vanish identically in (—1/2,1/2), which
would imply that v(z) = col(0,0) for all z in [-1/2,1/2], which is
absurd. ]
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Lemma 3.7. We make the assumptions as in Proposition 3.4 and
Lemma 3.6. If for the second eigenfunction v(x) of (2.1) we know that
there exists an € > 0 so that

vi(x)ve(z) <0 in —1/2<z< —1/2+c¢,

then
vi(z)ve(z) <0 in —1/2<z<1/2.

Proof. By Proposition 3.4, both v;(z) and va(z) are even functions.
Thus, if the assertion failed, then there would exist —1/2 < 2 < 0
such that vi(z)vz(z) < 0 for —1/2 < = < xg and vy (zg)v2(xo) = 0.
Assume that vq(z¢) = 0, the other case can be treated similarly. We
may also assume vi(z) > 0, va(z) < 0in —1/2 < & < . Then, by

(2.1), we have
f i/z( v;)? da

A
2= I* 1/2av%dw

Since —1/2 < zp < 0, let w(z) = v1(z) for —=1/2 < z < zg, w(z) =0
for zg < x < 0. Then

o (W)2dz O (w?dx
Joyp(i) de [ () > ol

ffi/z G/U% dxr f_01/2 aw? dx -

)

where 7 [a] is the first eigenvalue of w” +Paw = 0, w(—1/2) = w(0) = 0.
Since a(z) is an even function on [—1/2,1/2], #1[a] = v2]a] where
vola] is the second eigenvalue of the string equation w' + vaw = 0,
w(—1/2) = w(1/2) = 0. Thus, if the z( exists, then we have

)\2 Z 120 [a]

But as p1 > a > pa, and by the assumption and (2.5) we have
vala] > va[p1] > vi[p2] > A2, which lead to Ay > Ag, a contradiction.
Hence, v1(z)v2(z) < 0in —1/2 <z < 1/2. o

Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1. If there exists € > 0 such that vy (z)vs(z) < 0
in —1/2 <z < —1/2 + ¢, then by Lemma 3.7 we are done. We prove
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Theorem 3.1 by contradiction. Thus, we assume that vy (z)va(z) > 0
near —1/2.

Let 3 be the first conjugate point of —1/2 relative to the equation
2"+ APz = 0. We have 0 < 8 < 1/2 by the evenness of P(x)
and the nondegeneracy of A2 for (2.1). Let z(x) = col(z1(x), 22(z))
be the positive solution of 2" + APz = 0, z2(—1/2) = 2(8) = 0.
Notice that, by Proposition 3.2, 2'(—1/2) is positive. v'(—1/2) and
z'(—1/2) are linearly independent. Furthermore, since 2z’ -v =’ -z in
—1/2 <z < B, z(8) = 0 and 2/(B) is negative, we have vy (8)v2(8) < 0,
hence vy (—8)v2(—pB) < 0 since both vy (z) and vy (z) are even functions
by Proposition 3.4. For the vectors z'(—1/2) and v'(—1/2) there are
two possible cases:

Case 1. vy(=1/2)/2(=1/2) > vi(=1/2)/21(=1/2),

Case 2. vi(—1/2)/21(=1/2) > v5(—1/2)/25(—1/2).

We only discuss Case 1, the argument for Case 2 is similar. Let
§=11(-1/2)/21(-1/2),  n=v3(-1/2)/z(-1/2).
Then n > £ > 0. For v in the interval (£,7), let
w1 (7) = v21(7) — v1 (),
Wy 2() = y22(7) — v2(2),
woy () = col (w1, w,2)-
Notice that w, 1(z) > 0, wy 2(x) < 0, near —1/2.

If there is a «y in (£, n) such that there exists —1/2 < 2y < 0 so that
Way,1(z)wy2(z) < 0in (—1/2,20) and ws,1(xo)wy,2(x0) = 0, we may
assume w,1(xo) = 0, the other case is similar. Then, since b(z) > 0,
wy2(z) <0in —1/2 < z < xo, and

w4+ Xy Pw, =0,
we have
wiy',l + Aaaw, 1 > 0, wy,1(—1/2) = wy,1(z0) = 0.
This inequality and w,,; > 0in —1/2 < z < z¢ imply that

J7 1) de

—E 3 o 2
JZi ) a0l de

)\2 Z 1/2[(1],
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where v3[a] is the second eigenvalue of the string equation with density
a(z) in —=1/2 < z < 1/2. This is absurd since vz]a] > va[p;] and
A2 < v[p1] by the proof of Theorem 2.2. Thus, w,,1(z)wy2(z) <0 in
(—1/2,0] for all v in (§,7n). We then have w,y 1(z) > 0 and w, 2(z) <0
in (—1/2,0]. The latter implies that ve(z) > 0 in (—1/2,0], hence
va(z) > 0in (—1/2,1/2) since it is an even function. Then v;(z) > 0
near —1/2, v1(—8) = v1(B) < 0. Furthermore, v1(z) can only have one
sign-change zero in (—1/2,0), otherwise the contradiction Ay > 12[a]
would appear again. Let that zero be z;. Let zpy < 1 < z,,, < 0,
xp (respectively, x,,) be the local maximum point (respectively, local
minimum point) of vy on the left side (respectively, on the right side) of
z1. Let p(z) = vi(x). Then ¢ is nonpositive in [zpr, Zm,] and satisfies
the following equation:

©" 4+ Xaap + Aabvh + Aa(a’vy + b'vg) = 0,
Now we use the assumption that a is a constant to reduce the previous
equation to the following

0"+ Apap + )\2[)’[}12 + Ay =0,

p(zn) = p(zm) = 0.

Since b(x) is increasing in (—1/2,0] and vy > 0, we have
(3.2) " + Xaap + A2buvy, <0, o(znr) = p(xm) = 0.

If we can show that vy(xz) > 0 in (—1/2,0], then (3.2) will imply
A2 > wofa], which is a contradiction to va[a] > va[p1] > A2. Hence,
Case 1 will not happen. To prove that v4(z) > 0 in (—1/2,0], since
va(z) is even, v4(0) = 0, it suffices to show that v5(z) < 0in (—1/2,0].
Otherwise there exists —1/2 < —zo < 0 such that v§(—xz2) > 0, hence
cva(—z2) + b(—z2)vi(—x2) < 0. Since va(—z) > 0, ¢ > b(x) > 0, we
have
Uz(*ﬂ?z) + Ul(fmg) < 0.

Thus, by va(z) > 0, vi(z)v2(x) > 0 near —1/2 and the above inequality,
we can find —1/2 < —z3 < 0, such that
vi(z) +ve(z) >0 in —1/2<z< —ux3

(33) ’Ul(—l'g) + ’02(—$3) =0.
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Let U(z) = v1(z) + va(z). Then, by (2.1), U satisfies the equation

U"” 4+ Xa(a+b)U — Az(a — c)vy = 0,
U(=1/2) = U(—xs) =0,

which implies
(3.4) U'+X(a+bd)U >0, U(-1/2)=U(-=z3) =0.

(3.3) and (3.4) imply A2 > vila + b|(_1/2,—25)] > v2[a + b], a contra-
diction to the assumption that ve[a 4+ b] > v1[p2], and v1[p2] > As.
Similarly, Case 2 will not happen. Thus vy (z)v2(z) must be negative
near —1/2. By Lemma 3.7, the proof of Theorem 3.1 is complete. ]
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