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PRODUCTS OF SYMPLECTIC GROUPS
ACTING ON ISOTROPIC SUBSPACES

PATRICK RABAU AND DAE SAN KIM

ABSTRACT. Let A be a finite dimensional commutative
semisimple algebra over a field k, and let (V, B) be a finitely
generated symplective space over A. We examine the action
of the symplectic group Sp4(V, B) on the set of B’-isotropic
k-subspaces of V, where B’ = ¢ o B is the k-symplectic
form induced by a ‘trace’ map ¢ : A — k. The case of A
being a field was studied earlier and here we consider the
case where A has several simple components. The orbits are
completely classified when A = k x k and for maximal B’-
isotropic subspaces when dim ;A = 3; the number of orbits of
maximal B'-isotropic subspaces is infinite if dim ;A > 4 and
k is infinite.

1. Introduction. In [6] and [3] we studied the action on Grass-
mannians of products of general linear groups defined over extension
fields of the base field. In [4] this work was extended to the case of a
symplectic group defined over an extension field of the base field act-
ing on isotropic subspaces of a symplectic space. The present paper
examines the case of a product of symplectic groups acting on isotropic
subspaces, i.e., we replace the extension field by a finite dimensional
commutative semisimple algebra.

In more detail, the problem is the following. We have a finite
dimensional commutative semisimple algebra A over a field k, a finitely
generated faithful A-module V' and an A-valued regular symplectic form
B on V. By suitably choosing a k-linear functional ¢ : A — k (see
Section 2), we form the k-valued symplectic form B’ = ¢ o B and
look at the action of the symplectic group Sp 4(V, B) on B’-isotropic
k-subspaces of V. The problem is to determine when the number
of orbits is finite and to classify them. In group theoretic terms, if
A = k1 x --- x k, where each k;/k is a finite extension of fields, this
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corresponds to looking at double coset spaces
P\Sp (2N, k)/(Sp (2n1, k1) X --- X Sp (2ny, kp))

for suitable integers n; and IV, where P is a maximal parabolic subgroup
of Sp(2N,k). (We write Sp(2n) when the underlying space has
dimension 2n.) In [4] we considered the case A = k;, that is, A
is an extension field of k; the present paper examines the case of
A having several simple components k;. These double coset spaces
are of importance in the theory of automorphic forms for the explicit
construction of L-functions. In that context, Garrett [1] and Piatetski-
Shapiro and Rallis [5] have obtained the number of orbits in the special
cases dim ;A = 2 or 3 and each n; = 1. We generalize this to arbitrary
dimensions n;. (Piatetski-Shapiro and Rallis work with GSp groups
instead of Sp, but it makes no difference in the results.)

Our main results are as follows. Assume the field k is infinite.

Theorem A. A necessary and sufficient condition for the number of
orbits for the action of Sp 4(V, B) on mazimal B'-isotropic subspaces
of V to be finite is dim ;A < 3.

Theorem B. (a) If dim A = 2, the number of orbits for the action
of Sp 4(V, B) on B'-isotropic k-subspaces of V' of dimension d is finite
for every d, d < (1/2)dim V. Moreover, this number depends on the
degrees of the simple components k; of A over k but not on the k; or

on the field k itself.

(b) If dimyA = 3, the number of orbits for the action of Sp 4(V, B)
on B'-isotropic k-subspaces of V' of dimension d is finite only in the case
of mazimal B'-isotropic subspaces and in the trivial cases of the zero
subspace and of one-dimensional subspaces over k. When this number
is finite, it depends on the degrees [k; : k] but not on the k; or k itself.

The sufficiency of the condition in Theorem A is part of Theorem B.
The proof of the necessity of this condition is a variation on the proof of
[4, Theorem A], making use of [3, Theorem 3.1], so we will not give any
details. Theorem B summarizes [4, Theorem B] and results of Sections
4, 5 and 6.
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In the case of a finite number of orbits when dimzA = 2 or 3, we
actually determine the precise structure of the orbits and show that
they can be classified in terms of certain integer invariants, which
allows us to compute the exact number of orbits, and to give typical
representatives for each orbit. This classification makes much use of the
results of [3], where the analogous situation of the general linear group
GL 4(V) acting on k-subspaces of V' is considered. As an illustration,
we list in the table below the different possibilities for A and in each case
the asymptotic number of orbits of maximal B’-isotropic k-subspaces
of V, where V is a free A-module of rank 2n; F' and L are respectively a
quadratic and a cubic extension field of k. The exponent of n gives the
number of independent parameters necessary to describe the orbits.

A asymp. number
of orbits
k 1
F n
kxk n
L (n/2)?
Fxk (n/2)?
kxkxk (n/2)*

The cases where A is a field are treated in [4]; for the remaining cases,
see the discussion following Theorem 4.3, Corollary 5.4, and Corollary
6.4.

In each of these cases, one should determine the precise form of the
isotropy groups for each orbit and give more detailed information about
open orbits, ‘negligible’ orbits, etc. This will appear later [7].

2. Notation and statement of the problem. We expand on the
notation already introduced. The primitive idempotents of the algebra
A = ki x--- Xk are the elements e; = (0,...,0,1,0,...,0) with the 1
in the ith position, i = 1,... ,m; they satisfy e; +- -+ e, =1, €2 = ¢;
and eje; = 0 for ¢ # j. The A-module V satisfies V = @;e;V, where
each e;V is viewed as a vector space over k;. The dimension vector
of Vis dim 4V = (dimg,e,V,... ,dimy,e,V); if p = 2 or 3, we also
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call the dimension vector the bidimension or tridimension of V. Any
A-bilinear form B : V x V — A can be written uniquely in the form

p
B(z,y) = Z e;Bi(eiz, ey)
=1

for x,y € V, where each B; is a k;-valued k;-bilinear form on e;V.
Conversely, choosing the forms B; determines the A-bilinear form
B. (In formal terms, if R-bilis the category of R-modules equipped
with bilinear forms, the categories A-biland k;-bil x --- X k,,-bilare
equivalent.) The form B is symmetric or alternating or regular (regular
= nondegenerate = nonsingular) if and only if each B; satisfies the same
property.

From now on, assume that B is symplectic, that is, regular alter-
nating. The group Sp 4(V, B) of A-linear automorphisms of V', which
preserve the form B, satisfies

Spa(V,B) = Spg,(e1V,By) X -+ X Sp,,(emV, Bn)
> Sp (2ny,k1) X -+ X Sp (2npm, k),

where 2n; = dimy,e;V. For each ¢, fix a nonzero k-linear form
¢; : ki — k (for example, the trace map if k;/k is separable); if k; = k,
one usually chooses ¢; to be the identity. Consider the k-linear form
on A defined by ¢(Zaie;) = Bi(a;), a; € k;. One easily checks that
B = ¢oB :V xV — kis a regular alternating k-bilinear form
on V, which makes (V,B’) into a symplectic space over k. Clearly,
Sp a(V, B) < Sp k(V, B').

In this paper we propose to investigate the action of the symplectic
group Sp 4(V) = Sp 4(V, B) on the set ISO 4(V, B’) of B’-isotropic
(= totally isotropic) k-subspaces of V; in particular, if ISO 4(V, B') is
the set of B’-isotropic subspaces of dimension d over k, we want to
know when ISO 4(V, B')/Sp 4(V) is finite. In group theoretic terms, if
dim V' = 2N = 2%;n;[k; : k], the problem corresponds to looking at
the double coset spaces

Pd\sp (2N, k)/(sp (2’!7,1, kl) X oo X Sp (2nm, km)),

where P; is a maximal parabolic subgroup of Sp (2N, k) leaving invari-
ant a d-dimensional B’-isotropic subspace of V. Our results will be
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phrased in geometric terms, but the interested reader can immediately
translate them to obtain the cardinalities of the double coset spaces

|P4\Sp (2N, k)/(Sp (2n1, k1) X -+ X Sp (2nm, km))|
= [ISO 4(V, B')/Sp a(V)],

as well as coset representatives.

Further terminology that we will use is as follows. We write N
for the set of nonnegative integers. If R is a ring, the submodule of
an R-module generated by a set S is written RS, or (vi,...,v,)g if
S = {v1,...,vn}. Asin [3], a k-subspace W of V is the direct sum
over A of the two k-subspaces W; and Wy, written W = Wy @4 Wo, if
W = W1 @ W5 and AW = AW, & AW5; this extends to more than two
summands. The A-component of W, written comp oW, is the largest
A-submodule of V' contained in W.

Regarding the geometry, orthogonality with respect to B and B’ will
be denoted respectively by | and L’; for vectors £ and y in V and
subsets S,T C V, we write, for instance: « L y, S L' T, S+, S+
with the obvious meaning. If W, Wy, W, are k-subspaces of V, we
write W =Wy Lg Wo if W = W, &4 Wy and W, L Wy. The B-
radical of W is defined by rad gW = W N W,. The subspace W is
called B-isotropic if W < W+, that is, W = rad gW. If (U, B) is a
symplectic space over some field, a hyperbolic sequence in (U, B) is a
sequence vy, v}, ... ,vy,v.. of vectors of U satisfying B(v;, v}) = 6;; and
B(vi,vj) = B(v], v;) = 0; if that sequence also forms a basis for U, it
is a hyperbolic basis of (U, B).

3. Preliminaries. The following lemmas are proved as [4, Lemmas
4.1 and 4.2].

Lemma 3.1. (i) Let « € V, and let U be an A-submodule of V.
Thenx L'U <=z LU.

(ii) For an A-submodule U of V, UL = UL, In particular, an
A-submodule of V is B'-isotropic if and only if it is B-isotropic, and
is B'-nondegenerate if and only if it is B-nondegenerate (same as B-
nonsingular).
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(iil) If W € ISO(V,B’), then comp sW is B-isotropic, i.e.,
comp 4,W < radgW. If W is mazimal isotropic in (V,B') then
comp 4W =rad gW = W+.

Lemma 3.2. (i) If the k-subspaces W, W1, Wy of V satisfy W =
W1 La Wa, then there exist B-nondegenerate A-submodules Uy and Us
in (V, B) such that W; < U;, i = 1,2, and Uy L Us.

(il) Let W € ISO (V, B'), and let Wy be a k-subspace of W. If there
is a B-nondegenerate A-submodule U of V' containing W1 as a maximal
B'-isotropic subspace, then W = W1 1, Y for some k-subspace Y of
W (Y = WNUL will do).

(i) Let W € ISO(V,B’). Then W = comp 4W L4 Y for some
k-subspace Y of W.

4. The case A = k x k. In this section A = k x k, V is an A-module
of bidimension (2n;,2ns), and B is a regular A-valued symplectic form
on V. We have

B(z,y) = exBi(e1z, e1y) + eaBa(eax, e2y),
B'(z,y) = Bi(e1z, e1y) + Ba(ez2z, e2y)

for z,y € V. (In [2], the choice is B’ = By — Ba, but this only causes
a minor sign change in the normalization of Theorem 4.1.)

Define the Sp -type of a subspace W € ISO (V, B’) to be the quadruple

typesp (W) = (dim (W Ne V), dim x (W NexV),
di rad BW ].d W
imp|[ —————— ), =dim )
k comp AW )’ 2 "\ rad sW

In the course of the proof of Theorem 4.1 below, we will see that
dim ,(W/rad pW) is always even, so that the parameters of type s, (W)
are all integers. The Sp-type of an isotrophic subspace in (V, B’) is
clearly invariant under the action of Sp 4(V, B), and we will show that
it forms a complete set of invariants for this action.

Remark. As shown in [3], k-subspaces of V are completely char-
acterized under the action of GL 4(V) by their GL-type, defined by
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type gL(W) = (dim x(WNe W), dim (WNeaW), dim (W /comp s W)),
which is less discriminating than the Sp-type, as it should be. If
typesp (W) = (m1,ma, s,t), then typegr, (W) = (mq, ma, s + 2t).

Theorem 4.1. Let W € ISO (V, B') with type s, (W)= (m1, m2, s,t).
Then there exist hyperbolic sequences u§”,5§’), . ,v,(fl)i,f;y(ﬁ)i; u§’),a§’),
(@) ~(@), (4 ()

CUs Uy wy Wy, ,w,gi),u?,gi) in (e;V,B;), i = 1,2, such that
W:(Wﬂ€1W) La (Wﬁ€2W)J_A}f1LA}f2

with , '
WneW =@, ... v@)y, =12

S

¥~ D + P

We have comp sW = (W Ne W) Lg (WNeW) and rad gW =
comp 4 W 14 Y;.

Corollary 4.2. Two B’-isotropic subspaces of V are in the same
orbit for Sp 4(V, B) if and only if they have the same Sp -type.

Proof of Theorem . (a) The subspace comp 4#W = (WnNe; W)@ (WnN
e2W) is B-isotropic, hence each W Ne;W is B;-isotropic and is equal
to <v§i), - ,v%i)k for some hyperbolic sequence v%i), 179, .. ,v%),ﬁw
in (e;V, B;). By Lemma 3.2 we may now assume that comp 4W = 0.

(b) Take a k-subspace Y such that W = rad gW @Y. Then W =
rad pgW L4 Y by [3, Lemma 4.1]. Let uq,...,us be a basis of rad gW
over K, and put ugl) = e;u; for ¢ = 1,2. The vectors ugl), ces ,ugl)

are k-independent and generate a Bj-isotropic subspace in ¢;V. By
Lemma 3.2 (i) we can find vectors ﬂgi),... ,il" B-orthogonal to Y
such that ugi), aﬁ"), e ,ugi),ﬂgi) is a hyperbolic sequence in (e;V, B;).
Since rad gY = 0, we may now assume that rad gWW = 0.

(c) If W # 0, choose a nonzero vector w = w) + w® in W,
with the obvious notation. Since rad gWW = 0, there exists a vector
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o = @V — 9@ € W such that B(w,®) = e;By(w®,aM) —
e2Ba(w® 5?)) #£ 0. But B'(w,w) = By (w®,9M)) — By(w®, ) =
0. Multiplying @ by a scalar in k, we may assume that By (w®, &) =
By(w® %)) = 1. The subspace (w, 1)}, is maximal B'-isotropic in the
B-nondegenerate A-submodule (w,w)4 (compare dimensions), which
allows us to conclude the proof by an application of Lemma 3.2 (ii)
and induction on t. O

Remarks. (1) If W is maximal B’-isotropic, then typeg, (W) =
(n1 — t,n2 — t,0,¢t) for ¢t = 0,...,min(ny,n2). So there are 1 +
min(ng, ny) orbits of maximal B’-isotropic subspaces of V. (In the
case n; = 1 < ng, this gives a total of two orbits for maximal isotropic
subspaces which was obtained by Garrett [1]. Also, if n; = ng, one
recovers the result [2, page 8] that Sp 4(V)-orbits of maximal isotropic
subspaces are characterized by the unique invariant dim (W Ne; V) =
dlmk(W N GQV).)

(2) Tt typesy (W) = (1, ma, 1), then
dim ;W = my+mo+s+2t and dim 4 AW = (my+s+2¢t, mo+s+2t).

A necessary and sufficient condition for a quadruple (my,ms, s,t) € N*
to be the Sp-type of some B’-isotropic subspace of V is m; +s+t < n;,
i=1,2.

(3) By the preceding theorem, if a B’-isotropic subspace Y has
rad gY = 0, the submodule AY is B-nondegenerate (and contains Y
as a maximal B’-isotropic subspace). Now let W be any B’-isotropic
subspace of V. Asin the quadratic extension case in [4], any k-subspace
Y of W such that AY is B-nondegenerate satisfies A rad pgWNAY = 0.
A first consequence is that any k-subspace Y complementary to rad gW
in W has B-nondegenerate A-span and satisfies W =rad gW 14 Y.

(4) Another consequence of (3) is that the parameter ¢ = (1/2)dim

(W/rad pW) can be characterized as half the maximum dimension over
k of a k-subspace of W with B-nondegenerate A-span. Also m; + s+t
t = 1,2, is half the minimum dimension over k of a B;-nondegenerate
subspace of e;V containing e;W.

The set ISO (V, B') is partially ordered by inclusion, and the group
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Sp a(V) acts on it by poset automorphisms. We can form the quo-
tient poset ISO (V, B’)/Sp 4(V'), whose elements are the orbits for the
action of Sp 4(V), with the order relation defined by O; < Oy if
there exist * € O, y € O such that £ < y in the original poset
ISO (V, B'). This quotient poset is ranked, with the d-th level equal to
ISO 4(V, B')/Sp a(V'). The next result follows as in [4].

Theorem 4.3. The quotient poset ISO (V, B")/Sp 4(V, B) is inde-
pendent of the field k. It is isomorphic to the poset

Pring = {(m1,ma, s, t) € N4 | m;+s+t<mn;i=1,2}

with the order relation (my,me,s,t) < (m),mb,s',t') given by the five
inequalities

ngmia 1=1,2,
t<t,
mi+s+t<m,+s +t, i=1,2.

Here are some properties of the poset Py, n,. It is a ranked poset of
height ny + ng with the rank of (mq, ms, s,t) equal to my +my + s+ ¢.
It is not a meet-semilattice in general; the quadruples (1,2,0,0) and
(1,1,1,0) of rank 3 both cover the quadruples (1,1,0,0) and (0,1,1,0) of
rank 2. The 1+ min(nq,ne) maximal elements in P, ,, are the Sp-
types of maximal isotropic subspaces in (V, B’) as in Remark (1) above.

If we write P,(ff),m =1SO4(V,B")/Sp a(V) for the d-th level and let

by = [{(m1,ma,,t) € N* | m1 +mo + 5 + 2t = d}|
{ (1/24)(d +2)(d +4)(2d +3) for d even,

(1/24)(d+1)(d+ 3)(2d + 7) for d odd,
then we have the obvious bound

PO | < b

nyi,n2

with equality when d < min(nj, ng). (Garrett [1] obtained \P1(11)| =3.)

The exact expression for |P,(L‘f),n2| for larger d is a bit messy and requires
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consideration of a lot of cases, so we will not write it down. If we restrict
ourselves to ny; = ng = n, i.e., when V is a free A-module, we get

P

(d—n) <2n—d+2>

—}—% (4n — 2d + 3) <n d/2+2> if n < d < 2n, d even,

(d—n) <2n—d+2>

+i(dn—2d+7) <” (déﬂ +2> if n < d < 2n,d odd.

This formula yields the asymptotic number of orbits of maximal B’-
isotropic k-subspaces of a free A-module as stated in the introduction.
The total size of the poset for the general case of ny < ny (the situation
is symmetric in ny and ng) is

ni+3)\ 2n2 —ng+2
- (1) 2z s

5. The case A = k X k X k. In this section A = k xk x k, V
is an A-module of tridimension (2ny,2ny,2n3) and B is an A-valued
nondegenerate symplectic form on V. We have

B(z,y) = e1B1(e1z, e1y) + eaBa(ea, e2y) + e3 Bz (esw, e3y),
B'(z,y) = Bi(e1w, e1y) + Ba(eax, eay) + Bs(esr, e3y)

for z,y € V. We let N = ny + ny + ns.

Theorem 5.1. Suppose V is a faithful A-module.
(a) [ISO1(V,B")/Spa(V,B)|=T1.

(b) If the field k is infinite, the number of orbits in ISO 4(V, B’)/
Spa(V,B),d=0,...,N, is finite exactly when d =0,1 or N.
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Proof. a) The subspaces in ISO {(V, B’) are all one-dimensional k-
subspaces of V. It was shown in [3] that there are exactly 7 orbits for
the action of the group GL 4(V) on such subspaces, and the subgroup
Sp (V) acts transitively on each such orbit.

b) There is clearly a unique orbit when d = 0. The case d = 1 is

part (a). If 1 < d < N, take hyperbolic bases ugi),ﬂgi), .. ,u;’),a;’) of

e;V,B;),1=1,2,3, and set (y1,...- ,yn_3) = u(l),u(l), . ,ug);u(z),
2 o Us 15U

u:(f), . ,u%); ugg), uég), .. ,u%?;)). It is an easy computation to check

that, for different values of a € k, the subspaces

@ +u® +u® @M +aa® — (1+a)@l?, y1, .. ya_2)k € S0 4(V, B)

are in different orbits for the action of Sp 4(V, B). Finally, the case of
maximal B’-isotropic subspaces, that is, d = N, follows from Corollary
5.4 below. ]

For the remainder of this section we shall limit our attention to
the action of Sp 4(V') on the set ISO x(V, B’) of maximal B’-isotropic
subspaces. It is shown in [3] that, in the case A = k X k x k, the number
of orbits for the action of the general linear group GL 4(V') on the set
of all k-subspaces of V' is always finite, the orbits being parameterized
by eight integer parameters. Since the subgroup Sp 4(V) of GL 4(V)
certainly preserves these eight parameters of a subspace, we first review
the general linear situation (see [3] for more details).

In all that follows, (i,j,1) will always indicate a permutation of
(1,2,3). For a k-subspace W of V', we define, following the notation in

(3],
AW)=WneW =WneV,
Aij(W)=Wn(e;+e;)W=Wn(e+e;)V,
Ay (W) = Ay (W) 0 (Aa (W) + Ay (W),
A(W) = Aia(W) + Ais(W) + Aoz (W),
A(W) = A12(W) 4+ A13(W) + Aoz (W).
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The GL-type of W is the 8-tuple

- : 1 AW
typegrL (W) = <d1m A (W) =1,2,3); idlmk (ﬁ»

dimk<§jiggi>(i = 1,2,3);dimk($>>.

The parameters of typegr (W) = (my, mg, mg;7;s1, S2, S3;t) are in-
tegers that satisfy m; +r + s; + s +t < dimge;V, ¢ = 1,2,3, and
dim ;W = my + mg + m3 + 2r + s1 + s2 + s3 + t. The following gives
an explicit form for k-subspaces of a given GL -type.

Theorem 5.2 [3, Theorem 5.1]. If the k-subspace W of V has GL -
type (mq, ma, ms;r; 1, S2, S3;t), then there exist k-independent vectors

i i i 0. (i) Bg) . (il L) (@ i
N B N ) I (0 T Y CO NI
meV,i=1,2,3, such that

with ) '
AW = (o@D,

X = eth o of? )
p=1

Sq

Yi =D +yi ),

p=1

2= @+ 4

p=1

Turning to the case of maximal B’-isotropic subspaces of V, we will
prove that all have GL-type of the form (mq, ma, mg;7;2s1,2s9,2s3;7)
for some nonnegative integers satisfying m; +r + s; + s = n;, ¢ =
1,2,3. Moreover, any two maximal B’-isotropic subspaces having the
same GL-type are in the same orbit for Sp 4(V). So the classes in
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ISO N(V,B')/Sp a(V) are characterized by four nonnegative integers,
say r,81,52,83, satisfying r + s; + 5 < n;, ¢ = 1,2,3; if desired,
one could define the Sp-type of a subspace W € ISO n(V,B’) b
typesp (W) = (r,s1,52,s3) such that typegr, (W) = (n; —r —s; —
si(t = 1,2,3);7;281,282,283;7). In the notation of Theorem 5.2,
if W € ISO n(V,B'), the bases of the e;V can be chosen so that
X and Z are ‘paired up’ (to form the subspace U in the theorem
below) with U maximal B’-isotropic in the B-nondegenerate submodule
AU = AX ® AZ, and each Yj is also maximal B’-isotropic in its B-
nondegenerate A-span. The precise result is as follows.

Theorem 5.3. Let W be a mazimal B'-isotropic k-subspace of V.
Then type gL (W) = (my, ma, m3;7; 281, 289, 283;7) for some nonnega-
tive integers satisfying m; +r + s; + s;=n;, 1 =1,2,3, and there ex-
st hyperbolic bases vil), vil), ces v( D gl 0 ~(i) e x£ ), 559, y(”)

miy Umi; 17, T

~(i,7 5 ~(1, il) ~(i,l s
y§ ])7"' 7y(3])7y-g_7])ay§ )7 ( )7 7y-gl )7y5l Of(elVB) 7/_17273a
such that
3 3
W = (@Ai(W)> 14U 14 (@Y)
i=1 =1
with

A(W) = (P, v @)y,

U= @ (1) — 2@ 21— 2 70 4 5@ 4 700y,

p=1

Moreover, we have

W = comp aW = Ay (W) La Ay(W) La Ag(W),
W N Ay (W)*E = Aa(W) + A (W
WNA;(W)E=WnAW)* = (W),
WNAW)* =AW).
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Conwversely, for any choice of hyperbolic bases of (e;V, B;) as above, the
subspace W above is mazimal B'-isotropic with GL -type (my, mg, ms;r;
251,282,283; 7).

Corollary 5.4. Two mazimal B'-isotropic subspaces of V are in the
same orbit for Sp 4(V, B) if and only if they have the same GL -type.
The number of these orbits is finite and independent of the field k.

If ny = ny = ng = n, that is V is a free A-module, then the number
of such orbits equals

150 5. (V. B')/Sp a(V)| (n 1>4 { 0 for n even,
n{V, =\t +
° Pa 2 —1/16 for n odd

4 4
= E—|—1 ~ as n — oo
2 16 '

This is obtained by counting the number of quadruples (r; sy, s2, s3) €
N* with r + s; +s; < n (all j # [), using the same method as for the
proof of [3, Proposition 5.8].

Remark. For dim 4V = (2,2,2), this gives a total of five orbits,
which is a result of Piatetski-Shapiro and Rallis [5].

Proof of Theorem 5.3. The subspace comp 4W = A1 (W) & A2(W) &
A3(W) is dealt with in the same manner as in Theorem 4.1. We now
assume comp 4W = 0 and let typegr (W) = (0,0,0;7; s1, 2, $3;¢).
Then we have rad g = W+ = 0 by Lemma 3.1 (iii), whence AW = V.
From the two equations

dim ;AW = 3r + 2s1 + 282 + 2s3 + 3t = 2N,
dim ;W =2r+ sy +s2+s3+t=N,

it follows that r = t¢.

If » > 0, consider the two B-orthogonal vectors $§1) — x?) and

ac:(ll) - J;§3) in A(W), according to the normalization of Theorem 5.2.

Since rad gW = 0, there exists a vector # = (") + 73 + B3 in W
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(with obvious notation) such that
B(Igl) - I§2)a5ﬁ) = elBl(Xil)afﬁ(l) - 62BZ(I§2)ai(2)) 7é 0.
Since
B'(z\V — 2 7) = By (2", 1)) — By(z{?,?)) =0,

we may multiply Z by a scalar in k and assume that Bj (mgl),:i'(l)) =
By(z{?,#®) = 1. Then
B' @\ — 2 &) = By (a{",3D) — By(2{¥,33)) = 0

implies Bg(acga),i(?’)) = 1. The subspace (mgl) - xgz),acgl) - ac@,i‘)k
of W is maximal B’-isotropic in its B-nondegenerate A-span; so by
Lemma 3.2 (ii) we can write W = (azgl) —a:?), azgl) —x§3), Z) La W for
some subspace W necessarily of GL-type (0,0,0; 7 — 1; s1, s2, s3; 7 —1).
Repeating this process as many times as necessary, we may assume that
type gt (W) = (0,0,0;0; 51, s2, 53;0).

Write W = Y; @ Y5 @ Y3 in the notation of Theorem 5.2. It is
easily checked that W =Y; 14 Ys 14 Y3, because W is B’-isotropic.
Each AY; can be viewed as a module over & X k equipped with a
nondegenerate (k x k)-valued symplectic form and containing Y; as
a maximal B’-isotropic k-subspace with zero B-radical. Thus, one is
reduced to the case A = kxk and the required normalization is given by
Theorem 4.1. The equalities concluding the statement of the theorem
follow by inspection of the final form of W. u]

6. The case A =F x k with F/k quadratic extension. In this
section A = F x k where F/k is a quadratic field extension, V is an A-
module of bidimension (2n4,2n3), ¢ : F — k is a nonzero k-linear map,
B and Bs are respectively an F-valued and a k-valued nondegenerate
symplectic form on e;V and e;V, and

B(z,y) = e1By(e1, e1y) + ea Ba(eaz, e2y),
B'(z,y) = ¢ o Bi(e1z, e1y) + Ba(eaz, e2y)

for ,y € V. We fix a basis {a, 7} of F over k such that ¢(a) = 1 and
#(y) = 0. Also, let N = 2n; + ns.
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Theorem 6.1. Suppose V is a faithful A-module.
(a) [ISO1(V,B')/Sp a(V,B)| = 3.

(b) If the field k is infinite, the number of orbits in ISO 4(V, B’)/
Spa(V,B),d=0,...,N, is finite exactly when d = 0,1 or N.

Proof. The case d = 0 or 1 is handled as in Theorem 5.1, us-
ing the results of [3]. For 1 < d < N, take hyperbolic bases

u§“,&§“,... ,uﬁf},ﬁﬁf} of (;V,B;), i = 1,2, and set (y1,...,yn_3) =
(auél), ceey au;ﬂ); 'yugl), .. ,'yu,(lll); ug), .. ,u%)). Then, for different

values of a € k, the subspaces

(1)

W @ (1)

+u (a+ay)i;’ — 11?), Yiy- -, Yd—2)k € IS0 4(V, B)
are in different orbits for the action of Sp 4(V, B). The case d = N
follows from Corollary 6.4 below. o

For the remainder of this section we focus our attention on the action
of Sp 4(V) on the set ISO x(V, B’) of maximal B’-isotropic subspaces.
It is shown in [3] that, in the case A = F X k, the number of orbits
for the action of GL 4(V') on the set of all k-subspaces of V' is always
finite, the orbits being parametrized by six integer parameters. Since
these parameters are preserved by the subgroup Sp 4(V'), we first need
to review the general linear situation (see [3] for more details).

For a k-subspace W of V', let A;(W) =W nNe;W,i=1,2, and define
its GL-type by

typegrL (W)= (dim rcomp pAy (W), dim Ao (W);

. U . FAL (W)
dlmF(comp FAl(W)>’d1mF< U ’

dim M dim FeaW
F U ’ F FAy(W)+comp pe; W

with U = FA; (W) N comp pe;W. The parameters of type g (W) =
(my, ma;r, 81, 89,t) are integers that satisfy m; +r + s; + s2 +t < ny,
mo + 71+ 285 +t < ng and dim ;W = 2my + mg + 2r + s1 + 259 + .
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The following result gives an explicit form for k-subspaces of a given
GL-type.

Theorem 6.2 [3, Theorem 6.2]. Let {1,n} be a basis of F over k. If

the k-subspace W of V' has GL -type (m1, ma; 7, 81, $2,t), then there ex-
(1) (1), ,.(1) (1) (1)

st F-independent vectors vy ”’,... ,Um|5%1 .o s Tr 3YLy v 5 Ysii 21 s

2.1 Y in e,V and k-ind dent vect (2) (2).

3Ry UL e Uy 1V an independent vectors vy, ... , Umy;
x?),... ,a:g); z§2),... ,zéi)z; u§2),... ,u§2) i eaV such that

W = comp pA1 (W) ®a Ao(W) D X1 DAY ©a Z Da Xo

with
comp pAy (W) = (V... o) p, A (W) = (0, @),
Xl :@<II(]1),77$§)1) +m;g2)>k7 Y = <y17--- ,3/51>k:
p=1
So ¢
Z =Pl + Aoz + 2, Xo = D + i)
p=1 p=1

Now for the case of maximal B’-isotropic subspaces of V. It will turn
out that all have GL-type of the form (my, ma;r,2s1,2s2,7) for some
nonnegative integers satisfying my + 7 + s1 + s2 = ny,mg +r + 285 =
no. Moreover, any two maximal B’-isotropic subspaces having the
same GL-type are in the same orbit for Sp 4(V). So the classes in
ISO §(V, B’)/Sp a(V) are characterized by three nonnegative integers,
say 1,81, 89, satisfying r + s1 + so < my, 7 + 259 < ngo; if desired,
one could define the Sp-type of a subspace W € ISO n(V,B’) by
typesp (W) = (r,s1,s2) such that typegr, (W) = (1 — 7 — s1 —
So,m2 — T — 289;7,281,282,7). In the notation of Theorem 6.2, if
W € ISO n(V, B’), the bases of the e;V can be chosen so that X; and
X, are ‘paired up’ (to form the subspace X in the theorem below) with
AX, @ AX5 B-nondegenerate, and AY and AZ also B-nondegenerate.
The precise result is as follows.

Theorem 6.3. Let W be a mazimal B’-isotropic k-subspace of
V. Then typegr (W) = (my,mg;r,251,282,7) for some nonneg-
ative integers satisfying my + v + s1 + s3 = ny and mg + T +
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(1) ~(1) (1) ~(1),

2sy = ng and there exist hyperbolic bases vy ’,0;",... ,VUm}, Umi;

Q}‘g )7~(1)7"' xg‘l)axg“)aylaylv"' 7?/3173751; Z§1)7~(1) D) gl)7~§;) Of

(e1V, By) andv§ ),v§2), .. v&g,vy(,?g, :ng), ~(2) . ,x$ ),ws?); zi ),2?),
zéi)z,zzs2 of (e2V,Bz) such that

W = COIIlpFAl(W) J_A A.2(W) J_A X J_A Y J_A Z
with

comp A1 (w) = (0, .. o) e, Aa(W) = (0P, 0D,

X =Pzl oxd + 22, &M - 5P, Y = (W i)k

p=1 p=1

Z= @ R AP (aar O G WY A I P O S ) PO X

2p

where T = Npi(ya™t). Moreover, if 7 is the map v — eyv from W to
e1V, we have

W = comp AW = comp pA; (W) @ Ay (W),

W N (x~(FAL(W) N comp pey W)™ = 7 (FA (W) + comp pe; W),
W (r Y (FAL (W) = 7 (comp re, W),
W (- (comp perW))E = = {(FAL(W)),

W N (7Y (FAL (W) + comp pe; W)™ = 77 (FAL (W) N comp ge; W).

Conversely, for any choice of hyperbolic bases of (e;V, B;) as above, the
subspace W above is mazimal B’ -isotropic with GL -type (m1, ma;, 251,
282, T‘) .

Remark. In the special case where a = 1, 4% + a1y + ap = 0 with
ag,ay in k, ¢(1) =1, ¢(y) = 0, the normalization for the summands in
Z takes the form

(2D + 27,42V + 2P @ (5 - 5P 420 + a2 )i
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Corollary 6.4. Two maximal B'-isotropic subspaces of V are in the
same orbit for Sp 4(V, B) if and only if they have the same GL -type.

The number of these orbits is finite and independent of the fields k
and F.

The number a(ny,n2) = [ISO §(V,B')/Sp 4(V)| of orbits has the
following value:

(1) if N9 S ni,

(n2 +2)? for ns even,

1
= —(2ny — 2) x
a(ni,n2) 8( ny —ng + 2) { (nz +1)(n2 4+ 3) for ny odd;

(2) if ni S no S 2711,

1
a(ny,na) = =(ng — nl)(7nf — Bning + n3 + 18n; — 6ny + 11)

6
(2ny —no +2)3 for ny even,
1
+§ X (2n1—n2+3)(2n1—n2+2)
x(2n1 —ng + 1) for no odd;

(3) if no Z 2711,
ny + 3
a(ny,ng) = 3 .

In particular, if n; = ng = n, that is, if V is a free A-module, then
the number of orbits equals
(n+2)3 for n even,

, L
I1SO 5,.(V, B')/Sp a(V, B)| = { Ln+1)(n+2)(n+3) forn odd

Remark. For dim 4V = (2, 2), this gives a total of three orbits, which
was obtained by Piatetski-Shapiro and Rallis [5].

Proof of Theorem 6.3. The proof is parallel to the proof of Theorem
5.3, so we will be somewhat briefer. As previously, the proof reduces
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to the case comp s4W = comp pA; (W) @ Az(W) = 0, which implies
AW =V. If typegrL (W) = (0,0; 7, s1, $2,t), then the two equations

dim AW = 3r + 2s1 + 452 + 3t = 2N,
dim ;W =2r +s14+2s0 4+t =N
imply t =r.

Suppose r > 0. Applying Theorem 6.2 with = ay~! and adjusting

by an appropriate scalar in F', we can find in the subspace X; of

W two vectors of the form 'ymgl) and amgl) + 2

xgl) € eV, a:§2) € exV. Since rad gWW = 0, there exists a vector

W 5@ in W with B(ya{", 2 —5®) = e;yBy (2", 21) # 0. Since
B'(yz(", 80 —#®) = ¢(vBy(i”, #V))) = 0, that is, yB, (z1",21) €
)

ker ¢ = kv, we may assume that Bl(asg i) = 1. Then

B'(awgl) +x§ ) & — 5 N=0= Bg(xg ) & ) =1.
Applying Lemma 3.2 (ii) to the subspace (’yacg ), amgl)—i—mgm, Dz,
of W and induction, we may assume that r = ¢ = 0.

for some nonzero

In the notation of Theorem 6.2, we now have W =Y & Z and, since
W is B'-isotrophic, one easily checks that Y and Z have to be B-
orthogonal, that is;, W =Y 1,4 Z. By Lemma 3.2 (i), the subspaces Y’
and Z may be treated independently of each other. The normalization
for Y follows from [4, Theorem 5.1], using the fact that rad gY = 0.
We now assume that W = Z # 0.

Because of the special form of Z, AZ = ey Z + esZ = V, and the
projection Z — e;Z = eV is a k-linear isomorphism. So, given a
hyperbolic pair z§ ), 5 in (e1V, By), W contains a subspace of the

form
45 0 150 1), 0 (05 < 59, 4 ),
with 7 = Np/k(va_ ). Since the projection Z — e2Z = e2V is also an

isomorphism, the vectors z§ ), 252), zé ),z(z) are k-independent in e, V.

It remains to show that they form a hyperbolic sequence in (exV, Bz).
We have

B 40, 59) — 05 By, 50 =
B'(z; (1) +z§ ),'yz§ ) +TZ(2)) =0= By (z§2),2§2))
B'(va™ 2 4 2P 0zl — 5y = 0 = B,(2{ ),z?)) =0.
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Also, (ya™1)?2 + 7 € kya ! implies v2a! + 7 € ky = ker¢; by
applying ¢ we get

7= Np(ya™) = —p(r*a™).
From this it follows that
B'(ya~ M + 20 40 4 725y =0 = By (2P, 57) = 1.

Another application of Lemma 3.2 (ii) and induction allow us to
conclude the normalization of W. The remaining assertions follow by
inspection of the final form of W. o

REFERENCES

1. P. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann.
of Math. 125 (1987), 209-235.

2. S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Ezplicit constructions of auto-
morphic L-functions, Lecture Notes in Math., vol. 1254, Springer-Verlag, New York,
1987.

3. D.S. Kim and P. Rabau, Action on Grassmannians associated with commuta-
tive semisimple algebras, Trans. Amer. Math. Soc. 326 (1991), 157-178.

4. , Field extensions and isotropic subspaces in symplectic geometry,
Geom. Dedicata 34 (1990), 281-293.

5. I. Piatetski-Shapiro and S. Rallis, Rankin triple L-functions, Compositio Math.
64 (1987), 31-115.

6. P. Rabau, Action on Grassmannians associated with a field extension, Trans.
Amer. Math. Soc. 326 (1991), 127-155.

7. P. Rabau, Action of symplectic groups on isotropic subspaces, Quarterly J. of
Math., to appear.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COoLUMBUS, OH
43210

DEPARTMENT OF MATHEMATICS, SEOUL WOMAN’S UNIVERSITY, SEOUL, 139-744,
KOREA



