AUTOMORPHISMS OF THE INTEGRAL GROUP RING OF THE WREATH PRODUCT OF A p-GROUP WITH S_n , THE CASE n=2

M.M. PARMENTER AND SUDARSHAN K. SEHGAL

1. Introduction. Let $\mathbf{Z}G$ be the integral group ring of the group G which is the wreath product $H \text{wr} S_n$ where H is a finite p-group. It has been proved in [1] that if $n \geq 3$, then any normalized automorphism θ of $\mathbf{Z}G$ can be written as $\theta = \tau_u \circ \lambda$ where λ is an automorphism of G and τ_u is the inner automorphism of $\mathbf{Q}G$ induced by a suitable unit u of $\mathbf{Q}G$. We complete this work by proving the same result for n=2. We use the notations of [1] and state the

Theorem. Let G be the wreath product $HwrS_2$ of a finite p-group H and S_2 . Then every normalized automorphism θ of $\mathbb{Z}G$ can be written as $\theta = \tau_u \circ \lambda$ where λ is an automorphism of G and u is a unit of $\mathbb{Q}G$.

2. Some observations. The group in question is

$$G = (H \times H) \rtimes \langle (12) \rangle = \{(a, b; \sigma) \mid a, b \in H, \sigma = (12) \text{ or } I\},$$
$$H \text{ a finite } p\text{-group.}$$

Identifying (a, b; I) with (a, b) we have $(a, b)^{(12)} = (b, a)$. Denote by C_g the class sum of g and by C_g the class of g. We note that

$$\mathcal{C}_{(a,b)} = \{ (a^x, b^y) \mid x, y \in H \} \cup \{ (b^y, a^x) \mid x, y \in H \}.$$

Assume throughout that θ is a given normalized automorphism of $\mathbf{Z}G$. If p=2, then G is a 2-group and the result is true by the Theorem of Weiss [5]. Thus we may assume that $p\neq 2$. Therefore, $\theta(\Delta(G,P))=\Delta(G,P)$ where $P=H\times H$. We recall two crucial lemmas.

Lemma 1. If $\theta(C_g) = C_x$, $\theta(C_h) = C_y$, then there exist $t, z \in G$ such that $\theta(C_{gh}) = C_{xy^t} = C_{x^zy}$.

Received by the editors on September 25, 1991. Research supported by NSERC Canada.

Copyright ©1993 Rocky Mountain Mathematics Consortium

Proof. [2].

Lemma 2. There exists an automorphism λ of P such that, for all $g \in P$, we have $\theta(C_q) = C_{\lambda(q)}$.

Proof. This is Lemma 3.9 of [1].

Let us write $\lambda(a, b) = (\lambda_1(a, b), \lambda_2(a, b))$. As the need arises, we will use the same notation for any automorphism of P.

Lemma 3. For all $a, b \in H$, $\lambda(a, 1)$ and $(\lambda(b, 1))^{(12)}$ commute.

Proof. By Lemma 2, two elements, g_1 and g_2 , of P are conjugate in G if and only if $\lambda(g_1)$ and $\lambda(g_2)$ are conjugate in G. We have, for $1 \neq a \in H$,

$$\mathcal{C}_{(a,1)} = \{ (a^x, 1) \mid x \in H \} \cup \{ (1, a^x) \mid x \in H \}$$

$$\mathcal{C}_{\lambda(a,1)} = \{ (\lambda_1(a,1))^x, (\lambda_2(a,1))^y \mid x, y \in H \}$$

$$\cup \{ (\lambda_2(a,1))^x, (\lambda_1(a,1))^y \mid x, y \in H \}.$$

Moreover, if $x \in H$,

$$\begin{split} \lambda(a^x,1) &= \lambda(x,1)^{-1}\lambda(a,1)\lambda(x,1) \\ &= (\lambda_1(x,1),\lambda_2(x,1))^{-1}(\lambda_1(a,1),\lambda_2(a,1))(\lambda_1(x,1),\lambda_2(x,1)) \\ &= ((\lambda_1(a,1))^{\lambda_1(x,1)},(\lambda_2(a,1))^{\lambda_2(x,1)}). \end{split}$$

This belongs to the first subset of $C_{\lambda(a,1)}$. Further, if $(e,f) = \lambda^{-1}(x,y)$ for $x,y \in H$, then

$$\lambda(a^e, 1) = \lambda((e, f)^{-1}(a, 1)(e, f))$$

= $(x, y)^{-1}(\lambda_1(a, 1), \lambda_2(a, 1))(x, y)$
= $((\lambda_1(a, 1))^x, (\lambda_2(a, 1))^y).$

Thus the image under λ of the first subset of $\mathcal{C}_{(a,1)}$ is the first subset of $\mathcal{C}_{\lambda(a,1)}$. Since the two subsets of $\mathcal{C}_{(a,1)}$ are disjoint, we can find $t \in H$ such that

(*)
$$\lambda(1, a^t) = (\lambda_2(a, 1), \lambda_1(a, 1)) = (\lambda(a, 1))^{(12)}.$$

Since (a,1) and (1,b) commute for all a and b, $\lambda(a,1)$ and $\lambda(1,b)$ must also commute. Hence, $\lambda(a,1)$ commutes with $(\lambda(b,1))^{(12)}$ for all b as claimed. \square

We would like to know when an automorphism of P can be extended to an automorphism of G which leaves (12) fixed.

Lemma 4. An automorphism of P can be extended to an automorphism of G by setting $\mu(12)=(12)$ if and only if $\mu_1(b,a)=\mu_2(a,b)$ for all $a,b\in H$.

Proof. μ extends as desired if and only if it satisfies $(\mu(g))^{(12)} = \mu(g^{(12)})$ for all $g \in P$. This is equivalent to

$$(\mu_1(b,a),\mu_2(b,a)) = \mu(b,a) = \mu((a,b)^{(12)}) = (\mu(a,b))^{(12)}$$
$$= (\mu_1(a,b),\mu_2(a,b))^{(12)} = (\mu_2(a,b),\mu_1(a,b)).$$

In other words, $\mu_1(b, a) = \mu_2(a, b)$ for all $a, b \in H$.

3. Proof of the Theorem. As in [1], it is enough to prove that there is an automorphism μ of G such that $(\mu^{-1}\theta)(C_g) = C_g$ for all $g \in G$ (see [3, page 117]).

Define a map $\mu: P \to P$ by

$$\mu(a,b) = \lambda(a,1)(\lambda(b,1))^{(12)}$$
 for all $a, b \in H$.

Note that

$$\begin{split} \mu((a,b)(c,d)) &= \mu(ac,bd) \\ &= \lambda(ac,1)(\lambda(bd,1))^{(12)} \\ &= \lambda(a,1)\lambda(c,1)(\lambda(b,1))^{(12)}(\lambda(d,1))^{(12)} \\ &= \lambda(a,1)(\lambda(b,1))^{(12)}\lambda(c,1)(\lambda(d,1))^{(12)} \quad \text{by Lemma 3} \\ &= \mu(a,b)\mu(c,d). \end{split}$$

Also, if $\mu(a,b) = 1$, then $\lambda(a,1)(\lambda(b,1))^{(12)} = 1$. But we saw in the proof of Lemma 3 (see (*)) that $(\lambda(b,1))^{(12)} = \lambda(1,b^t)$ for some $t \in H$.

Thus, $\lambda(a,1)\lambda(1,b^t)=1$, or $\lambda(a,b^t)=1$ forcing a=b=1. We conclude that μ is an automorphism of P. Also

$$\mu(b,a) = \lambda(b,1)(\lambda(a,1))^{(12)}$$

$$= (\lambda(a,1))^{(12)}\lambda(b,1) \text{ by Lemma 3}$$

$$= (\lambda_2(a,1)\lambda_1(b,1), \lambda_1(a,1)\lambda_2(b,1)).$$

Thus, $\mu_1(b, a) = \lambda_2(a, 1)\lambda_1(b, 1)$. But $\mu(a, b) = \lambda(a, 1)(\lambda(b, 1))^{(12)}$, so $\mu_2(a, b) = \lambda_2(a, 1)\lambda_1(b, 1)$.

Since $\mu_1(b, a) = \mu_2(a, b)$ for all $a, b \in H$, we conclude from Lemma 4 that μ can be extended to an automorphism of G by setting $\mu(12) = (12)$.

Since $\mu(a,1) = \lambda(a,1)$ and $\mu(1,a) = (\lambda(a,1))^{(12)}$, we conclude that $\theta C_{(a,1)} = C_{\mu(a,1)}$ for all a in H. Replace θ by $\mu^{-1}\theta$, where μ denotes the automorphism of $\mathbf{Z}G$ obtained by extending μ \mathbf{Z} -linearly. We then have $\theta C_{(a,1)} = C_{(a,1)}$ for all $a \in H$.

Now consider $C_{(a,b)}$ where $a \neq 1$ and $b \neq 1$. Lemma 1, together with the previous remark and the fact that $C_{(a,1)} = C_{(1,a)}$, tells us that

$$\theta C_{(a,b)} = \theta C_{(a,1)(1,b)} = C_{(a,1)(1,b)^x}$$
 for some $x \in G$.

So $\theta C_{(a,b)} = C_{(a,b^x)}$ if $x \in P$ and $\theta C_{(a,b)} = C_{(ab^y,1)}$ for some $y \in H$ if $x \notin P$. But the latter case is impossible since all classes $C_{(a,1)}$ are fixed under θ .

Hence, $\theta C_{(a,b)} = C_{(a,b^x)} = C_{(a,b)}$, and all classes $C_{(a,b)}$ are fixed under θ .

Next we claim that $\theta(C_{(12)}) = C_{(12)}$; in fact, since all class sums of elements in P are fixed by θ , $\theta(C_{(12)}) = C_{(a,b;(12))}$ for some $a,b \in H$. Also, $(12)^2 = 1$ implies $(a,b;(12))^2 = 1$ and so, ab = 1. Hence, $(12) \sim (a,b;(12))$ and the claim is established.

Now we prove that if g = (a, b; (12)) for some $a, b \in H$, then $\theta(C_g) = C_g$; in fact, by Lemma 1 and the above we have $\theta(C_g) = \theta(C_{(a,b)(12)}) = C_{(a,b)(12)^x}$ for some $x \in G$. Write $(a,b)(12)^x = (a,b)(c,c^{-1};(12)) = (ac,bc^{-1};(12))$, for some $c \in H$. Then $C_{(ab,ba)} = \theta(C_{(ab,ba)}) = \theta(C_{(a,b;(12))^2}) = C((ac,bc^{-1};(12))^2) = C((acbc^{-1},bc^{-1}ac))$, and this implies in any case that $ab \sim acbc^{-1}$. Thus $g \sim (ac,bc^{-1};(12))$, and we are done. \Box

REFERENCES

- 1. A. Giambruno and S.K. Sehgal, Automorphisms of the integral group ring of the wreath product of a p-group with S_n , Rocky Mountain J. Math. 22 (1992), 1303–1316.
- **2.** G.L. Peterson, Automorphisms of the integral group ring of S_n , Proc. Amer. Math. Soc. **59** (1976), 14–18.
 - 3. S.K. Sehgal, Topics in group rings, Dekker, New York, 1978.
- 4. A. Valenti, On the automorphism group of the integral group ring of $S_k wr S_n$, J. Pure Appl. Algebra **78** (1992), 203–211.
 - 5. A. Weiss, Rigidity of p-adic p-torsion, Ann. Math. 127 (1988), 317-332.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T $6G\ 2G1$

Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada $A1C\ 5S7$