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ABSTRACT. The key result states that, for a regular car-
dinal 3z, the 2¢-Kurepa hypothesis (the existence of a tree
of height 3¢ with levels of cardinality < 3¢ and at least 3¢t
branches) is equivalent to the existence of a valuated vector
space V of cardinality 3¢ with the following properties: (a) its
-topology is Hausdorff; (b) for every ¢ < 2¢, |[V/V(3)| < 515
and (c) the completion V of V in the s-topology has cardi-
nality greater than 3z. Another equivalence to the s¢-Kurepa
hypothesis is obtained by replacing (b) by the following con-
dition (b’): For every i < 3¢ and every subspace W < V/V (3),
with |W| < 2, its closure W, in the i-topology, also satisfies
W] < 2.

This is used to prove in a short and elegant way some
results previously established by P. Keef; namely, Kurepa’s
hypothesis is equivalent to the existence of a Cy,,-group G of
length wi and cardinality at least N2 with a p“1-pure subgroup
A of cardinality N1 whose closure in the wi-topology of G has
cardinality at least Na. This is also equivalent to the existence
of a C,, -group of length w; and balanced projective dimension
2.

Let V be a valuated vector space over a field F' with valuation
v:V — Ord U {0}, i.e., a function satisfying v(a) = oo if and only if
a =0, v(ta) = v(a) for all scalars ¢t # 0, and v(a+b) > min{v(a), v(b)}.
Then by V(«) we mean the subspace V(o) = {x € V : v(z) > a}. If Nis
a limit ordinal, then by the A-topology on V' we mean the linear topology
having as a base for the neighborhoods of 0 the set {V(a) : @ < A}
All the topologies in this paper will be of this kind. It is easy to see
that if a,b € V with v(a) # v(b) then v(a + b) = min{v(a),v(b)}.
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If U and W are subspaces of V, then by V = U®W we mean the
valuated direct sum, i.e., V. =U @& W and, for all a € U and b € W,
v(a+b) = min{v(a),v(b)}. All valuated vector spaces will be subject to
some cardinality restrictions in relation to the cardinality of the ground
field F'; these conditions will always be ensured for countable F. For
more details on valuated vector spaces, see [3].

Recall that a strict partially ordered set (7', <) is a tree if for every
z € T, theset {y € T : y < z} is well ordered in the induced
ordering. The height of z € T, denoted by ht(x,T), is the ordinal
that is order equivalent to the well ordered set {y € T : y < z}. If o is
an ordinal, then Lev o(T) = {z € T : h(z,T) = «} is the a-th level of
T. The height of (T, <), denoted ht(T'), is the least ordinal T such that
Lev . (T) = &. A branch of T is a maximal linearly ordered subset of
T. If b is a branch of T, then b is well ordered by the ordering of T'. If
bNLev,(T) # @, then it is a singleton and b N Lev g(T') # @ for all
B < a. If b is a branch, then the length of b is the least ordinal A such
that b N Lev »(T) = @. Note that this is the same as the ordinal that
is order equivalent to b. If the length of a branch b is A we shall refer
to b as a A-branch. In this paper we shall be concerned with s-trees
and families of sc-branches, for a regular cardinal s.

A tree (T, <) is a s Kurepa tree if:
(1) ht(T) = 35

(2) for every a < s, [Lev o(T)| < ¢
(3) T has at least »™ s-branches.

The sc- Kurepa hypothesis (3-KH) is the statement “there is a sc-Kurepa
tree.” When » = w; we have Kurepa’s hypothesis (KH).

Let X be a set of cardinality > and {X4}a<s be a chain of subsets
of X of cardinality < s¢ such that X = Ugp<,, Xo. A sc-Kurepa family
is a family F C P(X) of cardinality at least s»™ such that, for each
a<x, {XaNY :Y € F}| < s By a Kurepa tree or Kurepa family
we shall mean an wi-Kurepa tree or w;-Kurepa family, respectively.
The existence of a s-Kurepa family is equivalent to the existence of
a »-Kurepa tree. ZFC is equiconsistent with ZFC + KH and with
ZFC+ GCH+ KH. On the other hand, if I represents the statement
that there exists a strongly inaccessible cardinal, then ZFC + I is
equiconsistent with ZFC' + -KH and with ZFC + GCH + —KH (see
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[11] or [7]).

Let us prove a statement about the existence of »-Kurepa trees in
terms of valuated vector spaces:

Theorem 1. Let »x be an uncountable regular cardinal and N a
cardinal greater than ». Then there is a »-Kurepa tree with at least N
»x-branches if and only if, for every field F of cardinality < s, there
exists a valuated F-vector space V with the following properties:

(a) [V]= 2,

(b) V(x) =

(c) for every i < s, |V/V(i)| < 7,

(d) the completion 1% of V in the »-topology has cardinality > N.

Proof. We first assume the existence of a s»-Kurepa tree (7', <) with R
»-branches. Consider any field F' of cardinality < sc. If x € Lev o(7T),
we will let (z) denote the one-dimensional F-vector space generated by
x. Define an F-vector space by

P =[] ®screvain (@),

a<ix

and define
v: P — Ord U {o0} by v(g) = min{« € s : g(a) # 0}.

Then (P,v) is a valuated vector space over F. Let F denote the set of
»-branches in (T, <). Each f € F may be thought of as an element of
P, ie., for each a € 5, f(a) = {fNLev,(T)}. If f € F and a < 3¢ we
define f, to be the element of P defined by f,(8) = f(8) if 8 < « and
fa(B) =0if @ < B < s. Note that v(fy) < «, for nonzero f,, and that
the same is true for every linear combination ) rerF Safa # 0. Define

V={fa:f€Fandacsx}.

We prove that V is the desired vector space with the completion V, in
the sc-topology, of cardinality > |F|. Note that if z € Lev o(T') and f is
a branch containing z, then in P, z = fo+ — fo. Every level Lev (7)) is
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of cardinality < s as T is a s-Kurepa tree. ({fo: f € F and « € »})
has cardinality s¢ as at every level «, there are less than s f,’s. Thus,
V' is a vector space of cardinality s. It is a valuated vector space as
(P,v) is such. The s-topology on V is Hausdorff since the height of
the tree is 5. We next establish (c¢) and (d). For every i < s define

Vi={foa:f€Fand a<i}).

Then V = V;®V (i) for the following reasons. First of all, this is a
valuated direct sum, for if a € V;, v(a) < %, and for every b € V (i),
v(b) > i. Secondly, we show that V = V; 4+ V(i) as follows. Let i < s
be fixed, and let

yeV={fa:f€Fand a € sx}).

Ify = me Say fa, then y = Zagi Safa + Za>i Safa. For every
a > i, fo = fia + foa, where fi, = f; and fa, is an element
that has zero projections outside the ordinal interval (i,a). Thus,
y = Zagi Safa + D asiSafia + D asi Safoa; the first two sums give
an element in V;, the third, an element in V(i). Thus, indeed we have
the desired decomposition.

Since (T,<) is a »-Kurepa tree, |Lev ,(T)| < s for each a < »
and {f, : f € F and a < i} is of cardinality less than s. Therefore
[Vi| < s, for all i and so |V/V(i)| < s as these spaces are isomorphic;
this establishes (c).

Next note that for each f € F, {f;}i<, is a Cauchy net in V
converging to f in the s-topology on V. Thus the completion VofV
in the s-topology on V has cardinality at least |F| and this establishes
(d)-

For the reverse implication we can use Theorem 5, but we also give
an alternative proof. Thus, given a valuated F-vector space V with
the noted properties, we think of the completion V as an inverse limit
@V/V(i)  [lic,. V/V (i) over the universal cone g;; : V/V(j) —
VIV(i), i < J, ¢ : V = V/V (i), where §; is continuously extended
from g; : V — V/V(i). Define T = U;.,.V/V (i) and, for a € V/V(3)
and b € V/V(j) define a < b in T if i < j and ¢;;(b) = a. Note that,
for any z and a, h(z,T) = a & x € V/V(a), thus (T, <) is the desired
»-Kurepa tree whose branches may be identified with the elements of
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V, via the bijection z = (s @iyenayay,.. ) €V ab=(..<a <
.<a;<...)CT. u]

Remark. If, in the theorem above, [V| = R, then the constructed
»-Kurepa tree 1" has exactly N sc-branches.

We will prove another theorem on the existence of s»-Kurepa trees,
and to that end we first establish several results we will use in the
proof. The following is an easy but useful lemma in which we employ
the notion of a high subspace.

Lemma 2. Let V be a valuated vector space and o be an ordinal. If
U is a valuated subspace of V', then U is mazimal with respect to the
property U NV (a) =0 if and only if V. = UDV (a). Moreover, such a
U may be chosen to contain any subspace W of V' trivially intersecting
V(a).

Proof. Assume first that U is maximal with respect to the stated
property. Let € V\U. By the maximality of U, (U 4+ (z))NV(a) # 0.
Thus, there exists a y € U such that y + z = z € V(«) and therefore
z = —y + 2. Hence, we have V = UV () as v(—y) < v(z). The
statement concerning W follows from Zorn’s lemma.

Conversely, let V = U®V (a). Then U’ > U implies U’ = UDU'(a).
If U’ trivially intersects V(«), U'(a) = 0 and U’ = U, showing that U
is maximal. O

For a limit ordinal A and an uncountable cardinal sz, we will say
that the valuated vector space V has the (), »)-closure property if it
is Hausdorff in the A-topology and if, for every subspace W of V of
cardinality < s, its closure W in the A-topology is also of cardinality
< 2. If V is Hausdorff in the A-topology and is of cardinality < s,
then V has the (], 5)-closure property. We will use a consequence of
the following result in the sequel, namely, that free valuated vector
spaces have the (), »c)-closure property.

Lemma 3. Let A be a limit ordinal, and let »x be an uncountable
reqular cardinal. If V. = ®;c1W; is a valuated vector space over a
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field of cardinality < s, which s Hausdorff in the A-topology, and if
|Wi| < 3¢, for alli € I, then V has the (X, s)-closure property.

Proof. Let W be a subspace of V' of cardinality < 5. Then there is a
J C I, such that |J| < » and W C ©®ic;W;. Then also W C e Wi,
thus |®;cgW;| < s, because s is regular, hence |W| < s. O

If 5z is a regular cardinal and V' a module, then any ascending chain
{Uq} <5 of submodules of V' with the property that V = U, <,.U, and
U, = Ua<yU, for every limit ordinal v < s« is called a filtration of V.
If, in addition, V is generated by s elements and, for all a < s, U,
is generated by fewer than s elements, then {U,}q<, is called a s
filtration of V. For example, by well ordering elements of a generating
set of V, say {a,}y<s and letting Uy, = ({ay}y<a), {Uata<sx is a 2
filtration of V.

The following technical lemma will be important in the proof of
Theorem 5.

Lemma 4. Let > be an uncountable regular cardinal and let F be
a base field of cardinality < . Consider a »-filtration {Us}a<s of
a valuated vector space V' over F of dimension ». If the s-topology
on V is Hausdorff, then there is a two-dimensional array {UL}.2%, of
valuated subspaces of V' with the following properties:

(1) Us =0

(2) for a fired o < 3¢, {ULY'<* is a filtration of U,, and, for a fized
i < 5, {Ul}a<s is an ascending chain;

(3) for all o, i < 32, Uy = UL OUL(0); and if V' = Ua<scUp, for
all i < 2, and V denotes the completion of V' in the s-topology, then
{Vi}i<* is q filtration of V such that, for all i < s,

(4) V =Vi*aV (i) and

(5) V =ViH1av(i).

Proof. We will construct subspaces U (i, < ») inductively in two
dimensions. Thus, assume that we have constructed all Ug‘, 6 < a,

m < s and all UJ, j < i < , satisfying conditions (1)-(3). We show
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how to construct U:. By (1), we know how to start; to satisfy the first
part of (2), we define U} = U;-;UZ, if i is a limit ordinal. Choose
Uit! to be a valuated subspace of U, containing U} + Ug<aUé+1 and
maximal with respect to the property X N U,(i) = 0. By Lemma
2, U, = UG U, (7). We must justify that this choice is possible by
showing that (x) (U3+U5<aUé+l)ﬁUa (i) = 0. To the contrary, assume
that there is an € U and y € Ulg<aUé+1 such that x + y # 0 and
v(z + y) > i. Then there is a k < i such that z € Ut*t? (by (2))
and y € Ugﬂ for some 3 < a. By (3) and the inductive hypothesis,
we have the decomposition Uz = Ug“@Ug(k). Hence, y = 2z + w,
where z € Ug"'l, w € Ug(k), and v(w) = v(y — z) > k. Also,
z+z = (xz+y)—(y—z), where v(z+y) > i and v(y —z) > k. Therefore,
v(z 4+ 2) > k. On the other hand, z + z € UF*+! + Ug“ < UKL (by
(2)), and by (3) either v(z+y) < k or £+ 2z = 0, the latter remaining as
the only possibility; however t+y =z+z+w =w € U;;+1 NUL(i) =0,
which is a contradiction. Thus, (*) holds.

By the construction, the chains in (2) are ascending. In addition, the
first chain in (2) is smooth and U, = U;<,.U.. The reason for the latter
is that |Uy| < s Thus, for every o < s there is an ¢ < » such that
U, (i) = 0 since  is regular. Hence, by (3), UJ = U, for all j > i+ 1.

If i < » is a limit ordinal, then U;<;V?/ = Ujc; Uger UJ =
Ua<s Uj<i Ul = Upes UL = Vi by (2). Also V = Uy, Uy =
U< Uicse UL = Ui Ugcre UL = Ui, Vi Thus {V}i<* is indeed a
filtration of V.. Since V*! = U, ., ULt v(z) < i for every z € VIF1\0
as ¢ € ULt for some o < 3. Thus V1@V (i) < V. For the reverse
inequality, let z € V\0. Then z € U, = U.'dU, (i) for a < » by
(3). Hence, x = a + b, where a € Ut < Vitl b € U,(i) < V (i), and
z € VGV (i) (in fact v(x) = v(a)). This settles (4).

For (5), notice that the elements of 1% may be thought of as limits
of Cauchy nets in V. Let (f,)y<. be a Cauchy net in V, ie., for
all i < s, f, — f5 € V(i) for all sufficiently large v,d. Using
the decomposition V = VGV (i), we have f, = fyi + fl; and
fs = fsi + fls where fi, fsi € V*Uand f1 fl, € V(i). Thus,
fy = fs = (fyi = f5i) + (f3 — f5;) € V (i), and this is possible only if
f+i = fsi, as the nonzero elements in V! have values < i. Thus, (f,)
is a Cauchy net in V, if and only if (f7;) is a Cauchy net in V' (or V'(i))
and the limit of the net (f,) is determined by the limit of the Cauchy
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net of its components (f};). Thus, we have (5): V = VItV (4). o

If we weaken condition (c) of Theorem 1, we will still get the following
equivalence:

Theorem 5. Let »x be an uncountable regular cardinal and N a
cardinal greater than ». Then there is a »-Kurepa family of cardinality
> N, if and only if there exists a valuated vector space V' of cardinality
2, over a field of cardinality < ¢, with the following properties:

(a) V() =0,
(b) for every (limit) i < sc, V/V (i) has the (i, »)-closure property.
(¢) The completion 1% of V in the s-topology has cardinality > N.

Proof. Let {Uy }a<s be a sc-filtration of V. Our hypotheses ensure the
existence of a two-dimensional array {U¢ }52%, and a filtration {V'},,.
satisfying the conditions of Lemma 4. For each f € V and i < s, let
f = fi+ f! be the unique decomposition given by condition 5 in Lemma
4, with f; € Vit and f/ € V(i). Let

F={{firi<sx}:feV\V}

Note that for each f € V\V, {fi : i < s} is a Cauchy net converging
to f. Also observe that |F| = N and that F is a family of subsets of
V. We will show that for each o < s¢, {{f; : 4 < %} NUy : f € V\V}
is of cardinality < s. Note that if f; € U,, then f; € U, for all
j < i. This follows since f; = a + b with a € Ut < Vi+l and
b e U,(j) < V(j) and, by the uniqueness of the decomposition, a = f;,
as f; = f;+(fi — f;) is another decomposition in V/T1@V(j). Since U,
is of cardinality < s, there must exist an | < » such that V(I)NU, = @.
For o, j < ¢, denote by F, ; the set of those {f; : ¢ < »} N U, such
that {fi i < s} e Fand {fi:i <x}NUy={fi:i<j}. Ifjisa
limit ordinal, then the sets in F, ; represent an element of the closure
of UJ in V7*! (which is isometric to V/V (5)) in the j-topology, hence
by the (4, 5¢)-closure property, there are < s sets of this form. If j is an
isolated ordinal, then the sets in F, ; correspond to fj_1 € VI N U,.
There are likewise < 3¢ sets of this form, because |U,| < . The
regularity of ¢ implies that U;<;F, ; is also of cardinality < s¢. Since
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UjcrFaj = {{fi:i < x}NUy: f € V\V}, Fis a »-Kurepa family of
cardinality N.

The proof of the converse follows from Theorem 1. |

Applications to abelian p-groups. We will use the above the-
orems to give proofs of two results of Keef’s, utilizing some of the
techniques similar to those he used. Our approach is however to deal
only with the socles of the groups in question whenever possible. The
notation and terminology will be the same as that in [2]. Recall that
an abelian p-group G is a C,,-group if G/p®G is a direct sum of count-
able groups for all @ < w;. A subgroup A of G is p®-pure in G if the
short exact sequence 0 = A — G — G/A — 0 represents an element of
p*Ext (G/A, A). If A is an ordinal, H) is the generalized Priifer group of
length A [5, p. 59]. For A < w1, H) is countable, and H,,, = ®x<w, Ha.
By [12, Proposition 3], if G is a C,,,-group, then Tor (G, H,,,) is a di-
rect sum of countable groups. We will need the following [8, Lemma
1]: Let A be a pure subgroup of G and A < w;. Then Tor (4, H)) is
a summand of Tor (G, Hy) if and only if A is a p*-pure subgroup of
G. If, in addition, G is a Cx-group, then so is G/A. We will also use
the following result from [10, Lemma 1]: If A < w; is a limit ordinal
and A is a subgroup of a Cy-group G, then A is a p*-pure subgroup of
G if and only if, for each a < A, the natural embedding of A/p®A in
G/p*G is a summand of G/p“G.

Proposition 6 [10, Theorem 5]. Kurepa’s hypothesis is equivalent
to the existence of a Cy, -group G of length w1 and cardinality at least
Ny with a p“*-pure subgroup A of cardinality ¥y such that the closure
of A in G in the wyi-topology has cardinality at least Ns.

Proof. Assuming Kurepa’s hypothesis, there exists a valuated vector
space V satisfying conditions of Theorem 1 (we take s = w;). Note
that the completion V of V in the w;-topology contains Vi = V + ({f :
f € F}) (F is the set of wi-branches of the Kurepa tree). By [14,
Theorem 1], there exists an abelian p-group G such that

(1) V CGlpl,
(2) V is a nice subgroup of G,
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(3) forallz € V the height of z in @ is the same as the valuation of
z in V, and

(4) G/V is a direct sum of countable groups.

We will show that G is a C,,-group. We need only show that G/p*G
is a direct sum of countable groups for all @ € w;. Note that
p*(G/V) = (p*G+V)/V by [2, Lemma 79.2]. Therefore

(G/V)[p*(G/V) = [G/V]/[(p*G + V)/V]
=G/(p*G+V)
~ [G/p*G]/[(V + p*G) /p*G].

By [2, Exercise 10, p. 75], (V +p*G)/p®G is a nice subgroup of G/p®G.
Since V = Vaé)f/(a), V4 is countable, with countably many values,
hence V,, must be free as a valuated vector space, by [3, Theorem
1]. Thus (V + p*G)/p®G is a summable subsocle of G/p*G. Let C
be a direct sum of countable groups of length « having a subsocle S
isomorphic to V, as a valuated vector space and such that, for all 3, the
relative Ulm invariants fz(G/p*G, (V +p*G)/p*G) < f3(C, S). By [2,
Theorem 81.2], there is a height preserving isomorphism from G/p*G
into C. Thus G/p®G is isomorphic to an isotype subgroup of C. By [5,
Theorem 104], isotype subgroups of direct sums of countable groups of
countable length are direct sums of countable groups. Thus, G/p®G is
a direct sum of countable groups. Therefore, G is a C,,,-group.

Next we will show that there exists a p“‘-pure subgroup A of G
such that V' C A and |A| = N;. Let H,, be the generalized Priifer
group of length w;. Note that Tor (G, H,,,) is a direct sum of countable
groups since H,,, is a direct sum of countables [12, Theorem 6]. Fix
a decomposition Tor (G, H,,) = ®,ecxJ, with the J,’s countable. We
will construct a sequence {A;};c, of subgroups of G and a sequence
{I3n+1 }new of subsets of X recursively as follows. Let Ay = V. Assume
that A, has been constructed and has cardinality X;. If n is even, let
A,4+1 be a pure subgroup of G containing A,, and of cardinality ;. If n
is odd, we proceed as follows. Let I,, be the least subset of X such that
Tor (Ap, Hy,) € @yer, Jo. Note that, since |[Ap| = Ry, |I,| = R;. Let
B, = ®,¢1,J,. Foreach x € B, choose a g, € G such that there exists
a positive integer m and an h € H,,, with (g,, m,h) a representative of
z in the representation of Tor (G, H,, ) as equivalence classes of ordered
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triples. Let Ap41 = ({¢92 : ¢ € Bp}). Then B,, C Tor (Ap+1, Hy, ) and
|Ani1] = RNy, Let A = Uje,A; and I = Upeylont1. Then A is a pure
subgroup of G and Tor (A, H,,) = ®,¢erJ,,. Thus, by [8, Lemma 1], A
is a p“t-pure subgroup of G of cardinality N;.

Since A is p**-pure in G, A is isotype in G [13, p. 196]. Since V C A
and the closure of V' in the w;-topology on G contains V, the closure
of A in G has cardinality at least Ny. This completes one direction of
the equivalence.

For the converse, assume that there exists a C,,,-group G of length
w1, of cardinality at least Ny, with a p“*-pure subgroup A of cardinality
X;, whose closure A in the w;-topology is of cardinality at least Ry. We
will prove that V' = A[p] satisfies the conditions of Theorem 5. The
wi-topology is clearly Hausdorff. By [10, Lemma 1], A/p*A is a direct
summand of G/p®G, for all & < wq, and hence A/p™A is also a direct
sum of countables. If B is a p®A-high subgroup of A, then by [1,
Lemma 1.1] A[p] = B[p|$p*Alp] and consequently V/V () = Blp], for
all @ < wy. As B is an isotype subgroup of A/p*A, B is a direct sum
of countables by [5, Theorem 104], and hence B|p] is free as a valuated
vector space by [5, Proposition 111]; by Lemma 3, it has the (o, wy)-
closure property. This establishes (b) in Theorem 5. In addition, since
the closure of A[p] in G[p] in the relative w;-topology is A[p], we have
that the cardinality of V exceeds Ry. This concludes the proof. ]

For the proof of the following theorem we recall several definitions and
results from [4]. Let »¢ be a cardinal. A subgroup A of G is s-separable
in G if, for all g € G, sup{h(g+a):a € A} = sup{h(g+s):s € S} for
some subset S of G of cardinality < s (h(g) is the height of g € G).
A family C of subgroups of G is an H(s)-family in G if {0} € C, C is
closed under group unions, and for B € C and any subgroup A of G of
cardinality < s, there is a D € C that contains both B and A such that
D/B has cardinality at most »>. An abelian group G satisfies Axiom 3:
» if G has an H (s)-family of s-separable subgroups. By [4, Theorem
4.5], for each n > 0, the balanced projective dimension of G is < n if
and only if G satisfies Axiom 3: X,,_;. By [4, Lemma 5.1], if

0=GoCG1C---CGaC--CGr=G, a <A

is a well ordered continuous chain of subgroups of G, where each G,
a < A, is balanced in G and the balanced projective dimension (bpd) of
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Gat1/Guis < nforall @ < A, then the bpd G < n. We will also use [10,
Theorem 3]: Suppose that G is a C,,,-group, A is a limit ordinal, and
{A;}i< is a filtration of p“*-pure subgroups of G. Then the closure of
the union of the A;’s is the union of their closures in the wi-topology
on G.

Theorem 7 [9, Theorem 6]. Kurepa’s hypothesis is equivalent to the
existence of a C,,, -group of length wi and balanced projective dimension
2.

Proof. Assuming Kurepa’s hypothesis, let G be a C,,-group of
length w; and cardinality at least No having a p“*-pure subgroup A
of cardinality N; such that the closure of A in G in the w;-topology
has cardinality at least Ny as constructed in Proposition 6. If G has
cardinality greater than No, replace G by a p“*-pure subgroup of G
which contains A and a subgroup of A of cardinality Ny. This new
G is a C,,-group by [10, Lemma 1]. Note that in a group of length
w1, every subgroup is Nj-separable. This implies that the family C of
all subgroups of the group G is an H(N;)-family of that group and
that G satisfies Axiom 3: N;. By [4, Theorem 4.5], this means that
bpd G < 2. The dimension must be exactly 2, for if bpd G < 1, then,
by [4, Theorem 4.5] G would have an H (wp)-family C of Ry-separable
submodules. Thus, for every a € A, there is a countable B(a) € C
containing a. Let C' =3 _, B(a). Then C' € C and C has cardinality
N;. Hence, there exists g € A\C since A has cardinality R,. Thus,
sup{g+c:c € C} = w;. This is a contradiction as Rg-separable means
that, for all z € G, sup{h(z +¢) : c € C} = sup{h(z +s) : s € S} for
some countable subset S of G whereas {h(z+s) : s € S} is a countable
set of countable ordinals.

Conversely, assume the negation of Kurepa’s hypothesis. Then, by
Proposition 6, for every C,,-group G of length w; and cardinality at
least No, if A is a p“*-pure subgroup of G of cardinality N;, then the
closure of A in the w;i-topology has cardinality 8;. Let G be a C,,-
group of length w;. We will show that bpd G < 1. Let s be the
cardinality of G. If ¢ < Ny, then G has an w;-filtration which is an
H(5)-family of Ny-separable subgroups. Hence, by [4, Theorem 4.5],
bpd G < 1. Thus, we may assume that |G| > N,.
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We first consider the cases |G| = R3. Let Tor (G, H,,) = ®;crK; be
a fixed decomposition with |K;| = Ry for each i € I. We will construct
a filtration {A,}a<w, of G such that, for each 8 € limwy (limwsy is the
set of limit ordinals less than wy) and each n < w,

(1) Ao ={0}
(2) Apyant1 is the closure of Ag, o, in the wi-topology of Gj

(3) Aptan+2 is a p“i-pure subgroup of G containing Agia,41 such
that

Tor (Apioni2, Ho) = € K
i€ (B+n+1)

for some J(8+n+1) C I and |Agtant+2/As+2n+1] = Ny; and
(4) Aﬂ = Ua<3Aa.

The construction is clear except perhaps for (3). In this case, we choose
Agiony2 as in the third paragraph of the proof of Proposition 6. Note
that, for each limit ordinal 8 < wy, Tor (Ag, Hy,,) = ®icx,K; where
Xp = Uq<pJa+1. Thus, by [8, Lemma 1], Ag is p**-pure in G. Hence,
by [5, Theorem 91], the image under the natural map of p*G|p] is equal
to p*(G/Ag)[p] for each @ < wy. By [10, Theorem 3], Ag is closed in
G for each limit ordinal 8 < w;. Thus, G/Ag has length < w;. Hence,
by [2, Proposition 80.2], Ag is balanced in G. Therefore, {As}sclim w,
is a filtration of G consisting of balanced subgroups of G. For each
B € limws, Agy,/Ap has cardinality N; and length < wy. Hence, any
ws-filtration of this group is an H (RXy)-family of Ry-separable subgroups.
Therefore, bpd Agy.,/Ag < 1. Thus {Ag}geciimw, is a filtration of G
satisfying the hypotheses of [4, Lemma 5.1], and bpd G < 1.

In the general case when the cardinality of G is greater than N, we
apply the same process as in the previous case to get a chain of balanced
p“t-pure subgroups of G closed in the w;-topology whose union is a
closed, balanced, p“i-pure subgroup H of G of cardinality N,;. The
group G/H is a C,,,-group by [8, Lemma 1] and it is of length w; since
G is of length w; and H is closed in the wi-topology. Thus, we will
apply the same process to the group G/H to get a chain { B, } <y, With
the same properties as the one just described. Let ¢ : G — G/H be the
natural map. Then {¢ 'By}a<w, is the continuation of the previous
chain with every quotient of consecutive terms of cardinality at most
N;. Each ¢~1(B,) is closed since ¢ is continuous in the w;-topology,
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p*t-pure by [6, Theorem 18], and balanced by [2, (d) p. 78]. We apply
the process again to G/¢ 1(B,,) to obtain the desirable continuation
of the existing chain, and so on, until the group G is exhausted. In
this way, we obtain a smooth chain of balanced subgroups of G such
that every quotient of consecutive terms is of cardinality at most Rj.
As above, we may conclude that each consecutive quotient has bpd 1.
Thus, by [4, Lemma 5.1], bpd G < 1. This completes the proof. i
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