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COMPETITION MODELS IN THE GRADOSTAT
WITH GENERAL NUTRIENT UPTAKE FUNCTIONS
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. Mathematical models of two competing mi-
crobial species in the gradostat have been studied extensively
in recent years. Much analysis of the model is based on the
assumption that the nutrient uptake function is the Michaelis-
Menten term in the Monod growth model. This paper shows
that previous results, especially for uniform persistence and
coexistence, can also be applied to models assuming more gen-
eral nutrient uptake functions.

1. Introduction. In this paper we study mathematical models
of two species competing for a single growth-limiting nutrient in the
gradostat assuming general nutrient uptake functions.

The gradostat is a laboratory device simulating an ecosystem with
nonuniform spatial distribution of nutrient supply. The original system
was used by Wimpenny and Lovitt to study the effects of nutrient
gradients on microbial growth [10, 22, 23]. Mathematical models of
microbial growth and competition in the gradostat have been studied
extensively [8, 9, 17, 18, 19]. While conditions for uniform persistence
of the two species have been established, coexistence equilibrium as a
global attractor of trajectories of the model equations has only been
established for a very special case of a two-vessel gradostat using the
Michaelis-Menten nutrient uptake function proposed by Monod [12].

The Michaelis-Menten nutrient uptake function is a prototype of
monotonically increasing, bounded, and concave functions. FEven
though the Monod model is a popular model for microbial growth,
other functions with similar properties are better approximations to
some experimental data [1, Figure 2]. It is also possible that the func-
tion may not even be concave. From a mathematical point of view, it is
desirable to study a model which can describe a wider class of nutrient
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uptake functions. We examine here the extent of how nutrient uptake
functions can be generalized to obtain the same results in [8, 18].

A summary of previous results on the gradostat competition model
with Michaelis-Menten nutrient uptake function is given in Section 2.
The analysis of the general n-vessel gradostat model can be carried out
with a 2n-dimensional nonautonomous system

X' = F(X,t)

which is asymptotically autonomous: F(X,t) — F(X) as t — co. The
limit autonomous system

X' = F(X)

is strongly monotone and the global behavior of its trajectories can be
analyzed using the theory of monotone dynamical systems developed
by Hirsch [5, 6, 7], Smith [14], etc. It is clarified here that the
sufficient conditions given in [18] for almost all trajectories of the
limit autonomous system converging to some positive equilibrium only
guarantees the uniform persistence of the two competing species in
the original nonautonomous system. If there is a strictly positive
equilibrium of the limit autonomous system which is a global attractor,
then using a theorem of Markus [11] one can show that there is a
unique coexistence equilibrium which is also the global attractor of the
nonautonomous system. This procedure has been successfully carried
out previously only with a very special case of a two-vessel gradostat
(8]

In Section 3 we examine the particular properties of the nutrient
uptake function that are required to establish the results summarized
in Section 2. This enables us to show that monotone increasing,
bounded, and concave nutrient uptake functions are sufficient to obtain
uniform persistence results for the general n-vessel gradostat. If n =
2, it is shown that the concavity assumption can be removed to
obtain uniform persistence, and a certain class of monotone increasing,
bounded concave or sigmoidal functions is sufficient for the stronger
result of uniqueness of the coexistence equilibrium in any two-vessel
gradostat. The trade-off of such generalizations is that the result may
not hold for a set of measure zero in the parameter space.

The following is a list of definitions and notations used throughout the
paper. The partial ordering on R™ defined by a cone K with nonempty
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interior is denoted by the subscript K : z <g yify—z € K, x <g y if
[e]

r<gyandz #y, v <Lgyif y—x € K. The subscript K is omitted if
K is the nonnegative cone R} = {z = (z1,... ,2,) € R" | 2; > 0,1 <
i < n}. The interval [z,y]x is the set {z € R¥ | 2 <x 2z <k y}. The
trajectory of the solution of the system

z' = F(z,t)

satisfying x(0) = x¢ is denoted by 7 (t; zo).

For n X n matrices M = {Mij}a M < N (M < N) if Mij < Nij
(M;; < Njj) for all (4,5). A diagonal matrix with d; being the i-th
diagonal element is denoted by diag (di, ... ,d,). M is quasipositive if
M;; > 0 whenever ¢ # j. The Perron-Frobenius theory on quasipositive
irreducible matrices [2] is very useful for the analysis of the model. For
such matrices M, the stability modulus

s(M) = max{Re A | \ is an eigenvalue of M}

is a simple eigenvalue and the only eigenvalue of M with a correspond-
ing eigenvector w > 0. If IV is another quasipositive matrix, M < N,
M # N and M + N is irreducible, then s(M) < s(N).

2. The model based on Monod growth kinetics. Let S =
(S1,.-.,80), w = (U,...,up), v = (V1,...,0), b = (b1,...,by),
where S;, u; and v; are respectively the concentration of the growth-
limiting nutrient and the two competing species, referred to as the
u-species and the v-species, in the i-th vessel of the gradostat, and b;
is the (constant) concentration of nutrient supply into the i-th vessel.
Model equations describing competition in the gradostat between the
two species are of the following form

S'=AS - F,(S)u—F,(S)v+b
v = Au+ F,(S)u
v' = Av+ F,(S)v
S(0) = S, u(0) = uo, v(0) = vp.

(2.1)

A is an n X n matrix, the elements of which represent the flow
rates between different vessels, and F,(S) = diag (f.(S1),---, fu(Sn))
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(F,(S) = diag (f»(S1),- .-, fo(Sn))), where f,.(S;) (f,(S;)) is the per-
capita nutrient uptake rate of the u-species (v-species) in the i-th vessel
and is the same as the specific growth rate upon nutrient consumption
of the species (after appropriate scaling) in that vessel.

Based on practical considerations in a gradostat experiment, the
matrix A must satisfy the following considerations:

(a) Ay <O,

(b) Ajj >0, #j,

(c) >°j—1 Aij <0, with strict inequality holds for some i,
(d) A is irreducible.

These constraints render A a quasipositive and irreducible matrix, and
s(A) < 0. Hence —A is an M-matrix, and —A~! has positive entries
[18]. For the original gradostat described by Wimpenny and Lovitt
[10, 22, 23], A is of the form

(Readers are referred to [18] for detailed derivatives of (2.1).) We are
primarily interested in solutions of (2.1) with initial values S, > 0,
ug > 0 and vy > 0.

Mathematical analysis of (2.1) has been carried out in [8, 18] incor-
porating the Monod growth model [12]: the function f(S) is given
by Michaelis-Menten enzyme kinetics and is of the form f(S) =
mS/(a + S), where m and a are positive constants interpreted as re-
spectively the maximal growth rate and the half-saturation constant.
(The subscript u or v is dropped for convenience’s sake.) The constants
m and a are species specific and depend on the limiting nutrient under
consideration. Since the competing species are genetically distinct, it
is biologically reasonable to assume that either m,, # m, or a, # a,.

The following is a summary of results in [8, 18] concerning the
solutions of (2.1) assuming Monod growth kinetics.
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Theorem 2.1. R:O’i_”, as well as the boundaries u =0 and v =0, are
positively invariant sets with respect to the dynamical system generated
by the equations in (2.1).

Let z(t) = S(t) + u(t) + v(t). Since 2’ = Az + b, analysis of (2.1) can
be carried out with the 2n-dimensional nonautonomous system

u = Av+ F,(z(t

)
(2.2) v =Av+ Fy(2(t) = u —v)
u(0) = up > 0, v(0) = vy > 0.

—u—v)u
v

Since s(4) < 0, 2(t) - w = ~A'b > 0 as t — oo, solutions
of (2.1) with initial conditions in R3" are bounded, and (2.2) is an
asymptotically autonomous system. Markus shows that the omega
limit set W of a trajectory m(t;uo,vo) of (2.2) is nonempty, compact
and connected, and 7(¢;ug,vo) approaches Wt as t — oo [11]. The
following theorem, also due to Markus [11], shows that under certain
conditions the asymptotic behavior of trajectories of (2.2) can be
obtained by analyzing the limit equations:

2.3) U =AU+ Fy(w-U-V)U
‘ V' = AV 4+ Fy(w—-U—-V)V
in R2".

Markus’s Theorem [11]. Let E be a locally asymptotically sta-
ble compact invariant set of (2.3). If the omega limit set of a trajec-
tory mw(t;ug,vo) of (2.2) intersects the basin of attraction of E, then
m(t; uo,vo) approaches E ast — oco.

Actually in the original version of Markus’s theorem, E is a locally
asymptotically stable equilibrium point, but the extension to a locally
asymptotically stable compact invariant set is straightforward.

The analyses in [8, 18] are focused on system (2.3). Most of the
results also apply to system (2.1) using Markus’s theorem but are not
explicitly stated. We will clarify that here and also point out those
results that cannot be directly applied to (2.1).
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It is easy to see that the omega limit set of all trajectories 7 (¢; Uy, Vo)
of (2.3) is contained in the set P = {(U,V) € R?" | U +V < w},
so the analysis of (2.3) can be restricted to P. In the interior of P,
(2.3) is a strongly monotone dynamical system with respect to the
partial ordering induced by the cone K = R} x R" : if (Up, Vo) <k
(UO, V0)7 W(t; UOa Vb) <K ﬂ-(t; UO; VD)

First consider the equations of (2.3) on the boundary V' = 0:
(2.4) U' =AU + F,(w—U)U, U(0) = Uy, w > U >0,
which is a cooperative and strongly monotone system.

Theorem 2.2. If s(A+ F,(w)) <0, U(t) = 0 ast — oo.

Theorem 2.3. If s(A+F,(w)) > 0, there exists a unique equilibrium
@,w > 4> 0, and all trajectories of (2.4) approach @ as t — oo.

The sign of s(A + F,(w)) determines the local stability of the equi-
librium 0 for system (2.4). Direct application of Markus’s theorem
shows that, on the boundary v = 0, if s(A+ F,(w)) < 0, all trajectories
m(t; Sp, ug,0), So > 0, ug > 0, of (2.1) approach the equilibrium (w, 0,0)
as t — oo, and if s(A 4+ F,(w)) > 0, there exists a unique equilibrium
(w—1,4,0), w > 4 > 0, such that m(¢; So, ug, 0) approaches (w—1, @, 0)
as t — oo. Similarly, on the boundary v = 0, if s(4 + F,(w)) <0, all
trajectories m(t; Sp,0,vp), So > 0, vg > 0 of (2.1) approach the equi-
librium (w,0,0) as ¢ — oo, and if s(A + F,(w)) > 0, there exists a
unique equilibrium (w — 9,9,0), w > ¥ > 0, such that = (¢; So,0,vo)
approaches (w — 9,9,0) as t — oco. Note that 4 and ¥ must satisfy
respectively s(A + F,(w—@)) =0 and s(A+ F,(w— 1)) = 0.

Competition results can be classified based on X, the set of equi-
librium points of (2.3). Obviously, the elements of ¥ change as the
parameters of (2.3) change.

Lemma 2.4. (a) Ey = (0,0) always ewists;
(b) E, = (4,0) ezists if and only if s(A+ Fy,(w)) > 0;
(c) E,=(0,9) exists if and only if s(A+ F,(w)) > 0;
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(d) if there emists an equilibrium E+ = (u®,v%) in R3", then

Et e P, E, and E, exist, and E, > ET >y E,.

Theorem 2.5. (a) If ¥ = {Ey}, Ey is the global attractor for (2.3).

(b) If ¥ ={Ey, E,} or {Ey, E,}, then the positive equilibrium point
is the global attractor for (2.3).

(¢) If ¥ ={Ey, Ey, E,}, then either E, (if s(A+ F,(w—4)) < 0)
or E, (if s(A+ Fy(w — 7)) < 0) is the global attractor for (2.3).

The sign of s(A + F,(w — @)) and of s(A + F,(w — 9)) determines
respectively the local stability of F, and E, for system (2.3). If E is
an equilibrium point of (2.3), denote by E the corresponding point of
(2.1), e.g., B, = (w — 4, 1,0). Markus’s theorem immediately implies
that all trajectories 7 (¢;.So, uo, Vo), So > 0, ug > 0, vg > 0, of (2.1)
converge to Eg as t — oo in case (a) of Theorem 2.5; to E,, or E, in
case (b), depending on whether E, or E, exists, (if a species cannot
survive without competition, then it also will not survive when the
competitor is present); and to E, or E, in case (c), depending on
whether E,, or E, is a local attractor for system (2.3). Note that in
the last case s(A + F,(w — 4)) and s(A 4+ Fy(w — 0)) cannot both be
negative.

Theorem 2.6. (a) ¥ contains an equilibrium point E* in R2™ only
if the graphs of the functions f,(S) and f,(S) intersect at some S,
0 < S < max(wy,w2).

(b) If E, and E, ezist and s(A + Fy(w — @) > 0 and s(A +
Fy,(w— 1)) > 0, then there exist equilibrium points E* and E** in
P satisfying E, <x E* <x E** <k FE,, and the omega limit set of
all trajectories m(t;ug,vo), up > 0, vo > 0, of (2.3) is contained in
the set A = P N [E*, E**|x. Moreover, almost all of these trajectories
approach an equilibrium point in A as t — co.

If (up,v9) € A, monotonicity implies that E* = 7(t; E*) <g
m(t; ug, vo) <k 7(t; E**) = E** for t > 0, so A is an attracting compact
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invariant set. Markus’s theorem then implies that, under the hypothe-
ses of Theorem 2.6, all trajectories = (t; So,uo,vo), So > 0, ug > 0,
vo > 0, of (2.1) approach the set

A={(w—u—vu,v) Ef{i" | (u,v) € A}

as t — o0o. Whether almost all of these trajectories approach an
equilibrium in A is an open question. In other words, Theorem 2.6(b)
gives sufficient conditions only for the uniform persistence of the two
competing species in system (2.1).

Theorem 2.7. Under the same hypotheses in Theorem 2.6, if any
equilibrium ET = (uT,v"), ut > 0, vt > 0, of (2.3) is locally
asymptotically stable, then E* = E** and is the global attractor for
system (2.3).

Proof. The set A is the global attractor for (2.3). Suppose E* # E**,
then F* < g E** by strong monotonicity. Since E* and E** are both
locally asymptotically stable, there exists Ef, E* <x Et <x E**,
which is unstable [13, Proposition 3.7], a contradiction. Hence E* =
E*, O

If the hypotheses in Theorem 2.7 are satisfied, then Markus’s theorem
implies a stronger coexistence result for system (2.1): there exists a
unique B € R3" and all trajectories (t; So,uo,v0), uwo > 0, vg > 0,
approach E ast —» oo. Although in numerical simulations this

scenario holds for n > 2, only one special case for n = 2 has been
proved so far:

Lemma 2.8 [8]. If n =2, A= Asxa, and b = ¢(1,0), ¢ > 0, then
any interior equilibrium E1 = (ut,v"), ut > 0, vT > 0, of (2.3) is

locally asymptotically stable.

In [17], a two-vessel gradostat corresponding to which A is of the

form
-D—e e
e -D—e
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is considered, and it was pointed out that the above lemma also applies.

Theorem 2.9. Assume the same hypotheses in Lemma 2.8 and
suppose E, and E, exist.

(a) If Eu (Ey) is a local attractor for system (2.3), then there is
no interior equilibrium and E, (E,) is the global attractor for system
(2.1).

(b) A necessary condition for the two species to coexist in system
(2.1) is s(A+ Fy(w — @)) > 0 and s(A + Fy(w — %)) > 0, and
a sufficient condition for coezistence is s(A + F,(w — @)) > 0 and
s(A+ Fy(w — 0)) > 0. Moreover, in the latter case all trajectories
m(t; So, u0,v0), So > 0, ug > 0, vg > 0, of (2.1) approach a unique

. .y . =% .
coezistence equilibrium E = (w — u* — v*,u*,v*) in Ri.

3. Model equations with general nutrient uptake function.
The nutrient uptake term in the Monod growth model is a prototype
of functions f = mg(S/a), where g is a C' function defined on an open
interval containing R} with the following properties:

(P1) ¢(0)=0,0< ¢'(0) < oo, g*¥)(0) > 0 for some k < oo.
(P2) ¢'(S) >0, i.e., g is monotonically increasing, for S > 0.
(P3) limg_,o g(S) = 1.

(The subscript u or v is dropped.)

Properties (P1)—(P3) are characteristic of microbial nutrient uptake
rate observed experimentally (see, for example, [21, Figure 2]). As
far as the analysis is concerned, (P2) is the most important property:
much of the analysis is based on the fact that systems (2.3) and (2.4)
are monotone dynamical systems, a direct consequence of (P2).

Besides the Michaelis-Menten term, other examples of uptake func-
tion include the exponential term ¢(S) = 1 — exp(—S1n2) proposed
by Teissier [20], and the hyperbolic tangent term tanh((S1n3/2)) pro-
posed by Bleecken [3]. These functions are all concave and agree rea-
sonably well with experimental data. However, data for very low nu-
trient concentration is not available, leaving open the possibility that
the function can change concavity for low S, for example, a sigmoidal
function. We will examine whether the assumption of the Michaelis-
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Menten term, i.e., g = S/(1+ S), in the various theorems in the last
section can be generalized to concave and sigmoidal functions. Some
generalizations have already been mentioned in [16] for the one-species
case.

(P1)—(P3) are obviously sufficient for Theorem 2.1, the boundedness
of solutions of (2.1), and the equivalence of systems (2.1) and (2.2).
Since, additionally, A is an irreducible matrix, systems (2.3) and (2.4)

are strongly monotone dynamical systems in P and {u € R} | 0 <
u < w}, respectively.

The convergence of trajectories 7(t; Up) of (2.4) to 0 in Theorem 2.2
is implied by (2.4) being a strongly monotone dynamical system and
0 being locally asymptotically stable, thus no additional property of g
is required. An easy way to see this is to note that A 4+ F,(w — u) <
A+F,(w) and use Kamke’s comparison theorem [4]. On the other hand,
convergence to 4 > 0 in Theorem 2.3 hinges on the uniqueness of a
positive equilibrium point of (2.4) [6, Theorem 5.6]. In [14] general
cooperative systems are discussed and it is shown that a sufficient
condition for this uniqueness result is g being a C? concave function:

(P4) g"(S) <0, for S > 0.

The application of this for the gradostat equations is mentioned in
[16]. We show in the following that, due to special properties of planar
systems, concavity of g is not a necessary condition for n = 2; whether
this holds for n > 2 is unknown.

Theorem 3.1. Forn = 2, Theorem 2.3 holds if g satisfies (P1)—(P3).

Proof. If n = 2, w(t;Up) converges to some equilibrium point as
t — oo [5, Theorem 2.3]. Since s(A + F,(w)) > 0 and s(A4 + F,(w))

is the only eigenvalue of A + F,(w) with an eigenvector in R%, 0 does

not have a stable manifold which intersects Rf_ and, therefore, cannot
be the omega limit point of any trajectory satisfying Uy > 0. Positive
invariance of Ra_ implies that there exists an equilibrium % > 0. Since
all entries of —A~! are positive, & = [~ A~ F, (w—1)]4 actually satisfies
4 > 0. Suppose @ > 0 is another equilibrium point and, without loss
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of generality, assume @; > ;. Then

Uy = (—A11 - fu(wl - ﬁl))ﬁl/Alz
< (A1 — fulwr — @)1 /A2 = T2

and so 4 < 4. But that implies 0 = s(A + F(w — %)) < s(A+ Fy(w —
@)) = 0, a contradiction. o

Thus (P1)—(P4) are sufficient for the same conclusions in Lemma 2.4
and Theorem 2.5 for n > 2, and (P4) can be dropped for n = 2. Results
for interior equilibrium points of system (2.3) given by Theorems 2.6
and 2.7 are again consequences of (2.3) being a strongly monotone

dynamical system in P and require no additional assumption on g
besides (P1)—(P3).

Lemma 2.8 for one particular case when n = 2 is proved in [8] using
special forms of A and b as well as the Michaelis-Menten nutrient uptake
term g(S) = S/(1 4+ S). This is a crucial result enabling us to use
Markus’s theorem to obtain the global behavior of solutions of (2.1) as
given in Theorem 2.9. The hypotheses of Lemma 2.8 can be generalized:

Theorem 3.2. Suppose n =2, g satisfies (P1)—(P3), and

(P5) for any ¢ > 1, ¢'(¢S)/g'(S) is a strictly decreasing function of
S.

Ezxcept for a set of measure zero in the parameter space, any interior
equilibrium ET = (ut,v%), ut > 0, vT > 0, of (2.3), if it exists, is
locally asymptotically stable.

Note that the hypotheses in the above theorem impose no extra
condition on A and b. We first mention some properties of E* and
the graphs of f, and f, that will be used in the proof of Theorem
3.2. By Theorem 2.6(a), existence of ET implies that the graphs of f,
and f, must intersect at some S, 0 < S < max(wi,ws). If there is a
unique intersection point at S = ¢ > 0, either (i) f,(S) > f,(S) for
S € (0,0) and f,(S) < fo(S) for S > o, or (ii) fu.(S) < fu,(S)) for
S € (0,0) and f,(S) > fu(S)) for S > o. If (i) holds, m, > m, and
my/(ay)* > my/(ay)*, where g (0) = 0 for i < k and g(¥)(0) > 0.
The inequalities are reversed if (ii) holds. (The inequalities may not be



346 B. TANG

strict ones, but the case of equalities corresponds to a set of measure
zero in the parameter space.)

Denote w — u™ — vt by ST, —A; — f.(S;) by i, f1(S;)u; by Bi,
i=1,2,and —Ay — £,(S;") by a, £.(S; )v; by Bi, i = 3,4.

Lemma 3.3. If n =2 and g satisfies (P1)—(P3), then any equilib-
rium point ET = (u™,v") of (2.3), if it exists, satisfy

(a) a;>0andB; >0,i=1,2,3,4;

(b)
(¢) ug = aquf /A2, vi = aqvy /Aa;
d)

(d) except for a set of measure zero in the parameter space, Sl+ * S;‘,
and either f,(Sy) > fu(S7) and fu(S3) < fu(S5), or fu(ST) <
fu(Sf) and fu(S;—) > fv(S;—)

gty = A12A21 = azoy;

Proof. (a) to (c) are obvious. To prove (d), first note that if E™ exists,
s(A+ Fu(ST)) =0 = s(A + F,(ST)). Suppose S;7 = S = S. Then
it must be the case that the graphs of f, and f, intersect at S = S,
and f,(S) = fu(S) = —s(A), which happens only for a set of measure
zero in the parameter space. Next, suppose that f,(S;") > f,(S;"),
i=1,2. Then0 = s(A+F,(S")) > s(A+F,(S™)) = 0, a contradiction.
Therefore, either f,(S;) > f,(S;") and f.(S5) < £,(S5), or f,(S7) <
fo(S7) and £,(S5) > £,(SF). Except for a set of measure zero in
the parameter space, f,(S;") # f.(S;"), i = 1,2, so generically all
the inequalities are strict ones. The other inequalities can be shown
similarly. u]

Lemma 3.4. If g satisfies (P1)~(P3) and (P5), then the graphs of
fu(S) and f,(S) intersect at most once for S > 0.

Proof. Let h(S) = fu(S) — fu(S), which is bounded for S > 0.
Suppose without loss of generality that h(S) > 0 for S small. Then

- 20(2) (2
Ay Ay Ay Ay

is positive for S small and vanishes if and only if ¢’(S/a,)/g'(S/ay) =
MyQy /Myay, = q. If a, < ay, put S/a, = = and S/a, = cx where
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¢ = ay/a, > 1, and = ¢, otherwise put S/a, = = and S/a, = cz,
where ¢ = ay/a, > 1, and Q = 1/q. Since ¢'(cx)/g'(x) is strictly
decreasing, ¢'(cz)/¢'(z) = @ has at most one solution for z > 0. This
shows that the graph of h(S) has at most one local extremum point for
S > 0, and hence h(S) = 0 has at most one solution for S > 0. o

Proof of Theorem 3.2. Let Ao = r1, Ay; = ry. Existence of E+ and
the last lemma implies that there is a unique o, 0 < o < max(wy,ws),
at which the two graphs f, and f, intersect. The Jacobian matrix of
(2.3) evaluated at ET is equivalent to

-1 — By 81 B1 0
7 T2 —ag — 32 0 B2
B3 0 —a3 — B3 T

0 B4 o —ay — B4,

and it is sufficient to show that the determinants of the principal minors,
denoted by d;, i = 1,2,3,4, satisfy sgn (d;) = (—1)¢ [13, Proposition
3.4]. Obviously d; = —a; — 81 < 0. Direct computation shows that

dy = B1B2 + a1 B2 + azB1 > 0

and
d3 = —(asasf1 + arasfB2 + azfif2 + a1f20s) < 0.

After simplification, d4 an be written as

T1ir2

dy = (1ag —T172) (ﬂ2ﬂ3 - ﬁ1ﬁ4>
104
My My S ST
=udvf (ajay — rlrg){g' <—2)g' <—1>
Aoy Ay Ay, Ay
2 + +
r17Tr2 S S
Lo (G2}
104 Ay, Ay
Denote the last term in the above expression by R. We will show that
aiay — i and R are of the same sign. First assume Sy < S;.
If fu(S) > fu(S) for S € (0,0) and f,(S) > fu(S) for S > o,

ie., m, > m, and m,/(a,)* > m,/(a,)* for some k > 0, we
have f,(S7) < f,(S7) and £.(S5) > £.,(Sy), and a, > a,. Then




348 B. TANG

a4 > ao and hence ajay > rire. Let x; = S;"/au, and write Sj/au
as cx;, where ¢ = a,/a, > 1 and ¢ = 1,2. Then, since z2 < 1,
R > ¢'(z1)9 (cx2) — ¢'(z2)g (cz1) > 0. If f,(S) < fu(S) for S € (0,0)
and f,(S) < fu(S) for S > o, it can be shown that ajay < rire and
R < 0. The case of S > S can be proved in a similar fashion. O

Consequently, Theorem 2.9 (a) and (b) hold under the same hypothe-
ses in Theorem 3.2. The Michaelis-Menten term, the exponential term,
and the hyperbolic tangent term all satisfy (P5) besides (P1)—(P4).
Some examples of sigmoidal functions satisfying (P1)—(P3) and (P5)
are 1 — exp(—s*In2) and S?/(S? + 1). In fact, if we require g to be
C?, functions satisfying (P1)—(P3) and (P5) must be either concave or
sigmoidal. This can be easily shown by noting that (P3) implies that
g"(8) < 0 for some S > 0, then (P5) implies that, for any ¢ > 1,
9" (cS) < (9'(cS)/cg'(8))g"(S) < 0, i.e., g is concave for all S > S.
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