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We will derive a special form of a Green’s matrix function for a
second-order, self-adjoint vector difference equation, and then take ad-
vantage of this form in the application of cone theory in a Banach space
to prove results concerning eigenvalues for a corresponding bound-
ary value problem. The self-adjoint equation has been considered by
Abhlbrandt and Hooker [1], and Peil and Peterson [11], among others.
A discussion of the corresponding scalar self-adjoint equation appears
in Kelley and Peterson [9]. Background on cone theory to difference
equations can be found in Krasnosel’skii[10] and Diaz [2]. Similar
applications of cone theory to difference equations can be found in
Hankerson and Henderson [4] and Hankerson and Peterson [5, 6]. Ap-
plications of cone theory to differential equations can be found in Eloe,
Hankerson and Henderson [3].

We initially consider the second-order, self-adjoint vector difference
equation

(1) Ly(t) = —=A[P(t = 1)Ay(t — )]+ Q()y(t) = 0

on the discrete interval [a + 1,b+ 1] = {a+1,... ,b+ 1}, where here
P(t) and Q(t) are n x n matrix functions with P(t) positive definite
on [a,b+ 1] and Q(t) Hermitian on [a + 1,b + 1]. Solutions of (1) are
defined on [a, b+ 2].

If y(¢) is a complex solution of Ly(t) = 0, then on [a + 1,b+ 2],
y'(t—DP(t—1)y(t) —y" ()Pt -yt — 1) =,

where ¢ is complex constant and * denotes the conjugate transpose.
If ¢ = 0, then y(¢) is called a prepared solution of (1), in which case
y*(t — 1)P(t — 1)y(¢) is real-valued on [a + 1,b + 2].
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We say that a nontrivial prepared solution y(t) of (1) has a generalized
zero at a if y(a) = 0, and a generalized zero at ¢y € [a + 1,b + 2] if
y*(to—1)P(to— L)y(to) < 0 and y(to—1) # 0. If no nontrivial prepared
solution of (1) has two generalized zeros in [a, b+ 2], then (1) is said to
be disconjugate on [a, b + 2].

If (1) is disconjugate on [a,b + 2|, we are guaranteed the existence
(see [12] and [13]) of a unique matrix function G(¢, s) such that:

i) G(t,s) is defined on [a,b+ 2] x [a +1,b+ 1],

ii) LG(t,s) = 6isI on [a,b+ 2] x [a + 1,b + 1], where ;s is the
Kronecker delta and I is the n X n identity matrix,

iii) G(a,s)=0=G(b+2,s) forse€a+1,b+1].

We call G(t,s) the Green’s matrix function for the boundary value
problem

Ly(t) =0 tela+1,b+1]

y(a) =0 = y(b+2).

(2)

Note that while the assumption of disconjugacy is sufficient for the
existence of the Green’s matrix function, it is not necessary.

Similar to the differential equations case, we get an inversion formula,
offered without proof.

Proposition 1. The solution of the boundary value problem

Ly(t) = h(t), tela+1,b+1]
y(a) =0=y(b+2)

s given by
b+1

y(t)= Y Gt s)h(s),

s=a-+1

where G(t, s) is the above Green’s matriz function.

Throughout the remainder of this paper, we will consider the case
when Q(¢) = 0. In this case, the Green’s matrix function for (2) has
a particularly accessible form. A derivation of this Green’s matrix
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function using the Cauchy matrix function can be found in [12] and
[13].

Proposition 2. The Green’s matriz function for the boundary value
problem (2) is given by

I P MY P(r), t<s

(3) Gt s) = b+1 -1
oL PN MY P, s <t

where M = Zbﬂ (7).

This form can also be arrived at by starting with the difference
equation

—A[P(s = 1)Ay(s — 1)] = h(s),

taking the sum from 7+ 1 to b + 1, then from a to ¢t — 1 and applying
the boundary conditions y(a) = 0 and y(b + 2) = 0. This yields

4
( ) t—1 b+1
w0 =3 [P 3 o)
T=a s=1+1
t—1 b+1 b41
- P () [MlzPl(k) > h(s)]
T=a k=a s=k+1
t s—1 b+1 t—1
= > Y Pk + Y S P
S—“:_HT—“ t—1 S_SJ_rl T_a
-y [ZP—l(T)M—lzP—l ]
s=a+1 "1=a k=a
[ o S e
s=a+1 T=a k=a T=a

b+1

+ Z [— ZP_I(T)M_lgP_I(k)—i—Z[P_l(T)]]h s

s=t+1 T=a
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= Z [ —iP_I(T)M_l i P Yk)+MM™! i P_l('r)} h(s)
s=a+1 T=a k=a r—a

b+1 t—1

DRI ST SIS

s=t+1 T=a

t b+1 s—1
= > [ZPl(T)MlzPl(k)]h(s)
s=a+1 7=t k=a
b+1 t—1 b+1
+ > [Zpl(T)Mlzpl(k)]h(s)
s=t+1 “7=a k=s
b+1+
= ) G(t,s)h(s).

s=a+1

Note the agreement of the pieces of the Green’s matrix function for
t = s, which can be seen in (4). A further special case which yields
a Green’s matrix function of a fairly nice form occurs when we, in
addition to Q(t) = 0, assume that P(¢) is of the form

P(t) = D(¢)B,
where B is a constant nonsingular n X n matrix and D(t) =
diag (di1(¢),...,dn(t)), with d;(t) >0 for 1 < i< mn,t € [a,b+1]. In

this case, we will not assume that P(t) is positive definite, but it is easy
to see that the Green’s matrix function for (2) exists and is still given

by (3).
Here we have

and
T [ ST G )
b+1 -1 ot -
:d1ag<<zdlt,r)> o\ 2 dn1(7)> >B
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Using Proposition 2, we get

277

T=s dy(T)

Zt__l

t—1 1 b+1 1
Bildiag (Zr—a dy(7) Z =

thl I ey

T=a di(71)

G(t, s)

Zb—‘,_—l 1

1 b+1 1
T=a d, Z‘r=s dn
@ @ ) t<s

T=a d,(7)

Z-r a dy (T)

2
Zb+1

b+1 1
T=a di (1)

b+1
B-ldiag (ZT &G

T td(T)

ET a

d(‘r

2
= B 'diag (g1(t, s), - .

b+1 1
T=a dn(7)

. agn(tv s)),

), s<t

where, for 1 < i < n, g;(t,s) is the Green’s function for the scalar
boundary value problem

—Ald;(t — 1)Au(t — 1)] =0, €la+1,b+1]
u(a) =0=u(b+2)
Note that g;(t,s) > 0on [a+1,b+ 1] x[a+1,b+ 1] for 1 < i < n.
Throughout, we will write

GP(t,s) =

= diag (g1 (¢, s), - -

- gn(t,s)).

The remainder of this paper will consider the eigenvalue problem

(5)

First, define the Banach space

By ={y:[a,b+2]
equipped with the norm

lylloo =

max
t€la+1,b+1]

—A[D(t - 1)BAy(t - 1)] = AR(t)y(1),
y(a) =0=y(b+2).

= R"[y(a) =

€la+1,b+1]

= y(b+2)}

ly@)lh
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where || - ||1 is the [; vector norm.

Define an operator IV on By by

b+1

Ny(t) = Z B1GP(t,s)R(s)y(s).

s=a+1

Now note that A = 0 is not an eigenvalue of (5). Using Proposition 1,
we have that ()\g,y°) is an eigenpair for (5) if and only if (1/\g,y°) is
an eigenpair for V.

We will use this relationship, along with results from cone theory, to
obtain eigenvalue results for (5). The development of most of the cone
theory used can be found in [10].

Given a Banach space B, a nonempty subset P of B is a cone if:
i) P is a closed set

ii) If u,v € P, then au + Bv € P for any scalars o, 8 > 0

iii) If w € P and —u € P, then u = 0.

A cone P is solid if P° # @, where PV is the interior of P. We say P
is a reproducing cone if B = P — P, the difference set of P. A basic
result in [10] is that if P is a solid cone, then it is a reproducing cone.
In R", the converse is also true.

For u,v € B, we write u < vifv—u € P. A linear operator M : B — B
is said to be positive with respect to the cone P if M : P — P. We say
M is strongly positive if M : P\{0} — P°. For a nonzero element ug
of P, M is ug-positive if, for each nonzero element x of P, there exist
Az, Be > 0 such that a,ug < Mz < B,ug. Another result that will be
of use is that if M is a strongly positive linear operator with respect to
the solid cone P, then M is ug-positive for any ug € PV.

Two of the main results we will use are due to Krasnosel’ski{ [10].

Theorem 1. Let M be a compact linear operator on the Banach
space B, positive with respect to a reproducing cone P in B. Suppose
there exist a nonzero element u of B, with —u ¢ P, and an € > 0 such
that Mu > eu. Then M has an eigenvector in P, whose corresponding
eigenvalue 1 is larger than the modulus of any other eigenvalue of M
and satisfies n > €.
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Theorem 2. Let P be a reproducing cone in a Banach space B
and M a compact ug-positive linear operator on B. Then M has an
essentially unique eigenvector in P, and its corresponding eigenvalue is
simple, positive, and larger than the modulus of any other eigenvalue
of M.

We now return to our previously mentioned Banach space By. Let K
be a solid cone in R™. Then

P={yebBy|ylt)ek,te€la+1,b+1]}
is a solid cone in By, and

P’ ={yeBo|y(t) ek’ tela+1,b+1]}

Throughout the following, (a;;) will denote the nxn matrix with (i, j)
entry a;;, and (b;) will denote the n x 1 vector with ith component b;.
Also, write B~! = (¢;;), and let R(t) = (r;(t)) be an n X n real matrix
function on [a + 1,b + 1].

We will also assume that the entries of B~ and R(t) satisfy the sign
conditions

1) o45¢>0,1<4,5<n

2) oijrij(t) 20,1 <4, j<n,t€a+1,b+1]

where 0,; € {—1,1} and 0,; = 015045, 1 < i, j < n.

Remark. We will consider quadrants in R"™, and the condition
0;j = 01304, 1 < i, j < n, above will ensure that the matrices B!
and R(t), for each t € [a+1,b+ 1], will act as positive operators on an
appropriate quadrant.

Theorem 3. Suppose there exist 1 < ig, jo < n and so € [a+1,b+1]
such that c;yj, # 0 and rjyi,(so) # 0. Then (5) has a least positive
etgenvalue Ao which is smaller than the modulus of any other eigenvalue
of (5). Also, there is an eigenfunction y° corresponding to \g such that
o1y?(t) >0 for1<i<n,tela+1b+1].

Proof. Consider the solid cone

Ko={ueR"|oyu; >0,1<i<n}
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and the corresponding cone of functions

PoE{yEBo‘y(t) € Ko, t € [a+1,b+1]}

We wish to find y € By and ¢ > 0 such that —y ¢ Py and Ny > ey.
The result will then follow using Theorem 1.

Let tg € [a+1,b+1] and 1 < k < n, and define y*(¢) on [a,b+ 2] by
y*(t) = 0 i
O1k€k, t= to,
where e, is the kth unit basis vector in R™. Note that y* € Py\{0},
and so —y* ¢ Py.
For t = tg, we have
b+1

Ny¥(to) = Y B 'GP (to,s)R(s)y"(s)
s=a-+1

=B 'GP (to, to)R(to)O’lkek

= < Z cigi(to, to)ri; (to)> T1kek

=1

= 01k< Zn: cigi(to, to)le(t0)>-

=1
Now consider the vector

z(to) = 01k< z": cagi(to, to)Tzk(to)>

=1

n
- Z ckrgi(to, to)rik(to) ouker.
=1
For 1 <14 <m, i # k, the ith component of z(¢() satisfies
n
o1izi(to) = 014 [Ulk > cugiltos to)rik(to) — 0]
1=1
n

= 01i01k Z ovioulcit|louoik|rik(to)|gi(to, to)
=1

n
= Zgl(to,toﬂcurlk(to)\ > 0.
=1
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For ¢ =k,

n

o1k (to) = o1k [ch chlgl to, to)ru(to) chlgl to, to)ruk(to) o1k
1=1 1=1

=0.

Hence, z(to) € Ko, and so

n n
Ulk<zczlgl to, to) ik (to > chlgl to, to)rik(to)o1ker,

=1 =1

where the inequality is with respect to Cg.

From above, we get
n
Ny*(to) > Z ckgi(to, to)ru (to) o1ker

crigi(to, to)rik(to)y” (to)-

I
M: I

N
Il
-

Fort € [a+1,b+ 1], t # ty, we have

b+1
Z B7'GP(t,5)R(s)y"(s)
s=a+1
> BTGP (t,t)R(t)y*(t)
=0

= Z crigi(to, to)rik (to)y™ ().
=1

Hence,

n
Ny* >3 crugi(to, to)rik(to)y”*,
=1

where the inequality is now with respect to Py.
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Recall that ¢ty € [a+ 1,b+ 1] and 1 < k < n were chosen arbitrarily,
and so, in particular,

n
Ny™ > ciigi(505 50)Tiio (50) ™
=1

Also,

n
Z%lgl(so, 80)T1io (80) 2 Cigjo Gjo (S0, 80)Tjgi (S0) > 0,
1=1
and so Theorem 1 gives that the compact operator N has a positive
eigenvalue 7y that is larger than the modulus of any other eigenvalue
of N. Further, there is an eigenfunction y°, corresponding to 19, with
yO € Po.
The result follows by noting that A\g = 1/79, and by the definition of
Py, since y° € Py implies o190 () > 0for 1 <i<n,t € [a+ 1,b+1].
O

In the next theorem, we use the maximum column sum matrix norm,

defined by

n
ATl = e 3o
=

where A = (a;5).
Theorem 4. Assume the hypothesis in Theorem 3, and let Ay be the

least positive eigenvalue of (5). Then for any ty € [a + 1,b+ 1] and
1 <k <n, we have

n b+1
(6) > gilto,to)emrin(to) < At < MI|[B7H|[v D [[[R(s)IIl,
=1 s=a-+1

where M = max{g;(t,t) |1 <i<mn,t€la+1,b+1]}.
Proof. From the proof of Theorem 3, we have

n
Ny* > Z 9i(to, to)cririr (to)y"*
I=1
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for any 1 < k < n and ty € [a + 1,b + 1], where y* € Py\{0}, and so
the left inequality in (6) follows from Theorem 1.

For the right inequality in (6), let y° be an eigenfunction of N in Py,
corresponding to Ag. Then, for ¢t € [a + 1,b+ 1],

Aoy Ol = [[Ny" (O]l

b+1

Y BTIGP(t,s)R(s)y°(s)
s=a+1
b+1

1B=1GP (£, $)R(s) |1 [s°(5)] s
(7) s;,;l Y
b+1

> B HIIIGE @ )R]y (s)]]2

s=a-+1

b+1
(M|||Bl||1 3 |||R<s>|1)||y°||oo-

s=a-+1

1

IN

IN

IN

Inequality (7) follows from a result which can be found in [7]. Since
the above holds for all ¢ € [a + 1,b + 1], we get

b+1
2o 1Yo < <M|||B_1||1 > |||R(8)|1)||y°||oo,

s=a-+1
which implies
b+1
Xt < MBI Y IRG()IL- o
s=a-+1

Corollary. Assume the hypothesis in Theorem 3, and let Ay be the
least positive eigenvalue of (5). Then

b+1

Aot < MBI D IR,
s=a-+1
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where
b+1

Ml 4 1<z<nz d

Proof. Let i € {1,... ,n}. For t € [a+1,b+ 1], we have

b+1 1
Z‘r a d; (T) E'r =t d;(
b+1 1
Z-r:a d;(T)

9i (ta t) =

We will use the inequality
(8) dla+b)t<a Tt +b7
for a,b > 0. Letting a = >."_" 1/d;(7) and b = ZbH 1/d;(7) we have

gi(t,t) = ab(a +b)*

1

< Zab(a71 +b7h)
b1

1 1
_ - b = - .

g+t 22 4i(r)

Hence,
1388 1

foralll <i<mnandté€ [a+1,b+1]. The result follows from the right
inequality in (6). O

Example. We will find bounds for the least positive eigenvalue )
of the eigenvalue problem

o[ tJaw )

Here,

~

Luo. teps
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The Green’s matrix function is given by G(t,s) =
B 'diag (g1(t, ), g2(t, 5)), where

t(t—1)(6—s)(5+s)

60 )t
97165 =1\ (5= 1)(E-H)G+1)
, §<t
60
and 6 1
(*S)SL, t<s
9:(65) =4 (6-1)(s-1)
ST g<t
5
Now
max { Zgl(thtO)Ckl"'lk(tO) | to € [2,5],k € {1,2}} =50/3
=1
and .
s —1 1 105
Mlé [0 ) ] ‘ 1 = (15)(14) = —.
Hence,

2/105 < Ao < 3/50.

Theorem 5. Suppose that for each 1 < i < n, the following condition
holds:

Let cij, - .. ,cij, , m = m(i) be the nonzero entries of the ith row of
B~ Given ko € {1,... ,n} and so € [a+ 1,b+ 1], there exists some
L €{j1,--- s Jm} such that ry,,(so) # 0.

Then (5) has a least positive eigenvalue Ao that is smaller than the
modulus of any other eigenvalue of (5). Also, there exists an essentially
unique eigenfunction y°, corresponding to Ao, which satisfies o1;y) (t) >
0for1<i<n,te€fa+1,b+1].

Proof. We will show that N is ug-positive with respect to Py, and the
result will then follow using Theorem 2. Let y € Py\{0}. Then there
exist ko € {1,...,n} and so € [a+ 1,b+ 1] such that yg,(so) # 0.
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Fort € [a+1,b+1],

b+1

Z BTGP (t,s)R(s)y(s)

s=a-+1

< lf iczzzgz t,s)rie(s)yw (s )>

s=a+1[=1

and for 1 <14 < n, we have

b+1 n
o1 Z ZszZgl (t, s)rue(s)yr(s)
s=a+1[l=1
b+1 n
=01 Z Zﬂzl\czl\zgz (t, s)ow|rie(s)|o1k|yr(s)|
s=a+1 =1
b+1 n
=Y ZmZgl t,8)|rie(s)ye(s)]
s=a+1 =1

2 Z|Cu| Zgz (t, s0)|ru(s0)yk (s0)]
I=1
> g1, (2, 50)|cilirlik0 (50)Yko (80)] > 0.

Hence, Ny(t) € KJ. It follows that Ny € Py.

So we have that N is strongly positive with respect to the solid cone
Py and so is ug-positive. Using Theorem 2, IV has an essentially unique
eigenvector y° in Py, and its corresponding eigenvalue 7o is simple,
positive, and larger than the modulus of any other eigenvalue of V.

The result follows by noting again that A\g = 1/79, and that y° =
)\0Ny0 € Pg [}

We conclude with a comparison theorem, also arrived at via cone
theory.

Again, let P be a cone in a Banach space B. For linear operators
M,N : B — B, we write M < N (with respect to P) if Mu < Nu for
all u € P. The following rsult is due to Keener and Travis [8].
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Theorem 6. Let P be a cone in a Banach space B, and M,N : B —
B be boudned linear operators, one of which is ug-positive. If M < N
and there exist nontrivial elements uy,uy of P and ny,m2 > 0 such that

muy < Muy and Nus < T2uU2,

then n1 < ng. Further, if n1 = n2, then uy is a scalar multiple of us.

Now let B; and Bs be constant, nonsingular n X n matrices, with
By = (c};) and By' = (c};). Also, let D;(t) = diag (di (), ... ,di(t)),
1 =1, 2 satisfy the assumptions on D(t), with respective Green’s matrix
functions GPi(t,s) = diag (gi(t,s),...,9,(t,8)), i = 1,2. Finally, let
Ry (t) = (ri;(t)) satisfy the assumptions on R(t) in Theorem 3 with
respect to By, and let Ry (t) = (r?j(t)) satisfy the assumptions on R(t)
in Theorem 5 with respect to Bs.

Theorem 7. Suppose that for 1 < i, j <n we have

ri; 1 < k50, tela+1,b+1]
leij| < I3
and
(9)
s1—1 b+1 b+1 s1—1 b+1 bl
Z dl Z dl Z Z d2 Z d2 Z ( )

‘raZ

fora+1<s; <sy <b+1. Then the least positive eigenvalues N\, and
)\2 Of

—A[D;(t — 1)B1Ay(t — 1)] = ARy (t)y(2), t € la+1,b+1]
(10)
y(a) =0=y(b+2)
and
) —A[Dy(t — 1)ByAy(t — 1)] = ARz (H)y(t),  t € [a+1,b+1]

y(a) =0=y(b+2),

respectively, satisfy Ao < A\y. Further, if \; = A\g, then R;i(t) = Ra(t)
n [a+ 1,b+ 1]; in addition, if Ra(t) is symmetric, we also have that
By = By and GP1(t,s) = GP2(t,s) on [a,b+2] x [a+ 1,b+1].
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Proof. Define operators Ny and N, on By by

b+1

NMy(t)= Y Bi'G"H(ts)Ri(s)y(s)

s=a+1

and
b+1

Nay(t) = D By 'GP2(t,8)Ra(s)y(s)-

s=a+1
Note that Ny is ug-positive with respect to Py.
Let y € Py. Then

Noy(t) — Niy(t)
b+1

= Y [By'GP2(t,5)Ra(s) — By 'GP (¢, 8)Ru(s)]y(s)

s=a+1

b+1 n
< 3 3N I o) (s >—c}lg;<t,s>r}k<s>]yk<s>>.

s=a+1k=11=1

Also note that inequality (9) implies that g}(¢,s) < g?(¢,s) for
1<i<nandts€fa+1l,b+1]. Nowlett € [a+1,b+1]. For
1 <1t < n, we have

b+1 n n

O1i Z ZZ [c3i97 (£, 5)rik () — cigi (£, 8)ri(s)]yn(s)

s=a+1k=11=1
b+1 n n

O1i Z szmlkolk (97 (¢, 5)|chirfi(s)] — gi (8 ) cirin (s)[]1yn (s)]
s=a+1k=11=1

b+1 n n

> 3D IRt 9)lekrils)] — gkt )lehrh () lye(s)] = 0.

s=a+1k=11=1

Hence, for t € [a + 1,b+ 1], Nay(t) — N1y(t) € Ko, and so
Ngy — le c PO.

By definition, N1y < Ny with respect to Py. Since y was an arbitrary
element of Py, we have N; < Ns.
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Now, letting y' and y? be eigenfunctions in Py for A; and A\,
respectively, we get

1 1
— N d —4? = Nyy2.
Aly 1" an Y 2y

Theorem 6 then gives that 1/A; < 1/Aq, i.e., A2 < Ag.

Now assume A; = Ay. Then y' = ay? for some nonzero scalar ¢, and
o)

1
Noy? — Nyy® = Noy® — alel

1, 11,
Az (lAl
I, 15

= 2 —y2=0
N TN

Hence, for t € [a+ 1,b+ 1] and 1 < i < n, we have
b+1 n n

o1 Z ZZ chgi (t, s)rin(s) — cigi (&, s)ri(s)]yi(s) = 0,

s=a+1k=11=1
or
b+1 n
1 11,1 2 _

Z ZZ (t,s \Ql”ﬁk( ) =91 (& 8)|eallru(s)[1]ye(s)] = 0.

s=a+1k=11=1
Note that for s € [a+ 1,0+ 1] and 1 < k, I < n,

gt (t,8)Ici|Irik (s)] = gi (¢, 8) il [rii. ()] = O.

Also, Theorem 5 gives that y*> € P{ and so y2(s) # 0 for 1 < k < n,
s € la+1,b+1]. So (12) implies that

i (t, s)|clIrin(s)] — g/ (¢, 8)|cipl iy (s)] = O
forall s€[a+ 1,0+ 1] and 1 <k, [ < n. We then get

0

gt (t, 8)lcillrii(s)| — i (¢ S)|czl||rlk( )|
1

> gi (t,8)leilIrik ()] — Irii(s)]] =
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foralls€fa+1,b+1]and 1 <k, I <mn.
Since t € [a+ 1,b+ 1] and 1 <7 < n were arbitrary, we have

(13) gt (t, 8)leulllriz(s)] — |rii ()l = 0

for all t,s € [a+ 1,b+ 1] and 1 < 4,k,1 < n. Now By is nonsingular,
and so for each 1 <[ < n, there exists 1 < 4, < n such that ¢;; # 0.
Hence, (13) gives that

7’121@(3) = rllk(s)

forall s € [a+1,b+ 1) and 1 < k, I < n, and so Ry(t) = Ry(t) on
[a+1,0+1].

Now suppose that Ry(t) is symmetric. Starting with (12), and
proceeding in a manner similar to that above, we get

(14) gt (&, 8)|rii ()l — leql] =0
forallt,s € [a+1,b+1] and 1 <4,k,l < n. Now let s € [a +1,b+ 1]

and 1 < ¢, I < n. From the hypotheses of Theorem 5, there exists
1 < k; < n such that

leki (S) = rl?:il(s) # 0.

Hence, (14) gives that ¢2 = ¢} for 1 <i,1 < n, and so B;' = By %;
i.e., B1 == Bz.

Finally, again starting with (12), we get

(15) 7k (s)| Icillgr’ (£ 5) — g1 (¢, 5)] = 0

forallt,s € [a+1,b+1] and 1 <4, k,I <n. Letting ¢,s € [a+1,b+ 1]
and 1 <[ < n, there exist 1 <7 <n and 1 < k; < n such that

i #0 and rf, (s) #0,
and so (15) gives that
gll (tv 5) = gl2(ta S)

fort,s € [a+1,b+ 1] and 1 <[ < n. Hence, GP1(t,s) = GP2(t,s) on
[a,b+2] X [a+1,b+1]. o
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Corollary. Suppose that for 1 < i, j < n, we have

ri O < P50, t€la+1,b+1]
leij] < Il
and
b+1 b+1 4
(16) 2 d1 P> d2 S P@EGT L)

Then the least positive eigenvalues of Ay and Ay of (10) and (11),
respectively, satisfy A2 < 1. Further, if Ay = A\a, then Ry(t) = Ra(t)

n [a + 1,b+ 1]; in addition, if Ra(t) is symmetric, we also have that
By = By and GP1(t,s) = GP2(t,s) on [a,b+2] x [a+ 1,b+ 1].

Proof. We need only show that inequality (9) holds, and the result
will follow from Theorem 7.

Let1<i<nanda+1<s; <sy<b+1. Takinga=>"""1/d}(r)
and b= """ 1/d}(7) in inequality (8), we get that

T=S81

S1— 1 b+1 1
ZT a dl ‘r) ZT sz di(T)

b+1 1
2ir=a T

Z d2
s1—1 1 b+1 1
Z‘rl:a di(7) Z‘l' s1 dl(r)
< Z T

T Yo =l
ab 21
:m;m
b+1
a+b Zdz

b+1 b+1

1
:4;& T)Zd2

I /\

’L

o 1 1
= (@) Bb+1)

K2
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where the last inequality follows from (16). Hence,

L e 1 1 b1
D i 2 B S >
= di(r) 2 di(7) =L di(r) T di(a) dE(b+ 1) 2= di(T)
s1—1 b+1 b+1
1 1 1
<
<2 B0 2 B 2 TG
and so (9) holds. O
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