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ASYMPTOTICS AND OSCILLATION FOR FIRST ORDER
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

R.M. MATHSEN, XU YUANTONG AND WANG QIRU
Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. The asymptotic behavior of all nonoscillatory
solutions of some linear first order neutral delay differential
equations is studied. A solution to one conjecture by Gram-
matikopoulos, Grove and Ladas is given and part of a second
conjecture is proved. A test for oscillation in terms of the
coefficients, the delay and the advance is given for neutral
equations of mixed type.

1. Introduction. In this paper we deal with the first order linear
neutral functional differential equation

(1) S0+ pyle = 7)) + aylt — ) = 0

for t > tg where g # 0, p,7 and o are real numbers.

From the point of view of applications, NFDEs appear as models
of electrical networks which contain lossless transmission lines. Such
networks arise, for example, in high speed computers where lossless
transmission lines are used to interconnect switching circuits (see [2,
11]). Concerning existence, uniqueness and continuous dependence of
solutions, see Hale [7] and Driver [3, 4].

As usual, a solution of equation (1) is called oscillatory if it has
arbitrarily large zeros and nonoscillatory if it is eventually positive or
negative.

Recently, Grammatikopoulos, Grove and Ladas in [5] studied asymp-
totic behavior of nonoscillatory solutions of NFDEs (1) under various

Received by the editors on September 2, 1993

AMS 1991 Mathematics Subject Classification. 34K25, 34K40.

Key Words. Neutral equation, asymptotic behavior, oscillation.

Part of this paper was written while the first and second authors were visiting

the Applied Mathematics Institute at the University of Alberta.
Research of the second author supported in part by the Canada-China Scholarly
Exchange Program.

Copyright ©1994 Rocky Mountain Mathematics Consortium

199



200 R.M. MATHSEN, X. YUANTONG AND W. QIRU

conditions on ¢,7 and p. Their results are summarized in the table
below. Here y(t) is a nonoscillatory solution of (1) with lim;_, . y(t)
the entries in the table for the various cases.

TABLE 1.
q| 17| p<—-1 p=—1 —1<p<0 | 0<p<]l |p=1|1<p
+ | + +o0 no nonoscil- 0 0 0 0
+10 +o0 latory solutions 0 0 0 0
4+ | —|xoccor0 ? ? 0 0 0
- |+ ? ? +o00 or 0 +o0 ? ?
-1 0 no nonoscil- +oo +o0 +oo | £0
- | - 0 latory solutions +oo ? ? +oo

For the missing cases (marked by “?”), two conjectures were given in
[5]-

Conjecture 1. Suppose p < 0 and gr < 0. Let y(t) be a
nonoscillatory solution of (1). Then lim;_,o y(t) must be —oo, 0 or
+o0.

Conjecture 2. Suppose p > 0, ¢ < 0 and 7 # 0. Let y(t) be a
nonoscillatory solution of (1). Then lim; o, y(t) equals either —oco or
+o0.

In this paper we shall discuss these two conjectures. In Section 2
we state some lemmas which are useful in the sequel. In Section 3 we
prove Conjecture 1. In Section 4 we prove Conjecture 2 in the case that
p = 1. It has recently been shown in [8] that Conjecture 2 is false in the
case that p > 1, ¢ < 0, and 7 > 0. However, additional assumptions
on p,q and 7 do give the asymptotic behavior claimed in Conjecture 2.
These results and a short discussion of oscillation when o < 0 appear
in Section 4. A concluding discussion and some examples appear in
Section 5.
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2. Some basic lemmas. In this section we restate some lemmas
from [5] which are useful in our proofs of the conjectures.

Lemma 1. Suppose y(t) is an eventually positive solution of Equa-
tion (1). Set

z(t) = y(t) +py(t — 7).
Then

Jim 2(t) =

0 or oo, if g <0;
—o0 or0, 1ifqg>0.

Lemma 2. Suppose either that gv > 0, or else that g7 < 0 and
p > 0. Let y(t) be an eventually positive solution of (1). Set

z(t) = y(t) + py(t — 7).
Then )
—00, ifp<—-1,¢q>0,7>0;
p<_17q<077—S07
. 07 lf _1<paq>077-20a
lim z(t) =
t—00 0<p,qg>0,7<0;
. {_]—<p7q<077—§07
o, if
0<p,g<0,7>0.

Lemma 3. Suppose p # 0 as well as ¢ # 0. Then y(t) satisfies the
NFDE (1) if and only if y(t) satisfies the NFDE

& v+ 2y = ()] + Lyte— (0 =) =

3. Proof of Conjecture 1.

Theorem 1. Suppose p < 0 and g7 < 0. Let y(t) be a nonoscillatory
solution of (1). Then

Jm y(t) = —co o Jm y()=0 o lim y(t) = +oc.
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Proof. Since the negative of a solution of (1) is also a solution
of (1), it suffices to consider an eventually positive solution y(t) of
(1). Suppose then that y(t) > 0 for ¢t > ¢,. We first consider the
case that ¢ < 0 and 7 > 0. Let 2(¢) := y(¢t) + py(t — 7). Then
Z'(t) = —qy(t — o) and, by Lemma 1, z(t) increases monotonically to 0
or co ast — co. If limy_, o 2(t) = 00, then y(t) > y(t)+py(t—7) = 2(¢),
so lim; o0 y(t) = 0o also. We now suppose that lim; o 2(t) = 0 and
show that lim; o, y(t) = 0 as well. We consider the three subcases
p>—1,p=—-1and p< —1.

a) Assume —1 < p < 0. Note that y(t) +py(t—7) = 2(t) < 0, so that
y(t) < —py(t — 7). Then by iteration we get y(t +nr) < (—p)"y(t — 1)
for every positive integer n. This implies that lim,, ., y(t +n71) =0
uniformly for 7 < ¢ < 27. Hence, it follows that lim;_,, y(t) = 0.

b) Assume p = —1. Methods used are similar to ideas in [12].
Integrate z'(t) = —qy(t — o) from ¢¢ to ¢ and then let ¢ — oco. This
gives .

—z(tg) = fq/ y(s — o) ds.

to
Thus y € L'[tg,00) and therefore z € L[tg,o0) also. Since z(t) is
monotonically increasing and tends to 0 as t — oo, Yooy [z(t + i7)]
converges uniformly for all ¢ € [ty,ty + 27]. Hence, for arbitrary € > 0
there is a positive integer N such that
N+s c
Y et +ir)| < 5
i=N+1
for all ¢ € [to,to + 27] and all positive integers s. This implies
that, for all ¢ € [tg,to + 27] and all positive integers s, we have
ly(t + N7) — y(t + (N + s)7)| < ¢/3. However, y(t) is uniformly
continuous on [ty + N7,to + (IV + 2)7], so there is a § € (0,7) such
that |y(t1) — y(t2)| < €/3 for t1,t2 € [to + N7,t0 + (N + 2)7] with
|t1 — t2] < &. Now, for arbitrary t;,ts > to + N7 with |t; — 2] < 6,
we can choose a positive integer s such that t; = tg + (N + s)7 + #1,
to = to + (N+8)T+t_2 where t_l,t_g S [0,27’] and |7?1 - 7?2| < 6. Then we
have
ly(t1) — y(t2)| < ly(to + (N + 8)7 + 1) — y(to + t1 + N7)|
+|y(t0+ﬂ+N7')fy(t0+fg+NT)|
+ly(to+ta+ N7)—y(to +t2 + (N + 8)7)| < e.
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Consequently, y(t) is uniformly continuous on [tg+ N7, 00) and hence is
uniformly continuous on [t°, 00). Thus 2/(t) = —qy(t — o) is uniformly
continuous on [tg, 00), and so for arbitrary ¢ > 0 there is a § > 0 such
that |2'(t1) — 2/(t2)| < €/2 for any ti,ts,€[ty,00) with |[t; — ta] < 4.
Also, since lim;_,o, 2(t) = 0, there is a T' > 0 such that |z(¢)| < 6/8
for all ¢ > T. Now for arbitrary ¢t > T, let ¢t; = ¢+ /2. Then

2(t) — 2(t1)

t—1

2(t) -

= () — 2 (t + 06/2)| < g
for some 6 € (0,1). Therefore,

2(t) = 2(t1) +§<<%+%‘5>/<g>+%=s.

t —t
Hence, lim; o 2'(t) = 0 and lim;_, o, y(t) = 0.

2(8)] <

c) Assume p < —1. First we show that, for sufficiently large
t € [to,00), we have

(2) y(t+7) <y(t).

If not, there is a ¢; > to such that y(¢t1+7) > y(¢1). Since z(¢) increases
strictly to 0, it follows that y(¢t1 +27) + py(t1 +7) > y(t1 + 7) + py(t1)
and thus y(t1 + 27) — y(t1 + 7) > —ply(ts + 7) — y(t1)] > 0. Hence
y(t1 + 27) > y(t1 + 7) and by iteration y(t1 + k7) > y(t1 + (k — 1)7)
for all positive integers k. Now y(t + 7) — y(t) is continuous in ¢ at ¢,
so there must be an 7 > 0 such that

y(t+7)—yt) > [yt +7) —y(t1)]/2>0 for all ¢ € [t1,t; + 7).
Also, g := min{y(¢) : t; <t < t1+n} > 0. Then for all positive integers

k and all t € [t1,t1 + 1] we have y(t + k7) > y(t + (K — 1)7) > -+ >
y(t) > g. Hence

o 0ty (k+1)T
/ y(t)dt=2/ y(t) dt = 0o

tl k=0 tl +kT

which contradicts the fact that y € L'[tp, 00). Thus (2) holds.
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Now we prove that lim;_,, y(t) = 0. Since Y-, |2(t +i7)| converges
uniformly on [tg,t9 + 27] and 0 < —1/p < 1; for arbitrary € > 0 there
is a positive integer N such that

ks ik
1 . €
Z <——> |z(t +i1)| < =
. p 2
i=k+1

for all k > N, all positive integers s and all ¢ € [to,to+27]. Since z(t) is

strictly increasing and z(t) < 0, |2(t+i7)| = —py(t+(i—1)7) —y(¢t +i7)
and the inequality above reduces to

0 < y(t+ kr) — <—%>sy(t+(k+s)7) <

N ™

for all natural numbers s. Now let s — co. We get 0 < y(t + k1) < €
for all k > N and all t € [tg,to + 27]. Thus, limg_ oo y(t + k7) = 0
uniformly on [tg, o + 27]. But that implies that lim; o, y(¢) = 0, and
the conjecture is proved for this case.

Finally, for the case that ¢ > 0 and 7 < 0, set 7* = —7 > 0, p* = 1/p,
q¢* = q/p < 0 and 0* = 0 — 7. Then the result follows directly from
Lemma 3 and the case just proved. Thus, the proof of Conjecture 1 is
completed. ]

4. Discussion of Conjecture 2.

Theorem 2. Suppose p = 1, ¢ < 0 and 7 # 0. Let y(t) be a
nonoscillatory solution of (1). Then

tlglolo y(t) = —oc0 or tlgglo y(t) = oo.

Proof. Without loss of generality, we may suppose that the solution
y(t) of (1) is positive for t > to. Pick T' > tg such that y(¢) > 0 for
t > T — |o|. Since y(t) is continuous, it is uniformly continuous on
[T —|o|, T +27]. Hence, y(t) has a minimum m > 0 on [T'— |o|, T +27].
Let z(t) := y(t) + y(t — 7). Then 2'(t) = —qy(t — o) > 0 for t > T.
From Lemma 1, z(¢) increases monotonically to co as t — co.
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Suppose that 7 > 0. For t € [T, T + 27| and every positive integer n
we have

y(t+2n7) -yt +2(n—1)7) =2(t+2n7) — 2(t + 2n — 1)7) > 0.
Consequently, y(t + 2n7) > y(t) > m. Also, we have

2(t+2n7) — 2(t+ (2n — 1)7) = 72" (tn + (2n — 1)7)
=—7qy(tn + (2n — 1)7 — 0)

> —Tqm

where t,, € [T,T + 27]. Then

y(t+2n7) —y(t) = D _[y(t +2j7) —y(t +2(j — 1)7)]

1+ 104

[2(t +2j7) — 2(t + (2§ — 1)7)]

<.
Il

>

—

—q)Tmn

for each positive integer n. Now for any M > 0, let H := T +
2([-M/(rgm)]+1)r. If t > H, then t = t' + 2n71, where t’ € [T, T + 27|
and n is a positive integer, so that y(t) = y(t'+2n7) > (—¢)Tgmn > M.
Therefore, lim;_, o, y(t) = oo.

For the case p =1 and 7 < 0, the result follows by setting 7* = —7
and applying Lemma 3 and the result just proved. Hence, Theorem 1
has been proved. ]

The two cases remaining in Conjecture 2, namely,p > 1,¢ < 0,7 >0
and 0 < p <1, g <0, 7 <0, are equivalent by Lemma 3, so we will
discuss only the former.

Lemma 4. Letp > 1,q <0 and 7 > 0. if y(t) is an eventually
positive solution of NFDE (1), then limsup,_, ., y(t) = co.

Proof. Let z(t) := y(t) + py(t — 7). Then 2(t) is monotonically
increasing with limit co as ¢ tends to oco. Then clearly y(¢t) must be
unbounded as t tends to oo, so the lemma holds. a



206 R.M. MATHSEN, X. YUANTONG AND W. QIRU

Next observe that z(t) = y(t) + py(t — 7) and 2'(t) = —qy(t — o)
together imply that 2'(t) < —qz(t — o) and 2/(t) < (—q/p)z(t+ 7 — o).
From the first of these two inequalities we get

(6) 2 (t) < —qz(t) ifeo>0

while from the second we get

! fgz ifo>r.
(7) Z'(t) < » (t) ifo=

From (6) we get e 97z(t — 7) > z(t). Hence

py(t —27) —y(t) = pz(t — 7) — 2(t)
=p-—e M)zt—71)+e Tzt —7)— 2(¢)
>(p—e Mzt —7)— 0

as t = 0o in case
(8) p>e 9 and o >0.
If we use inequality (7) we get
e I/Po(t — 1) > 2(t)
so that p?y(t — 27) — y(t) — oo as t — oo, provided

(9) plnp > —¢r and o> T.

Also observe that z(t) solves NFDE (1). Then integration from ¢ to
t+ 7 gives

2(t+7)+pz(t) — 2(t) —pz(t — 7) < —qr2(t + 1) if ¢ > 0.

Thus

PPyt —27) —y(t) = plz(t — 1) — 2(t)] + (p — 1)2(t)
>z2(t+7)—2(t) +grz(t+7)+ (p—1)z(t)

14gr)z(t+7)+ (p—2)2(t) = o0
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-q -q=plnp

i ~-q=1Inp

(assuming T=1)

— indicates a region of values of p and —q for which y(t)—o0 if 6=0.

— indicates a region of values of p and —q for which y(t)— o if 6 > T.

FIGURE 1. Regions for Theorem 3 (assuming 7 = 1).

as t — oo, provided

(10) 0>0,149g7>0,p—2>0 and one of the last two is strict.

We collect these observations as a theorem.

Theorem 3. Letp > 1,q <0, 7 > 0. Then any one of the conditions
(8), (9), or (10) is a sufficient condition for every eventually positive
solution of NFDE (1) to tend to 0o as t — oo.

Figure 1 indicates there are still many values of p and ¢ for which
Conjecture 2 remains unresolved. In particular, there are no results
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FIGURE 2. Characteristic Equation—no real roots.

given above for the case that o < 0. It is known that NFDE (1) has
only oscillatory solutions if and only if its characteristic equation

(11) Aple ™ 4 ge =0

has no real solutions. See [6] as well as [1, 9 and 10] for the proof of
this result in other cases. Clearly, (11) has a real solution if and only
if the graphs of w = wy(A) := A(1 +pe~™) and w = wy(A) := —ge™*
have a point of intersection. If p > 0, ¢ < 0, 7 > 0 and ¢ > 0, such a
point always exists. For o < 0, the situation is different as is illustrated
in Figure 2. For —q large, the graphs do not intersect, but for —g small
and positive, there are two points of intersection. It follows that there
is a largest value —qo of —q for which wy()\) = wa(A\) has a (unique)
solution. To find —qo, note that —gy = A\(1+pe~"*)e?* for some \ = \g
and maximize this expression in \. It is straightforward to show that
there is a unique such Ag which must satisfy 1/(t — o) < Ay < —1/0
and solve the equation

O'>\0+1

—tAo —
(12) pe o1

Now for —¢ > —qo, (11) has no real roots and consequently (1) has
only oscillatory solutions. We state this result as a theorem.
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Theorem 4. Suppose p >0, 7 >0, 0 <0 and ¢ < 0. Let Ay be the
unique solution of (12). Then NFDE (1) has only oscillatory solutions
if and only if

(13) —q > Ao(1 + pe="A0)e R0,

Corollary. Supposep >0, 7 >0, ¢ <0 and 0 < 0. Then (1) has
only oscillatory solutions in case

(14) qo > 620/(7'—20) +p€2(U_T)/(T_20).

Proof. Since A\g € (1/(1—0),1/(—0)), it lies in one of the two intervals
(1/(t —0),2/(r —20)] and [2/(7 — 20),1/(—0)). On the first of these

intervals we have

1
)\(1 +pe—'r)\)eo)\ < (620/(7—20') + ]‘_7>

7 —20 e

and on the second a bound is (1/(—0c))(e27/(7=29) 4 pe2(o—7)/(r=20)),
The second bound is the larger if and only if
—20

—— (™) 4 p)

eT/(T—Qo’) +pe—T/(T—20') >
T—20

which is equivalent to

p<e‘r/(7'217) + 20 > > —20 eT/(T*U) _e‘r/(7'72a)‘

T — 20 T —20

Let 7 = —ko. The inequality then becomes

2 2
k/(k+2) < 4 k/(k+1)  _k/(k+2)
p(e k:+2> > k+2e e

The left side of this inequality clearly is positive. The right side can be

rewritten as o/ (e42)
26 ek/(k+1)(k+2) _ k+2 )
k+2 2
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Now use the fact that e” < 1+ 7+ 3r?/[2(3 —r)] for 0 < r < 1 to
show that the right side is negative. Hence the second bound is larger.
Thus, if (14) holds, so does (13). The lemma is proved. u]

If the sufficient condition for oscillation developed by Schultz in [9] is

specialized to NFDE (1), the result is goe > 1 + p. On the other
hand (14) can be rewritten as goe > ef/(F+2) 4 pe=k/(k+2) Now
1+ p > e/ (k+2) 4 pe=k/(E+2) if and only if p > e¥/(++2) Since k > 0,
if p > e, (14) gives a smaller bound and hence gives the oscillation of
all solutions of (1) for more values of ¢q. As an example, consider the
equation
S0+ 2900~ 1)] + ay(t +1) = 0.
Here p = 2 and 7 = —o = 1. Schultz’s condition gives oscillation if
—q > 3/e while (14) requires —q > e~%/3 + 2e74/3 = 1.0406 < 3/e =
1.1036. Condition (13) for this example gives —g > —qo = .6938, a
much better bound as one expects.

5. Conclusions and examples. We have now fully resolved six
of the eight cases conjectured in [5]. In the remaining two equivalent
cases we have given additional restrictions on the coefficients under
which Conjecture 2 is correct. The counterexamples in [8], which
show that in general Conjecture 2 is false, lie in the —¢, p plane along
the curve —q¢ = 2plnp for 0 = 1 = 7 and along —¢ = 2Inp for
7 =1> 0 = 0. What remains is an analysis of the asymptotic behavior
of the nonoscillatory solutions of NDDE (1) in the cases not covered by
Theorem 3. For example, if 0 > 7 and plnp < —g < 2plnporif 7 > o
and plnp < —¢ < 21Inp, the results given above do not apply.

It is worth noting that in Conjecture 1 the solutions of (1), even the
C*° solutions, satisfying

lim y(t) = —oo0, lim y(¢) =0 or tlim y(t) = o0

t—o0 t— o0

can occur in the same equation. For example, the NFDEs

d 20 14
Zlyt) = Syt+In2)| + —y(t—In2) = 0 0 1, ¢>0 0
% y() 33y(+n)+33y( n2) =0, >p>-—1, ¢>0, 7<
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and

d 5 63

Zyt) — Zy(t—1Ind)| — Zy(t—In2) = 0 0 —1, ¢g<0 0
5 y(t) 17y( n4) 34y( n2) =0, >p>-—1, ¢<0, 7>

both have nonoscillatory solutions +e~2* and +et?; the NFDEs

d 3

St —y(t+ma)] + Sy(t+n2) =0, p=-1, ¢>0, 7<0
and

d 3

a[y(t) —y(t—In4)] — Ey(t—an) =0, p=-1, ¢<0, 7<0

both have nonoscillatory solutions +e~¢ and +e!; the NFDEs

d 17 T 63

— - — In4 — In2) = -1

o y(t) 3 y(t+1In ) + 10y(t+ n2) =0, p<-—1, ¢>0, 7<0
and

d [ 33 T 7

L) = Zyt-m2)| — Ly(t—Ind) = -1

p _y(t) 5o (t—1n )_ o¥(t-nd) =0, p<-1,¢<0, 7>0

both have nonoscillatory solutions +e~2 and +et. Actually, there is an
infinite collection of such equations. For instance, given an arbitrary
p € (—e/®, —e~') and an arbitrary o > 0, the NFDEs

i[y(t) +py(t—1/a)]+qy(t—0) =0

dt
and
o) + Lyt +1/0)| + Lyt + 1/a—0) =0
dt Y py py o) =
where
1 a(1l + pe)
o= In
l+a |—-1—pel/e
and

eliepg 1

q= a(l +p6) |:—_1 _ pe—l/a
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always have nonoscillatory solutions +e** and +ef.
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