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EXISTENCE AND UNIQUENESS RESULTS
FOR NONLINEAR BOUNDARY VALUE PROBLEMS

D.D. HAI AND K. SCHMITT

Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. We give some elementary applications of fixed
point principles to prove existence and uniqueness results for
solutions of boundary value problems of ordinary and partial
differential equations.

1. Introduction. In this paper we provide an elementary approach
to existence and uniqueness theory for the study of nonlinear bound-
ary value problems. The approach is based on the LP theory of cer-
tain linear differential operators subject to boundary constraints. In
several instances we obtain, using the contraction mapping principle,
improvements of, by now, classical existence and uniqueness results.
Applications of variational methods and other fixed point principles to
problems of this type are numerous, and we refer to [6] and [18] for
results which are (in their existence part) related to ours.

The first part of the paper is devoted to nonlinear perturbations of the
Laplacian, while the second part is devoted to boundary value problems
for systems of ordinary differential equations.

2. Semilinear elliptic problems. Let €2 be a bounded open subset
of RN and let

(1) f:OxRxRY 5 R

be a mapping satisfying Carathéodory conditions. We consider the
Dirichlet problem

@) Au = f(z,u, Vu), x € Q,

u =0, x € 0.
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In what is to follow, we shall employ the notation that |- | stands for
absolute value in R and the Euclidean norm in R and || ||, the norm
in LP(Q).

We have the following results:
Theorem 1. Let f satisfy

\f(m,u,v) —f($,ﬂ,?7)| < a’|u_ﬂ" +b"l)—’17|,
Vu,i€R, v,5 € RY,

(3)
where a and b are nonnegative constants such that

(4) )\—14‘\/—)\—1

and Ay 1s the principal eigenvalue of —A subject to homogeneous
Dirichlet boundary conditions on 9. Then problem (2) has a unique
solution u € HJ () N H(Q).

Proof. For v € L?(2), let us put
(5) Av = f(-,A™ v, VAT ).

By linear theory and (3), the operator A is a mapping of L?(f) to itself.
We shall show that A is in fact a contraction mapping. To see this, let
V1,V € LQ(Q) Then

HAUl — A’Uz”g S a||A_1v1 — A_I’UQHQ

6
( ) +b||VA_11)1 —VA_l’UQHQ.

On the other hand, it follows from the L? theory of —A that
-1 -1 1
(7) [A7 o1 = A7 022 < =[lvr — w22,
1

and from Green’s identity that

|‘VA71’()1 — VA711}2||§ S |(’Ul — ’Ug,Ail’Ul — A71U2)|
(8)

IN

—[lv1 — a3,

AL



NONLINEAR BOUNDARY VALUE PROBLEMS 79

where (-,) is the L2-inner product.

Hence, combining (7) and (8) in (6) we have

a b
(9) ||AU1—A112||2§)\—1||01—U2|\2+\/—)\—1||01—U2|\2-
This shows that A is a contraction mapping and thus has a unique
fixed point. On the other hand, if v € L?() is a fixed point of A, then
u=A"1visin H}(Q) and Au € L?(Q) and u solves (2).

Remark 1. It is clear from the proof that in the above the real line R
may be replaced by R™ thus obtaining a result for systems of semilinear
elliptic problems.

Remark 2. Similar results may also be derived for higher order
semilinear problems of the type

Ay = f(z,u, Diu), il <m, z€Q,
au 6m71u
—_ — = tes = —_— :0 69‘
u on om-1p, , T e

In this case the contraction mapping constant is obtained by applying
inequalities for higher order derivatives (see, e.g., [1]).

Remark 3. In case N =1 and Q = (0,T), Ay = 7%/T? and condition
(4) becomes

al? T
10 — 4+ — < L
(10) w2 + T
This condition was also obtained by Mawhin [13] and earlier, using
spaces of continuous functions with weighted norms by Albrecht [2].

The following result shows that linear growth conditions similar to the
Lipschitz condition (3) easily yield existence results via the Schauder
or similar fixed point theorems. We have:

Theorem 2. Let f satisfy
(11) |f(z,u,v)| < alu| + blv| + m, YucR, veRY,
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where a and b are nonnegative constants such that (4) holds and, again,
A1 is the principal eigenvalue of —A subject to homogeneous Dirichlet
boundary conditions on O, and m is a nonnegative L? function. Then
problem (2) has a solution u € Hj(Q) N H*(12).

Proof. Define the nonlinear operator A as in the proof of Theorem
1. Then A is completely continuous, as follows from linear theory, and
calculations similar to those used in the proof of that theorem show
that

(12) 14v]|2 < al|A™ ]|z + bl [ VAT ol + [[m]|2.

Using (7) and (8), we then obtain

a b
13 A < — — .
(13) I v\lz_A1\|v|\2+\/)\—1|\v\|2+|\m\|2

It follows from (4) and (6) that one can find a closed ball in L*(2)
which is mapped into itself by A, proving the existence of at least one
fixed point of A by the Schauder fixed point theorem. O

3. Systems of ordinary differential equations. In this section
we shall consider the nonlinear boundary value problem

'+ Ku' + f(z,u,u') =0, 0<z<T,

14

(14) u =0, z € {0,T},
where

(15) f:[0,T)xHx H — H,

and H is a Banach space with norm | - |.

Theorem 3. Assume that the mapping f is continuous and satisfies
the Lipschitz condition

‘f(xvuav) - f(I,ﬁ,ﬁ” S (L|U7fb‘ +b‘1} 76|’

(16) N .
Vu,o € H, v,0 € H, z € (0,T),
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where
(17) ad(K) + byp(K) < 1,
and ¢, are given by

(18 0(K) = ey |, (1= (A= KT as

and

2 (1_6—\K\T/2)2
(19) A TR

Then problem (14) has a unique solution.

Proof. We observe that u is a solution of (14) if and only if v = o/
solves

v'—i—Kv—i—f(ac,/ v,v>:0, 0<z<T,
0

T
/ v=0.
0

We proceed thus to establish the existence of a unique solution of
(20).

We first assume that K > 0. Let M be the subspace of L'((0,T); H)
consisting of those v with fOT v = 0. Define A: M — M by

Ke K= r - T ks
Av(x)zl_e——KT/(; e K (A eK NU(S)>

—e Ko / eXsNu(s),
0

(20)

(21)

where N is the Nemitskii operator

No(z) —f(x,/ozv,v)
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Then v is a solution of (20) if and only if v is a fixed point of A.
For u,v € M, let w = u — v and p(z) = |[Nu(z) — Nv(z)|. Then

p(z) <a

/Oww +bw(), zel0,T).

We next rewrite (21) as

22) aole) = 15 { [T RNty

+ [ amer g,

from which follows

- T (] _ g=Ks)(] — g~ K(T—s)
I R =)

On the other hand, since fOT w = 0, it follows that |[w| <
(1/2) [ Jwl, @ € [0, T, further the function (1 — e K#)(1 — e K(T—2))
assumes its maximum at 7'/2. Using these facts in (23), we obtain that

[|Au — Av||y < (ag(K) + b (K))|[u — v[l1,

and hence that A is a contraction mapping on M and therefore has a
unique fixed point there.

If K < 0, we apply what has just been proved with f(r —z,u, —v) =
g(x,u,v) in place of f(z,u,v). o

Remark 4. Letting K — 0in (18) and (19), we see that this inequality
requirement becomes

aT? BT

6 + 2

which is not as good as the requirements stated earlier in Remark

3. The next result, however, shows that, with the aid of Opial’s

inequality [14] and [15], we may obtain an improvement containing

known inequality requirements.

<1,
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We shall now consider problem (14) with K =0, i.e.,

(24) v+ f(z,u,u’) =0, 0<z<T,
u=0, z € {0,T}.

Theorem 4. Let H be a Hilbert space and assume that the mapping
f is continuous and satisfies the Lipschitz condition

‘f(mﬂj':v) - f(il?,’l],’ﬁ” S a|u_a‘ +b"U _i}|7

(25) i .
Yu,o € H, v,o0 € H, z € (0,T),
where
274 p27? b1
(26) . + 2 <

T w2 272

Then problem (24) has a unique solution.

Proof. In what follows we shall need the following result due to Opial
[15]. If uw € Wy *((0,T); H), then

(27) | @@z [ e

We let V be the subspace of L?((0,7); H) consisting of functions of
zero mean. Then V is a Banach space. We define A: V — V by

(28) Av(z) = %/OT /0 Nv(t)—/om No(t),

where N again is the Nemitskii operator

No(z) :f<x,/0zv,v>.

We show that A is a contraction mapping on V. To see this, let u,v € V,
then by Wirtinger’s inequality

T
(29) HAU/_A'UHQS;HNU_N’UHQ.
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Since f satisfies the Lipschitz condition (25) we get that

/Os(u—v)dr

for every s € [0,7], which implies by Wirtinger’s and Opial’s inequali-
ties that

[Nu(s) — Nu(s)| <a + blu(s) — v(s)|,

a?T? bAT?
14— Aol3 < Sl — ol + ol — 0l
(30) 5
abl 9
+ O ol
That A is a contraction mapping now follows from (26). o

Remark 5. Let us compare what has been obtained with classical
results. Picard obtained the inequality requirement

aT? T
31 —+ —<1
(31) g T3 <L

(see [11] and [16]), which was generalized by Lettenmeyer [12]

aT? br

This result was further extended by Coles and Sherman [7]

aT? + 4bT < 12, for a < b?

33
(33) (V3 = 1)aT? 4 2bT < 4V/3, for a > b2

All of these inequality requirements are not as good as (10), except (33)
which in a small region of the aT? — bT plane is better than (10). A
quick plot will convince the reader. The inequality requirement given
by (26), however, includes all of the above.

Much larger existence and uniqueness regions for problem (24), how-
ever, have been known for some time. We refer the interested reader
to the conditions given in [4, 8, 9, 17]. As remarked in [3] one can-
not expect that successive approximations will converge in these larger
regions.
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4. Further existence results. In the following we shall fix the
z — interval I = [0, ].

Theorem 5. Suppose that
(i) f:Ix H x H — H is completely continuous.

(ii) There exist real numbers a,b > 0, R > 0 and nondecreasing
functions F,G and J : RT — Rt with

(34) aF(\/7R) + %G(ﬁR) R?>+ /7RJ(V/7R) < R?

such that
(u, f(z,u,v)) < alul®F(Jul) + blul [v|G(Jul) + u|J(Ju]),

for all z € I and u,v € H with |u| < /7R.

(i) There exists a continuous function h : Rt — RT\{0} and
constants C' and K such that

|(v, £ (2, u,0)| < h(|o*)(lv]* + ©),

for allx € I and u,v € H with |u| < /7R, and

(35) /M ﬁ > 2R + 7€)

where

- 1/K+0C\? R?
= - —_— M:—_
¢ 4( VK >’ s

Then the problem (14) has at least one solution.

Proof. Define g: I x Hx H— H by
(36) 9(x, u,v) = f(x,u, Pv)

where

P v if [v] < VK
i v if [v] > VK.

Jvl
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Then g is completely continuous and

(37)  (u,g(w,u,v)) < alul*F(Ju] + blu| [v|G (|ul) + |ulJ (|u])

(38) (v, 9, u,0)| < A(Jol*)(jv]* + C)
for all z € I and u,v € H with |u| < /7R, where h(z) = h(min(z, K)).
Let E = {u € C([;H) : fowu = 0} with L2 inner product. Define

A: E — E by (21) with Nu(s) = g(s, [, u,u(s)). Then A is completely
continuous and Av = u if and only if

(39) u'+Ku+g<x,/ v,v):O, /u:O.
0 0

We claim that u # AAu for v € E with ||ul]ls = R and X € (0,1).
Suppose the contrary, and let u € E, ||u|l2 = R and A € (0,1) such
that

u = Au

u'—i—Ku—l—)\g(a;,/ u,u> =0
0
/ u=0.
0

Taking the inner product of (40) with foz u and integrating gives

(41) ||u|§:)\</0wu,g<ac,/0wu,u>>.

(42) +b‘/ u|G<‘/2 .
“ ()

or

(40)

)
lute)
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for every x € I, since | [; u| < /7||ul|]z = v/7R. Combining (41), (42)
gives, by Poincaré’s and Opial’s inequalities

R? = [ully < A|aF(VAR) + T G(/TR) | R + VARI(VAR) < R?,

a contradiction, proving the claim. It then follows from the Leray-
Schauder continuation principle that A has a fixed point v with ||v||2 <
R. Hence, u(z) = [ v is a solution of

(43) '+ Ku' + g(z,u,u’) =0, u(0) = u(r) = 0.

We verify now that ||u'||p < v/K. Taking the inner product of (43)
with u’ gives

(44) —— [/ (@) + Ko/ (2)* + (v, g, u,u')) = 0.

1d
2dx

which implies

d ! 2 14 2 14 14
(45) 7 ¢ @)% < 20K |u'(2)]7 + 2|(u'(2), 9(2, u, u))|
< 2(P(JW/(2)*) + | K|)(|u' ()] + C)
d v’ ()] ds , , A
(46) @/ M‘ <A @) +06),  wel

Since ||u'||2 < R, there exists ¢ € I such that
(47) [/ (0)|* < R? /.

From (46) and (47), we deduce

WPy Rr g )
/ ~—5§/ L TITE ey
0 h(s) + | K] 0 h(s) + |K|

/K ds
< —
o h(s)+|K|
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since

K K
ds / ds 9 ~
—_— = — = >2(R?+ (),
/Rz/w h(s) + |K|  Jr2/n h(s) + K] ( )

by (35). Hence |[u/(z)]?> < K for every € I and so u is a solution of
(14) by definition of g.

This completes the proof of Theorem 5. O

Remark 6. (i) The conclusion of Theorem 5 holds if H = RY and (i)
is replaced by the Carathéodory condition, i.e., for each (u,v) € Hx H,
the mapping = — f(z,u,v) is measurable, for a.e. x € I, the mapping

(u,v) = f(z,u,v) is continuous, and for each r > 0, there exists
gr € LY(I;R) such that

|f($vuv U)| < gr(w)

for a.e. € I and u,v € H with [u] <7, |v] <.

(ii) Let F(z) = G(z) = 1 and J(z) = 1 for every x € I. Then
condition (34) becomes

L
a — .
1

The above result is an extension of a result of Mawhin [13] who proved
an existence result for (14) for completely continuous f satisfying the
following conditions.

a) There exist nonnegative numbers a,b and ¢ with a + b < 1, such
that
(w, f(z,u,v)) < alul® + blu| [v] + clu]
forall z € I and u,v € H.

b) There exists a continuous function h : Rt — R™\{0} such that
h + 2|K| is a two-Nagumo function, i.e.,

/°° ds =
o h(s)+2[K]|

and such that
2|(x, f(z,u,v)| < (0[]
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for all z € I and u,v € H with |u| < 7(1 —a—b)"lc.

Next we shall establish an existence and uniqueness result for (14)
under a mere continuity assumption of f.

Theorem 6. Suppose that

(i) f:1IxHxH — H is continuous and for each r > 0, there
exists g. € L' such that

|f(z,u,0)| < gr(2)

forallz € I and u,v € H with |u| <r, |v] < r.
(ii) There exist nonnegative numbers a and b with a + br/4 < 1,
such that

(u_a7f(x7uvv)_f(m7a7i})) Sa\u—ﬂ|2+b|u—ﬂ| |U_ﬁ|

forall z € I and u,v,4,0 € H.

(i) f satisfies condition (iii) of Theorem 5 with R = (1 —a —
brr/4)" e, where ¢ = ||f(z,0,0)||2-

Then the problem (14) has ezactly one solution.
Proof. Define g : I x H x H by (36). Then
(48)  (u—1a,9(z,u,v) - g(z,8,9)) < alu—af* +blu—al[v — 7|

for all z € I and u,v,u,v € H.

Let E be the subspace of L?(I; H) consisting of u with fowu = 0.
Then F is a Hilbert space.

Define A: E — E by

Au(z) = %/Oﬂ /OtNu(s) dsdt—/OINu(s) ds

where Nu(z) = Ku(z) + g(z, [, ,u,u(z)). Then, using assumption (i),
we see that A is continuous. Let u,v € E; then we have, by inverting
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the order of integration,
™ t
(Au—Av,u—v):—/ </ (Nu—Nv)ds,u(t)—v(t)) dt
0 0

/07r </Os(u—v) dt, Nu(s) — Nv(s)) ds.

Since [;(u — v) = 0, which implies by (48) and Poincaré’s inequality
that

(Au — Av,u —v) < (a—l—b%)”u—v”g.

Define B: E — E by Bv =v — Av. Then

(49) (Bu—Buv,u—v) > <1— (a—l—%)) llu—v|[3  for u,v € E.

Hence, it follows from the Minty-Browder theorem (see, e.g., [5]) that
there exists a unique u € E such that Bu = 0, i.e., A has a unique
fixed point on E. We claim that ||u/|z < R. Indeed, letting v = 0 in
(49) gives

(Bu,) 2 (1= (a+ °F ) JIull = 1£@.0.0)allull > 0

for ||ul|]2 > R.
Hence ||u|l2 < R, as claimed.

Proceeding as in the proof of Theorem 5, it follows that u(z) = [

o U
is the unique solution of (17). O

Remark 7. The virtue of Theorem 6 is that f may take a bounded
subset in H into an unbounded subset.
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