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ABSTRACT. Familiar oscillation criteria of Wintner [11]
and Hartman [7] for the equation (1) y"” + g(t)y = 0 on
[0,00) using limits of the mean (1/t) fot(fos q(u) du) ds have
been extended by various authors in many ways. For equation
(1) itself, these extensions have included the use of weighted
means [3, 10, 9] or of iterated weighted means [5]. Other
extensions of the scalar results have been made to the matrix
equation (2) Y + Q(¢)Y =0 [1, 2, 6] and to the self-adjoint
matrix equation (3) (PY') + Q(¢t)Y = 0 [4]. Meanwhile,
Hartman [8] gave conditions on very general means which
allowed simplification of the proofs in [5] and which properly
included their results and some others. In this paper, all these
considerations are combined to derive improved results for (5).

1. Introduction. In 1949, Wintner [11] proved that a hypothesis
sufficient for the oscillation of

(1) Y +q(t)y=0

is

(2) lim 1/Ot /OS q(u) duds = +o0.

t—oo t

In 1952, Hartman [7] weakened this hypothesis to the following:

t—o0

1 t s
lim inf ;/ / g(u)duds > —oco and
(3) 0 Jo

o1
lim —
t—oo

t s
/ / g(u)duds does not exist.
0 Jo
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Crucial to Hartman’s generalization is the following lemma.

Lemma A. Assume that (1) is nonoscillatory. Then the following
are equivalent:

) For some solution r(t) of the related Riccati equation r' =

(i
q(t) + 172, [T r2(t) dt exists;

(i) limg_yo0(1/t) fo [y a(u) duds eists;
(iii) liminf, . (1/%) fo fo u)duds > —oo.

A number of authors have since made use of the ideas and techniques
of Hartman’s paper to extend his criterion (3) and Lemma A using
weighted means (Willett [10], Macki and Wong [9]), and to matrix
equations (Butler, Erbe, and Mingarelli [1]). Others have extended
the original criterion (2) of Wintner using weighted means (Coles [3])
and iterated weighted means (Coles and Willett [5]); these results have
also been extended to matrix equations (Byers, Harris, and Kwong [2],
Coles [4]).

The matrix equation
(4) Y"+ Q)Y =0

was considered in [1, 2, 6] and the results in [2] were extended in [4]
to the self-adjoint matrix equation

(5) (PH)Y) + Q)Y =

with hypotheses that were more general in other ways. Equation (5)
must be considered separately from equation (4) because, unlike the
scalar case, there is no oscillation-preserving transformation of the
independent variable that allows passage between the two forms.

Meanwhile, for the scalar equation (1), Hartman [8] had defined
a summability kernel more general than the iterated means used in
[6] and thereby was able to simplify the proofs and to weaken the
hypotheses in [5], finally obtaining a generalization of his own Lemma
A and criterion (3).

In this paper we draw on Riccati methods, a generalized kernel like
that in [8], and other ideas from the papers cited above to obtain
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an extension of Lemma A and Hartman’s (3) (and the corresponding
results of [1]) to the self-adjoint matrix equation (5), with proofs as
relatively simple as those of Hartman [8]. We also apply the same
method of proof to obtain an improved version of the theorems in [4]
which generalize the original Wintner criterion (2).

2. The setup and the statements. Consider the n X n matrix
differential equation (5) on [0, 00) where P(t) and Q(¢) are real, contin-
uous, and symmetric, and P(t) is positive definite. A solution Y (¢) is
prepared if Y*(PY') = (PY')*Y. Equation (5) is said to be oscillatory
on [0, c0) if, for each a > 0, the determinant of each nontrivial prepared
solution has a zero on [a, 00).

If Y(t) is a prepared, nonoscillatory solution of (5), then R =
—PY'Y ! satisfies the matrix Riccati equation

(6) R =Q+RP'R

on [a,0), where a exceeds the largest zero of det(Y (t)). The integrated
form of (6) is

(7) R(t) = C(a) + Q1 (t) + /t RP™'Rds

where Q1 (t) := f; Q(s)ds and C(a) := R(a) — Q1(a). Our proofs will
be based on (7).

For an m x n symmetric matrix A, A;(A4), A,(A), and tr (A4) shall
denote, respectively, the largest and smallest eigenvalues and the trace.

We consider oscillation criteria for (5) in terms of general means of
symmetric matrix-valued functions F(t):

[ sy as,

where K(t,s) > 0 is real-valued and continuous for 0 < s < ¢,
0 < t < oo. The following are hypotheses on K (¢,s) (and P(t)) that
will occasionally be assumed (f(t) denotes an arbitrary continuous real-
valued function).

(H1) [o K(t,8)M\(P(5))f(s)ds — 0 as t — oo if [ f(s)ds exists;
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(H2) fothS s)ds —0ast— ooif f(t) = 0 ast— oo;
(H3) fOths ds—O(l) as t — 0o;
(H4) fOtK s)ds — oo as t — oo if f(t) — oo as t — oo;

(H5) There exists a continuous function k(t) > 0 and a positive
definite matrix C(t, s), continuous for 0 < s < ¢, 0 < t < oo, such that

(i) g(t,s) := (0/01) fst k(t)K(t,s)ds > 0 exists and is continuous
for0<s<t 0<t<o0,and
(i) g(t,s)P1(s) > k%(t)K?(t,s)C1(t, s) for s sufficiently large and
s <t < oo, and
(iii) for H fo (t,s)ds, [Z A (H™(t)) dt = 0o or limsup,_, o,
) A )) dt > 0.

Remarks. (1) Our technical condition (H5) is simpler than the
corresponding technical condition (d) of Hartman [8], and, furthermore,
the latter condition implies (H5) even in the scalar case; we omit the
proof.

(2) See Hartman [8] for examples of kernels satisfying (his formula-
tions of) the hypotheses.

(3) It will be seen from the proof of Theorem 2.1 that (H1) can be
replaced by the weaker hypothesis:
fo (t,s)F?(s)ds — 0 if [*(FP~1F)(s)ds exists.

This is a condition on fg K(t,s)(-)ds as a quadratic mapping on the
space

L3(P) = {X (1) : / T(XTP1X)(s) ds exists).

We retain hypothesis (H1) because it is closer to the idea that
fot K(t,s)(-) ds is a generalized summability method.
In our generalization of Lemma A (and Lemma 5.1 of [1]), we will use

hypotheses (H1) through (H5) to obtain a chain of implications among
the following collection of statements.

(S1) For every prepared nonoscillatory solution Y (¢) of (5),
[T (RP~1R)(s) ds exists, where R = —PY'Y "1,
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(S2) There exist a > 0 and a symmetric matrix C; = Cy(a) such

that
t

t1—1>r£o K(t,s)(Q1(s) — C1)*ds = 0.

a

(S3) There exist a > 0 and a symmetric matrix C; = C}(a) such
that
t
tliglo K(t,s)(Q1(s) — C1)ds =0,
(S4) ¢
lim inf/ K(t,s)tr (Q1(s)) ds > —o0.
0

t—o0

The limits in (S2) and (S3) can be interpreted in the operator norm
sense, but our proofs will use the equivalent entrywise sense.

Theorem 2.1. Assume that (5) is nonoscillatory.

(a) If K(t,s) satisfies (H1) and (H2), and if (S1) holds, then (S2)
holds;

(b) If K(t,s) satisfies (H3) and (S2), then (S3) holds;
(c) If K(t,s) satisfies (H4) and (S3), then (S4) holds;
(d) If K(t,s) satisfies (H3), (H4), (H5), and (S4), then (S1) holds.

Remarks. (1) If the additional hypothesis

T
(H6) / K(t,s)ds — 0 as t — oo for T' > 0 fixed
0

is satisfied, then (S2) and (S3) can be replaced, respectively, by

(S2') there exists a constant symmetric matrix C; such that
t
lim [ K(t5)(Qi(s) —C1)*ds =0,

t—oo 0
and

(S3') there exists a constant symmetric matrix C; such that

t

lim K(t,s)(Q1(s) — C1)ds =0.

t—o0 0



24 W.J. COLES AND M.K. KINYON

(2) If (H6) and

t
(H7) lim inf/ K(t,s)ds >8>0
0

t— o0

are satisfied, then in (S3'), we have

t—oo

Cy = Tim (1/ /0 K(t, 5)ds) /0 K(t, 5)Qv(s) ds.

We reap the rewards of Theorem 2.1 in the following oscillation cri-
teria. Parts (a) and (b) extend Theorems 2.1(B) and 2.1(A) of [1],
respectively.

Theorem 2.2. Suppose K(t,s) satisfies (HI), i = 1,...,5, and
suppose (S4) holds.

(a) If t
lim sup /0 K(t, )\ (Q1(s))? = 00

t—o0
then (5) is oscillatory.

(b) If )
lim sup/0 K(t,s)A\1(Q1(s)) ds = oo,

t—o0

then (5) is oscillatory.

We now turn our attention to an extension of Theorems 1 and 2 in
[4]. Before stating this result, we establish some notation. Set

S, = {t >0 Al{/OtK(t,s)Ql(s) ds} > p/OtK(t,s) ds},
5u(t) = 5N [t,00),
0 = [ KoK s

L(1) := lim sup j (1) /S @) ds

t—o0
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Theorem 2.3. Suppose parts (i) and (i) of (H5) hold. Then each
of the following is sufficient for oscillation of (5).
(a)
limsup,u/ A (H™Y(s))ds > ,L;
S o0

p—o0 " j(o0)

(b)
lim sup puL(p) > n.

p— 00

Note that part (ii) of (H5) implies that j(co) = lim; o0 j(t) < o0
makes sense.

3. The proofs. As usual, for symmetric matrices A and B, we write
A > B tomean A — B > 0, i.e., A — B is nonnegative. We will be
using various properties of this ordering; in particular, for A, B, C, and
D symmetric, we have:

A>B= CAC > CBC,
A>B,C>D=A+C>B+D,
ALZB,B>C=AZC,
A>0,A%B,C>0= ACA ¥ BCB,
AL B,B>0=tr(A) > \,(B),
C>0= (A+B)C(A+ B) <2ACA +2BCB.
(Proof of the last property: (A+ B)C(A+ B) < (A+ B)C(A+ B) +
(A—B)C(A—B)=2ACA+2BCB.)

We also need the following lemma. It is a matrix extension of the
Schwarz inequality. We refer the reader to [4] for the proof. As noted
in that paper, this lemma provides a way to prove theorems for (5)
rather than (4).

Lemma 3.1. If X(¢t) and Y (t) are integrable on [a,b], and if f: Y*Y
is nonsingular, then

</abX*Y></abY*Y>_l(/:y*X> S/:X*X,
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Corollary 3.2. If A(t) and B(t) are symmetric and if A(t) > 0,
then
b b b \N-1, sb
Foes ([(£97([)

Proof. Take Y = A'? and X =Y !B in Lemma 3.1. 0O

Proof of Theorem 2.1. (a) Suppose [~ (RP~'R)(s)ds exists. Then
we can rewrite the Riccati integral equation (7) as

R(t) + /too RP™'Rds = Q:(t) — C1,

where C1 := —R(a) + Q1(a) — [° RP"'Rds. Squaring, applying
K(t,s), integrating, and using the last listed property of symmetric
matrices, we find

b t
/ K(t, 8)(Qu(s) — C1)?ds < 2/ K(t, s)R?(s) ds

t [e%) 2
+2/ K(t,s)</ RP1R> ds

<2 [ KM PE)RP R)() ds

+ 2/:K(t, s)</:o RP1R>2ds.

We apply (H1) entrywise to the first term on the right hand side and
apply (H2) entrywise to the second term to obtain

/bK(t,s)(Ql(s)—Cl)st%O as t — oo.

This proves (a).
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(b) By Corollary 3.2,

b
| Ko@) - s
;( [ K@ -cas)
([ ooy 2o

Since the left side tends to zero, so does the right side, and (H3) implies
that the denominator is bounded, so

I V

/tK(t,S)(Ql(S)—Ol)dS—)O as t — oo.

This proves (b).
(c) Taking the trace of (S3), we have
t

lim K(t s)(tr (Q1(s)) —c1)ds =0,

t—o0

where ¢; = tr (C). Now

lim inf t K(t,s)tr (Q1(s)) ds > liminf ’ K(t,s)tr (Q1(s))ds
t—o0 0 t—o0 0
+ liminf / K(t, 5)tr (Q1(s)) ds

Estimating the first term, we find

lim inf K(t s)tr (Q1(s))ds > — [nax [tr (Q1(3))] lim inf/aK(t, s)ds

t—o0 0

> — max |tr (Q1(s |hm1nf/Kt s
0<s<a
> —00,

using (H3).
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Next we compute

lim inf / UKt )t (Qu(s)) ds

= liminf tK(t, s)(tr (Q1(s)) —c1 +c1)ds

t—o0 a

t— o0

t
> lim inf / K(t,5)(tr (Qu(s)) — c1) ds
T
+1iminfcl/ K(t,s)ds
|cl|hmsup/ K(t,s)ds

f|cl|1imsup/ K(t,s)

t— o0

> —00,
using (S3) and (H3). This proves (c).

(d) Suppose [~ RP’les does not exist. Then tr ([*° RP~'Rds)

does not exist. Set S(t f K(t,s) [T tr (RP'R)(u) duds. We
apply K (t,s) to equation (7) integrate, and take the trace to find

®)
/a K(t, s)tr (R(s)) ds — —s / K(t,s)

+ / K(t, s)tr (Ql(s))ds—i—%S(t),

where c(a) = tr(C(a)). Hypothesis (H4) implies that S(t) —
oo as t — oo; hypothesis (H3) implies that c(a ftK t,s)ds >

‘fo (t,s)ds is bounded below. These together with (S4) show
that the rlght hand side of (8) is positive for sufficiently large ¢t > 0.
Thus,

(9) / K(t, 5)tr (R(s)) ds > %S(t)
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for sufficiently large t. Now

(10) /t k(t)K(t,s) / tr (RP™'R) duds

a :/at{/:k:(t)K(t,u) du}tr(Rp—lR) ds,

so using (H5) and Corollary 3.2, we compute, for a sufficiently large,

(/gts )(RP~ 1R)()d>
( / K2 (t R(s)C\(t, s)R(s) ds>
e froseomo) v
| / HOK (L RG) ds) |
>u{(f RO)K (1, ) R(s) as)iof [ HOK(1,9)R(s) a)
> on o] ([ K ores) )
> E0 ([ wte o re) as) )

Thus, using (9) we have

(KSY (1) > 3 A (H (1) (RS)*(1),

for ¢ sufficiently large. We divide by (kS)? and integrate the resulting
differential inequality. For ¢t > b > a, this gives

]. ]_ 1 1 t 1
k0)SB) — kB)SG)  KOSWH — @/b An(H™(s)) ds.

This contradicts the first alternative of (H5)(iii). Thus,
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Letting b — oo, we contradict the other alternative of (H5)(iii). This
completes the proof of (d) and the proof of Theorem 2.1. o

Proof of Theorem 2.2. (a) We compute
| Ko@) ds < [ K@) ds
0 0
:/0 K(t,5)M((Qi(s) — Cr + C1)?) ds
<2 [ Ko@) - 0 ds
0
+2)\101/0 K(t,s)ds
< 2tr {/0 K(t,s)(Q1(s) — C1) ds}
+ 2)\1012/ K(t,s)ds.

We estimate the first term on the right hand side. Setting u(a) :=
maxo<s<a tr {(Q1(s) — C1)*}, we find

wf [ K@) - vtas)

= { [(K @) -cras +or [ Kt @) - cas)
<o) [ Ktoyds+ie{ [ Kt @) -0 ds)

<o) [ Ko)ds+ar{ [ Ko@) - o as).

Thus
/0 K(t, )\ (Q1())2 ds < (201 (C2) + 2u(a)) /0 K(t,s)ds

+tr{/atK(t,s)(Q1(s)—Cl)2ds}.
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Since (S4) and (HI), ¢ = 1,...,5, all hold, (S2) holds, and thus the
second term on the right side approaches zero. By (H3), the first term
is bounded above. Thus, the entire right hand side is bounded. This
contradiction proves the result.

(b) By the Schwarz inequality,

/Ot K(t,5)A1(Q1(s))? ds > m </0tK(t,s))\1(Q1(s))d8>2_

By part (a), the left hand side approaches zero and so the right hand
side must approach zero. Hypothesis (H3) shows that the denominator
is bounded, so fot K(t,s)A1(Q1(s))*ds — 0 as t — co. This proves (b).
O

Proof of Theorem 2.3. Assume that Y (¢) is a prepared, nonoscillatory
solution of (5), and let R = —PY'Y ! be the corresponding solution
to the Riccati equation (6) on [a,00). For t > b > a, integrate this
equation to get

R(t) = C(b) + Q1 (t) + /bt RP~'Rds,

where C'(b) = R(b) — Q1(b). We apply our kernel and integrate:
" /b K(t,s)R(s)ds = {/b K(t,s) ds}C(b) +/b K(t,5)Q1(s) ds

t s
+ / K(t,s) / RP 'Rduds.
b b
We now estimate from below the terms on the right hand side of (11).

First,
C(b) = An(C(0) - I = =[An(C ()] - I,

{/btK(t,S)ds}C(b) > —{/btK(t,s)ds}|)\n(C(b))|_I

_{ /OtK(t,s) d3}|)\n(0(b))| I

SO

(12)

Y
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Next,

t t b
/b K(t,5)Q1(s)ds = / K(t,5)Qu(s) ds + / K(t, 5)Q1(s) ds,

so by the convexity of Ay (-),

[ Ko@)z [[Keaa i)
[ K@i
oo [ Ko@)
- [ K@@

Now

)\1{/ K(t,5)Qu(s) ds}

/ K(t,5)|\(Qi(s))| ds
Soréljlgbp\l Q1(s))] - /OK ,8)ds
t
< max (@) / K(t,s),ds

= 'y(b)/o K(t,s)ds

Thus, for t € S,,(b),

Al{/KtsQl ds} (u— (b /Kts

In terms of matrix inequalities, this means

(13) /Kle Yds £ (1 — (b {/Ktsds}
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Combining (11), (12) and (13), we have

[ temioyas 2 - onf [ e}
+/b K(t,s)/b RP'Rduds

for ¢t € S,(b), where f(b) := v(b) + |An(C(b))|. For t > b, let B(t)
denote the right hand side of (14), and set A(t) := k(¢t)B(t). As in
equation (10), we have

(14)

(15) /bt k(t)K(t,s) / RP'Rduds

b = /bt { /: k(t)K (t,u) du}RP—les.

Thus,

A(t) = (u— FB)g(t, )”/,, o(t, s)RP~'Rds,

using part (i) of (H5). Now choose b > a large enough that, for
t > s > b, part (ii) of (H5) is applicable. Then choose p sufficiently
large so that u > f(b). Then, using Corollary 3.3, we compute

'(t) > K2(t) /t K2(t,s)R(s)C*(t,s)R(s) ds
b

v [ somosr o [ xuomos)

Thus, for t € S,,(b) we have

A'(t) £ K*(t)B(t)H ' ()B(t)
= A(t)H™ (t)A(t)
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using (14).
Thus
ATH)A (AT £ HTY(t),  te Su(b),

(—tr (AX0)) = M(H(D),  tE Sub).
Integrating the left hand side from 7" > b to ¢, we have

u(A-%Iv>Ztrc4-%T»-—n«A—1u»:=/C<—n<A-%s»yd$

thus

oo

(16) A D)= [

T

(—tr(A1(s))) ds > / Ao (H1(5)) ds.

S5u(T)

We estimate the left hand side of (16) by using the definition of A(t):

tMA4@D=H{w—f@M@%I

(17) +/b k(T)K(T, s) ds/b RP_IRduds}
< tr{(u - F(0)I(T) - 1}

~ (u = F@)IT)
From (16) and (17), it follows that

(18) .Aﬂm*“H’(@”“S(u—fw»ﬂTy

For T fixed, choose p so large that S, C [T, 00). Then from (18) we
have
limsupu/ A\ (H (s))ds < ,L,
uooo  Js, i(T)
S0
n

limsup,u/ An(H7H(s)) ds < ——.
b fo AnlH ) s < 500
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This contradicts (a).
Next note that (18) implies that

1 n
@ [ T e)ds <
and so n
L(p) < D)
Therefore,

limsup puL(p) < n.

00

This contradicts (b) and completes the proof of the theorem. O
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