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SPATIALLY NONTEMPERATE PSEUDODIFFERENTIAL
OPERATORS, SPHERE EXTENSIONS
AND FREDHOLM THEORY

HOUSHANG H. SOHRAB

0. Introduction. There are two main approaches to the global
study of pseudodifferential operators, henceforth abbreviated YDO’s,
on a noncompact manifold which, in what follows, will always be the
Euclidean n-space R™. In the first (and most commonly used) ap-
proach, the “calculus method,” one starts with certain classes of “sym-
bols” having suitable growth conditions with respect to appropriate
weight functions, and one then assigns a DO to each symbol via the
Fourier inversion formula. The detailed analysis of this method is given,
e.g., by L. Hérmander (cf. [5, vol. III, and its bibliography]). Going
in the opposite direction, the second approach, the “Gelfand theory
method,” begins by constructing certain “comparison” C*-algebras of
UDO’s based on suitable Schrédinger-type operators, and then uses
Gelfand theory to attach a “symbol” to each ¥DO. This method is
developed in detail by H.O. Cordes (cf. [3] and the references therein).
Our goal in this paper is to look at the relation between the above meth-
ods, by following both of them in a rather general situation. In Section
1 we follow the “calculus method,” introducing a class of symbols, not
necessarily temperate in the space variables, with weight function

(0.1) h(z,€) = (a(z) +[€[*)"/?

where g(x) is a smooth (i.e., C*°(R™)) function satisfying

(0.2) q(z) >1, VaeR", | l‘im q(z) = oo,
and
(0.3) |0zq(2)| = o(q(x)), as |z| = oo,
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with 0, = (0z,,--.,0s,),0z; = 0/0z;. As will be seen in Lemma
1.1 below, condition (0.3) may, in fact, be replaced by the stronger
condition

(0.4) 1079(x)| = o(q(x)), as|z| o0, VO#peZl,
with 9% = 9f1 ... 9P,

Conditions (0.2) and (0.4) are assumed to hold throughout the paper.
Using a suitable set of generators, a C*-algebra A, of YDO’s with
compact commutators is then constructed and studied. In Section
2, we construct and study another C*-algebra, also with compact
commutators, this time using the “Gelfand theory method,” where,
with ¢(z) as above, our basic Schrédinger operator will be H = —A+q.
In Section 3 we prove that the algebras A, and A, are in fact identical
and provide us with a large class of “sphere extensions,” one for each
potential g(x). The connection between the symbols attached to ¥DO’s
by means of the above methods is then considered in Section 4, where
we also discuss necessary and sufficient Fredholm criteria.

1. The C*-algebra A, (The Beals Algebra). In this section we
shall summarize the results of [13], where a C*-algebra A of YDO'’s
will be constructed using the calculus approach suggested to the author
by Professor R. Beals. Let g(z) € C*°(R") satisfy (0.2) and (0.3). Then

we have

Lemma 1.1. (a) ¢(z) = o(efl*!), as |x| — oo, for all € > 0.
(b) There exists ¢ € C>®(R"™), such that lim§(z)/q(z) = 1, as
|z| — 00, and that § satisfies (0.2) and (0.4).

(c) Let h(z,€) = (q(x) +[€[*)'/*, and h(z,€) = (4
G as in (b). Then as |z| + || — oo, lim h(x,&)/h(z
a, B €LY, la| = Xay,

(1.1) h(z, €) 171G (2, €)] = O(1);

; () _ g« 7
(and o(1), if B # 0), where h(ﬂ) = 0¢ OPh.

() + [€[*)"/2, with
,€) =1, and for all

Definition 1.2. Let h(z,£) be as in (0.1), with (0.2) and (0.4)
satisfied. Then, for each m € R, the class S™ = S™(R" x R"), of
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symbols of order m is the set of all a € C*°(R"™ x R™) such that for all
multi-indices o, 5 € Z7, we have, as |z| + [{| = oo,

(1.2) h(z, €)= a5 (2,€)| = O(1);

and o(1), if B # 0. One then defines S~°° = NS™, and S = US™.

Remark 1.3. (a) Equation (1.1) implies that h € S1.

(b) S™ is a Fréchet space, if the suprema of the left sides of the
relations (1.2) are used as semi-norms.

(c) Ifae S™, be S™, then agg; e §m=lal gp e §mtm’ Moreover,

the map (a,b) — ab is continuous.

The corresponding classes of ¥DO’s are defined in the following

Theorem 1.4. Let a € S™. Then, with u € S and 4(§) =
[em ™ 8u(z) dz,

a(z, Dyu(z) = (2m) " / e a(z, £)i(€) dE € C®(R™),

and the bilinear map (a,u) — a(z,D)u is continuous. Also, the
commutators with D; = —id/0x;, and x; are given by

la(z, D), D;] = ia(j)(z, D),

1.3 )
(1.3) la(z, D], z;] = —z'a(J)(m,D),

with agjy = 0a/dzj, and a¥) = 8a/0¢;. a(z,D) is called a ¥DO of
order m with “symbol” a(z,§), and we define the corresponding class

of operators
U™ = {a(z,D):a € S"}.

Remark 1.5. Notice that ¢(z) is not necessarily temperate. Consider,
for example, q(z) = exp({x)'/?), where (z) = (1 + |z|?)'/2, so that for
an operator a(z, D) € ¥™ m > 0, and a function u € S, a(z,D)u ¢ S
in general. However, if m < 0, then a(z,D) : § — S. In fact, if we
consider Héormander’s basic symbol class,

S{'fo ={a € C®R"xR"): ‘aEg;(%g)‘ < Cop(1+ |£|)m—\a\},



504 H.H. SOHRAB

then S™ C S, for all m < 0, and the global calculus in [5, vol. ILI]
can be applied. The main facts regarding the operators in ¥ m < 0,
are summarized in the following theorems. The proofs may be found
in [13], except for the positivity of ¢*/2h~1(z, D) + K in Theorem 1.7,
which will follow from the proof of Corollary 3.4.

Theorem 1.6. (a) Let a(x,D) € ¥™, b(z,D) € ™, m < 0,
m’ < 0. Then the adjoint operator a(z, D)* = a*(x, D) € ¥™, and we
have the asymptotic expansion

a*(xz,€) ~ > 0g Dgalx,§)/al.
Also, a(z,D)b(z,D) = ¢(z,D) € Umtm' with the asymptotic expan-

si0n
c(x, &) ~ Z Oga(z, §)Dyb(x, &) /al.

(b) Every a(x,£) € V° is a bounded operator of H = L*(R"), and
the norm ||a(z, D)|| is bounded by a finite number of semi-norms of a
in S°. In particular, ¥° is a *-subalgebra of the algebra L(H) of all
bounded linear operators of the Hilbert space H.

(c) Ifa € S° and lima(z,€) = 0, as |z|+|¢| — oo, then a(z, D) € K,
where K = KC(H) is the ideal of compact operators of H.

(d) o™ C K for allm < 0.
e) Ifa e S° is real-valued, i.e., a = a, then a(x,D)* — a(z,D) €

(g) Ifa€e S then a(z,D) has essential spectrum
M, = ess-sp (a(z, D)) = {u : lima(z”, &) = u},

for some sequence (¥, "), with |z¥| + |€¥] — oo.

Next, with (z) = (14 |z|?)'/2 and 1 < j < n, consider the symbols

gy M@ =z/@, @) =q@) R
a;(2,€) = &h(x,€) 7.
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These are easily seen to be symbols in SY, with corresponding operators

x;/(x), ag(z, D) = q1/2(x)h_1(w,D),

(1.5) .
aj(va) =h (va)Dja

where we use the notation h=% = 1/h*.

Theorem 1.7. (a) ao(x, D) + K is positive and aj(z,D) + K is
self-adjoint, 7 =1,... ,n.

(b) The joint essential spectrum of the operators (1.5) is given by

M = j —ess-sp (A1(z),... , An(x), Ao, A1, ..., Ay)
= 9(B" x S) = g2l

Here, the operators in (1.5) are denoted \j(z) = z;(z)" !, Ay =
ao(z, D), and A; = aj(xz,D). Also B" is the ball-compactification of
R", induced by the homeomorphism X\ : x — x{x)~! of R" onto the

open unit ball B® = {x : |z| < 1}. Finally, 0 denotes the boundary and
S 1is the upper hemisphere

5% ={(to,t) e R 10 < tg < 1,83 + |t|* =1}
(c) With notations as in (b), consider the C*-algebra
(1.6) Ap = C* (K, A1 (), ..., (), Ao, A1, - .., Ap),

where C*(...) denotes the unital C*-algebra generated by (...). Then
Ap has compact commutators, and we have

Ay /K =2 C(O(B™ x ST)) = C(S*1).

2. The C*-algebra A. (The Cordes Algebra). In this section we
summarize the main results of [11] and use the technique of “compari-
son algebras,” due to H.O. Cordes, to construct another C'*-algebra
of YDO’s with compact commutators. As before, we assume that
q(z) € C°(R") satisfies (0.2) and (0.4), and consider the Schrédinger
operator

Hy=—-A+q, Dom (Hp) = C5°(R™),
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on the Hilbert space H = L2. Then all the operators HJ", m =
1,2,3,..., are essentially self-adjoint on C§°(R™), and the correspond-
ing closures, denoted by H™, are self-adjoint with dense range. Now
consider the operator A = H~'/2 which is positive and compact, and
introduce the C*-algebra

(2.1) Ao =C*(K,zy(x) Y. zn(z) "L ¢Y2A, DA, . .., DyA).

For the following facts about A., we refer to [11] (cf. also [3]).

Theorem 2.1. (a) The C*-algebra A. of (2.1) has compact com-
mutators: [Ae, A] C K. In particular, [¢*/?,A?] = AKoA and
[Dj,Az] = AKjA, Ko, KJ’ S IC, 1 S ] S n.

(b) ¢/2A+K is positive and DjA+K is self-adjoint for j =1,... ,n.

() Ac/K=C(M), with M = §(B™ x S7) = §?n—1,

(d) Letvy:A./K = C(M) be the Gelfand map and 7 : A. — A./K
the natural projection. Define the symbol homomorphism o = yo 7 :
A. — C(M), and for each A € A., its symbol (or o-symbol) by
o4 = o(A) € C(M). Then, for each mazimal ideal m = (s,tp,t) €
O(B™ x S§1) =M, and each compact K € K,

Umj/(z)(m) = Sj, Uql/zA(m) =1y,

(22) O'DjA(m) = tj, O'K(m) =0.

(e) If 4 € C*(R™) also satisfies (0.2) and (0.4), and if §(z)/q(x) —
1, as |z| — oo, then with H = —A + §, and A = H Y2, we have

(2.3) HP[H™" H '|H™ € K,

for all r,t,p, 7 € [0,1], satisfying p+7 < r+1/2. As a consequence,
we have ¢*/2A — §*/2A € K, and D;A — D;A € K, and if A. is the
corresponding C*-algebras as in (2.1), we have A. = A..

3. A, = A. (set theories equality of the Beals and Cordes
algebras). We will prove the following theorem which shows that the
C*-algebras Ajp and A, defined by (1.6) and (2.1) are, in fact, identical.
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Theorem 3.1. With notations as in Sections 1 and 2, we have

(3.1) ¢*?h " Y(z,D) = ¢"/?A  (mod K),

(3.2) h Y(z,D)D; =D;h ' (z,D)=D;A (modK), 1<j<n.
In particular, Ay = A..

Remark 3.2. The calculus in Section 1 was given for S™, m < 0,
because the symbols in S™, m > 0, are not in general temperate in
z-variables. In particular, if A € U™, B € U™ then AB is not in
general defined for m’ > 0. However, it is obviously defined for all
m' < 0, and we will use such compositions in what follows.

Theorem 3.1 will follow from Corollaries 3.4 and 3.6 below.

Lemma 3.3. There is a compact ¥DO K € ¥~ C K such that

(3.3) h~2(z,D) = A* + A’K.

Proof. Differentiating formally under the integral sign in h=2(z, D)u,
for a function u € S, we get

Hh™2(z, D)u(z) = (—A + q(z))h~%(z, D)u(z)
= (2m) " [ H((a+ IeP) i) de

Now ) )
e—zz.ﬁ(q — A)(e”g(q(fv) + |£‘2)_1) =1+ k(xaf)a
where

k(z,€) = 2(quye, + 2i€q2,)(q + [€]7) 72
—2%(q0,)* (¢ + |€) 2 e ST

Thus, with K = k(z,D) € ¥~!, we have Hh=?(z,D) = I + K, from
which (3.3) follows at once. o
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Corollary 3.4. We have ¢*/?h~'(z,D) = ¢*/?A (mod K), i.e.,
(3.1) holds.

Proof. From (3.3) we get
(3.4) qh™2(z, D) = qA* + gA’K.
Now, by the calculus in Section 1, we have

qh™%(z, D) = (¢*/*hY(z,D))?* (mod K),
¢**hY(z, D) = (¢*/*n~Y/?(z, D))? (mod K),
and the operators ¢*/?h~(z,D) and ¢'/*h~'/?(z,D) are both self-
adjoint (modK), because they have real-valued symbols. In particular,

the operator ¢'/2h~'(x, D) + K is positive. On the other hand, by the
compactness of commutators in Section 2, we have

gA? = AgA = (¢2M)* (¢*/%A)  (mod K),
and ¢/2A + K is positive. But then (3.4) implies
(q1/2h_1(av,D))2 = (ql/ZA)2 (mod K),

from which (3.1) follows by taking square roots. o

Lemma 3.5. The operators (1 — A)Y?h=(z, D) and (1 — A)Y/2A
are both positive (modK), and we have

(3.5) (1—A)2h Yz, D)= (1—A)Y?A  (mod K).
Proof. First note that (¢) = (1+|¢|?)Y/? € Sig,and b=z, €) € Sié,
and we have (1 — A)Y/2h~1(z, D) = ¢(z, D), with
c(z,€) = (2) " [ [ g e =€ ayan,
where, again, (n) = (1+ |n|?)/2. Also, h~(z, D)(1— A)'/? = d(z, D),

with
d(z,€) = (E)h~(,€).
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Now we have the asymptotic expansion

o(z,€) ~ d(x,&) + Y 9 (€)Dgh ™ (,€)/al,
a#0
which implies that
[(1—A)Y2 h (2, D) et CK.

However, h~(z,D)* —h Y(z,D) € U2 and ¥ 2(1 - A)/2 C ¥ 1 C
IC, so that the operator (1 — A)Y2h~1(z, D) + K is self-adjoint, and we
have

(3.6) (1-Ah"%(z,D)=((1-A)2r"Y2,D))®> (mod K).

Similarly, using the calculus, we can prove that (1—A)Y4h=Y/2(z, D)+
K is self-adjoint, and we have

(3.7) (1 —A)YY2h Yz, D)= (1 — A)Y*h=Y%(z,D))®> (mod K),

so that the operator (1 — A)Y/2h~1(z, D) 4 K is indeed positive. Next,
note that by the compactness of commutators in Section 2, we have

(1-A)A2=A(1-A)A = ((1—A)2A)* (1 - A)Y2A  (mod K).

On the other hand, the positivity of (1 — A)Y/2A + K is proved by
observing that, as in the proof of Lemma 2.2 in [11], we can show that,
for r,t,p, 7 € [0,1], with p+ 7 < r 4+ 1/2, one has, as in (2.3),

(1-2)Y[(1=A)"(¢-A)"|1-A) e K.
This implies that
(1—-A)2A = ((1 - A)Y*AY?)?2  (mod K)

and
[(1— Q)4 A2 ek,

from which the positivity of (1 — A)'/2A 4 K follows at once. Now,
from (3.3), we have

(1-A)h™%(z,D) = (1 - A)A% + (1 — AA’K,
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which, in view of (3.6) and (3.7), implies
(1 =22 Y (2, D))? = (1 — A)Y2A)?  (mod K),

and (3.5) is obtained by taking square roots. O

Corollary 3.6. We have
h~'(z,D)D; = Djh~*(z,D) = D;A  (mod K), 1<j<n,

i.e., (3.2) holds.

Proof. First, by (1.3), [h~'(z,D),D;] = ih(—];(a;,D) e Ul CK.
Next, using (3.5), we have

Djh~Y(z,D) = A1 - A2z, D)

A)7Y2(1 - A)Y2A = DjA  (mod K),

(1
(1

which completes the proof of the corollary and of Theorem 3.1. o

D;
D;

Remark 3.7. It follows from the results of this section that A, = A =
A, is in fact a sphere extension, in the sense that the short sequence

0—-K—A, = C(S*™ 1) =0

is exact (cf., e.g., [4]). In other words, we get a sphere extension .4, for
each smooth potential ¢(x) satisfying the conditions (0.2) and (0.4).

4. Fredholm theory in A4, = A4, = A.. To obtain Fredholm
criteria in the C'*-algebra A,, we will first explore the relation between
the Gelfand theory symbol, o4, of a ¥DO A = a(z,D) € A4 and its
calculus symbol, a(z,§).

Theorem 4.1. With the open upper hemisphere and open unit ball
defined, respectively, by

]

S = {(to,t) € (0,1] x [-1,1]" : 2 + [t|* = 1},
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and
o

B" ={z:|z| <1},

consider the map x : R™ x R" — B™ x S%, defined by

H(:E, 5) = ($<$>71, ao(I, 5)5 al(xa E)a ey an(ma 5))5
with the symbols ag,ay,... ,a, defined by (1.4). Then k is a homeo-
morphism, and for each operator a(x,D) € A,, the o-symbol of this
operator is given by the restriction
(4.1) Oa(e,p) = a0 K~ |O(B™ x ST),
where the continuous extension of a o k™! to B™ x ST is still denoted

aok™t. In particular, a(z,D) € A, is Fredholm, if and only if ao k™ *
never vanishes on d(B™ x S%) = §*—1,

Proof. That k is a homeomorphism is obvious. In fact, we have

K ot ) = (1 [sP) V3 g (s( ) ),
(s,t0,t) € B" x g‘i.
Also, with notations as in (1.4) and m = (s, o, t),
(4.2) X\jowrt(m)=s;, ag ok 1(m) = to, ajor t(m)=t;.
Next, consider the function algebra
B=C*"(M\(z),..., \(x),a0(z, ), a1(z,§),. .., an(z,§)).
Then, using &, we have B = C(B™ x S7), so that (4.1) follows from

Theorem 1.7, (2.2), Theorem 3.1, and (4.2) for the generators of the
algebra, and hence for other operators as well. o

Now, for each NV > 0, define the Nth Sobolev space Hy, by

Hy = Dom (A=) = Dom (HN/Q),
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and consider the linear partial differential operator

(4.3) L= Y auk(x)d*?D*, keZ,,
la|+k<N

where each aq r € C*°(R") is bounded, and has a continuous extension
to B™.

Lemma 4.2. The operators LAY and Lh=" (z, D) are in A,, and
we have

(4.4) LAN = Lh " N(z,D) (mod K).
More precisely, we have

(45) LAN = " aai(q/?A)F(D1A)* - (DyA)*  (mod K),
|| +k=N

and with notations as in Theorem 1.7 (b),

(4.6)

LhN(z,D) = L(h™ (z, D))"= D aadfAT - A" (mod K).
lo|+k=N

Proof. First of all, (4.4) follows from (4.5), (4.6) and Theorem 3.1.
Now (4.5) is a consequence of the compactness of commutators in
Section 2 and induction. Finally, (4.6) follows from the calculus in
Section 1 and induction. For instance, one sees that for all a, with
|a| +k < N, the operators ¢*/2D*h~=" (x, D) are all compact, while for
|| + k=N,

¢"?D*n=N(z,D) = ¢*/>h=N(x, D)D*
= Ak(h~Y(z, D))l* D>
= AkA® ... A% (mod K),

which completes the proof of the lemma. o
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Corollary 4.3. Let L be as (4.3). Then, for each mazimal ideal
m = (s,to,t) € I(B™ x §7) 2§21 we have

OLh—N(a,0)(8, 0, t) = opan (8, to,t) = Z Qo i (8)ERE™,
la|+k=N

where the continuous extension of aq, to B™ is still denoted aq . In
particular, L with Dom (L) = Hy, the Nth Sobolev space, is Fredholm
if and only if

Z ok (S)tHE* #0, ¥ (s,to,t) € O(B™ x S7) = §2n~ 1,
loe|+k=N

Proof. This follows at once from Lemma 4.2 and Theorem 4.1. O
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