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EQUIVALENT DYNAMICS FOR A STRUCTURED
POPULATION MODEL AND A RELATED
FUNCTIONAL DIFFERENTIAL EQUATION

HAL L. SMITH

In [4], the author established a relationship between the semiflows and
global attractors for a simple structured population model of juvenile
versus adult competition and a related functional differential equation
(FDE) constructed from an analysis of the model. Building on this ear-
lier work, we show in this paper that, under an additional assumption,
the semiflows of the two systems, restricted to their respective global
attractors, extend to flows which are topologically equivalent. In other
words, the long-term dynamics generated by the hyperbolic system of
equations representing the structured population model is faithfully
represented by the long-term dynamics of the FDE. In particular, the
wealth of theory available for the study of FDEs can be brought to
bear on the problem of determining the long-term dynamics for the
model. It should be emphasized that, at present, there does not exist
a correspondingly well-developed theory for the analysis of structured
population models.

Let us emphasize that the main point of this paper is to establish
rigorously that in order to study the asymptotic behavior of the model
system, it suffices to do the same for the simpler scalar FDE.

Future work will focus on describing the range of possible dynamical
behavior for the FDE. In [3, 5] it was shown that periodic solutions
can occur through Hopf bifurcation from the positive equilibrium.

The system of equations (1) below model the interaction of juveniles
and adults of a single species. Adults are viewed as identical in every
relevant aspect and their number is denoted by w. Juveniles vary in
their level of maturity = between a newborn level x = 0 and a pre-
adult level x = 1. Pre-adult juveniles mature to adults. Juveniles
acquire maturity at a rate dz/dt = P(w), that is, as a function of
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the (current) adult population size. Adults die at rate v and juveniles
at the maturity-level dependent rate 3(z). The rate of birth of new
juveniles is given by b(w). The appropriate equations are given by (see
[3, 4]):

0z
o P =
(t

w

—B(z)z, 0<z<1,t>0

. ) = —vw(t) + P(w(t))z(1,t), t>0

(1) P(w(t))2(0,) = b(w(t),  ¢>0
0)
)

= zo(z), 0<z<l1

wWo,

where wy > 0 and zp € Lﬁr, the cone of nonnegative functions in
the space of (equivalence classes) of Lebesgue integrable functions on
(0,1), P : [0,00) — (0,00), b : [0,00) — [0,00) are locally Lipschitz
continuous, b=1(0) = {0} and 3 : [0, 1] — (0, ) is continuous. Further,
we assume:

(H1) limy—yo0 P(u) = p exists. If p = 0, then P is decreasing for
large u. If p > 0 then u/P(u) is increasing for large w.

(H2) The inequality
(2) ’)/67'60’)_1 <w

holds where
v = limsup b(u) /u

U—r 00

and By = fo x) dw.

The reasons for assuming (H1) and (H2) will be clear later. For now,
we point out that (2) holds if either v or p are sufficiently small.

An interesting example of (1) with

P(w) =T, 'e™v
b(w) = yw
B(x) = Bo

is treated in [3]. In this example, the rate at which juveniles mature
decreases as the adult population size increases. Therefore, juveniles
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spend a longer time in the juvenile class, subject to the juvenile
mortality rate (possibly high relative to adult mortality). This is a
potential control on the population size. Note that (H1) and (H2) hold
for this example, the latter since p = 0.

The change of variables

3) s= /0 P(w(r))dr
Z(z,s) = z(z, 1), W(s) = w(t)

transforms (1) to an “aged-structured” form which is more easily
integrated. This system is

g—f * Z—Z = —B@)P(W(s)) "2,  0<a<l s>0
aw -1 S S
n s = WWE)PW(s) T + Z2(1,5), >0

P(W(s))Z(0,s) = b(W(s)), s>0
Z(z,0) = zo(z), 0<z<l1

The first equation can be easily integrated to give Z in terms of W as
follows:

zo(z—s)exp|— [§ B(@—s+r)P(W(r))~tdr], s<=
(5) Z(z,5) = | FOwisy

-exp[— sz B(z+r)P(W(s+r))~tdr], s> .

Putting z = 1 into (5) gives Z(1, s) in terms of W which can then be
inserted in the second of equations (4) to give the two equations

aw W (s)

ds ' P(W(s))

(6) s
—i—zo(ls)exp[/o Bl —s+r)P(W(r) tdr

0<s<1, W(0)=wp, and

W W), bW(s—1) .
D 2 = ey T PG o1)° W, el
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where 7 : 'y — R is given by

(¢) = K15(1 +r)P(6(r) L dr,

and where the initial data, Wi, for the FDE (7) is provided by the
solution of (6). C denotes the Banach space of continuous functions
on [—1,0] with the uniform norm and Cy is the cone of nonnegative

functions. The standard notation W, is used for the element of C
given by W,(0) =W(s+6), -1 <6 <0.
The following result, established in [3], basically says that, for each

(z0,wo) € LY x Ry, (6) can be uniquely solved for W(s), 0 < s < 1,
and the corresponding (zg,wp) — W has nice properties.

Proposition 1. There is a completely continuous map
H : L1+ X R+ — O+,

Lipschitz continuous on bounded subsets, such that if W1 = H(zg, wp),
then W(s) = W1(1 —s), 0 < s <1, is the unique solution of (6).

The FDE (7) generates a semiflow {T'(s)}s>0 on C} where W, =
T'(s)Wy is the state of the system at time s which at time 0 is Wy € C4.
Note that, following the usual custom for autonomous FDEs, we have
taken s = 0 to be the “start time” although in (7) the start time
s = 1 is appropriate for the functions W coming from (4). This causes
some awkwardness in formulas to follow, but hopefully will cause no
confusion.

By virtue of (H1) and (H2) (see [4, Corollary 1.3]), the semiflow T
has a global attractor A, that is, A is a compact, connected, invariant
subset of C'; which attracts bounded subsets of C'.

Once W is known by solving (6) and (7), then Z is determined by
(5). An elegant way of putting this simple observation was pointed out
in [4]. Define

G:Cy — L} xRy

by G(¢) = (¢,¢(0)) where
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It is not difficult to see that G is Lipschitz continuous on bounded
sets and that the following interesting relation holds on C*t (see [4,
Proposition 1.4]):

(8) T(1)=HoG.

In other words, given initial data ¢ € Cy for (7) and computing
Wy = T(1)¢ gives the same result as solving (6) with the initial
conditions (zg,wo) = G(¢).

Using the formula (5), it can be seen [4, Theorem 1.5] that (4)
generates a dynamical system on L}|r x Ry. That is, there is a semiflow
{U(s)}s>0, on LY x Ry such that U(s)(z0,wo) = (Z(-,s), W(s)) where
Z and W satisfy (4) in an appropriate sense (see reference above).
Moreover, (5) implies that

) U(s)=GoT(s—1)oH, s>1

and this relation, in turn, implies that U has the global attractor 4
where (see [4, Theorem 1.6])

(10) A=G(A).

Note that (9) implies U(1) = GoH. The relation (9) can be represented
by a commutative diagram

* xrt 29 1t Rt
HJ ]\G
O Ty O+

which holds for s > 1.

It is well known [1] that there is a correspondence between elements of
the global attractor A for (7) and initial data corresponding to bounded
global solutions W : R — R* for (7). It turns out (see [4, p. 23])
that the same correspondence holds for (4) and elements of A and,
furthermore, Z : [0,1] x R — R™ is C'! and satisfies (4) in the classical
sense.

In addition to the hypotheses (H1) and (H2) which were assumed in
[4], we now assume the additional hypothesis:
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(H3) T'(s)|a: A — Ais one-to-one for each s > 0.

We note that if P and b are analytic, then (H3) holds by [2, Theorem
4.1.2]. In particular, (H3) holds for the example described above
equation (2). See [6] for a discussion of the property (H3). When (H3)
holds, the restriction of T'(s) to A extends to a group of mappings,
where T'(—s) = T(s) !, s > 0. To emphasize that we restrict 7' (and
other mappings as well) we write T'4(t) = T'(t)| 4.

Restricting (8) to A, we see that (H3) and the fact that the attractor,
A, for (4), is given by (10) implies that both H 4 and G 4 are Lipschitz
homeomorphisms. In fact, by (8), G4 must be one-to-one and G4 :
A — Ais onto by (10). As T(1)A = A, it follows that H4 : A — A is
one-to-one and onto.

Theorem 1. If (H3) holds, then A and A are (Lipschitz) homeo-
morphic and the following commutative diagram is valid for all s € R:

A Ua (S) A
GIJ ]\GA
A A

TA (S)

ES

In particular, the flow generated by (4) on the attractor A is topologi-
cally conjugate to the flow generated by (7) on the attractor A.

Proof. First consider s > 1 and observe that, by (9),

Ua(s)=GaoTa(s—1)oHy
=Ga0Ty(s)oTa(— )OHA
=Gao0Ty(s)o(T () o Hy)
=Ga0Ta(s) oG

where the last step follows from restricting (8) to A. Therefore, the
assertion holds for s > 1.

In order to see that it holds foralls € R, fix s > 0,z € A, let 59 > 1
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and let y € A be such that Ux(sg)y = x. Then

Ua(s)z =Ua(s+s0)y =GaoT(s+s9) oGy
=GaoT(s)oG ' 0oGaoT(sp) 0GRty
=GaoT(s) oG, oUx(s0)y
=Ga0T(s)o G e

As z € A was arbitrary, we see that Ua(s) = G4 o T(s) o G holds
for all s > 0. It follows that U4(s) is one-to-one for s > 0 and that the
formula holds for all s by inverting both sides of the relation. O

We can say that the asymptotic behavior of (4) and (7) are identical
if (H3) holds. But what of the behavior of (1)? In [4, Theorem
1.8] it is shown that (1) generates a semiflow {S(¢)}¢>0 on L x Ry
which has the same global attractor A as {U(s)}s>o. Moreover, if
T Li x Ry — R is the projection onto the second factor, then

S(t) (20, wo) = U(s)(20,wo)

where s and ¢ are related by

(11) t— /0 P(ra(U(r) (20, w0))) L dr.

We denote this relationship by s = 7(¢, 29, wp). It simply reflects the
change of variable which is inverse to (3). In our final result, we
restrict S to the attractor A, showing that the dynamics of (1) and
(4) are topologically equivalent on the global attractor. For simplicity
of notation we write ‘a’ for a generic point of A.

Theorem 2. Let (H3) hold. Then there exists a continuous function
7:R x A — R satisfying:

(i) 7(0,a) =0,a € A.
(ii) There exists ki, ko > 0 such that

b < %(t,a) <k (ha)ERx A
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(iii) Sa(t)a=Ua(r(t,a))a, (t,a) € R x A.

In particular, the flows {Sa(t)}ter and {Ua(t)}er are topologically
equivalent.

Proof. The continuity of 7 follows immediately from (11). Assertion
(ii) follows since {m2(U(r)a) : » > 0} is bounded independent of a € A
and by the properties of P. Assertion (iii), for ¢ > 0, is just (11).

In order to see that S4(t) is one-to-one, suppose that a,b € A,
a # b, and S4(to)a = Sa(to)db for some to > 0. We may assume that
Sa(t)a # Sa(t)b for 0 < ¢t < tg. It follows that Ua(sqs)a = Ua(sp)b
where s, = 7(to,a), sp = 7(to, b) and, since U 4(s) is one-to-one, we can
assume that s, > sp and U4(s, — sp)a = b. Therefore, b belongs to the
U 4-orbit through a. Since the U4-orbit through a and the S 4-orbit
through a are identical, there exists a t; > 0 such that S4(t1)a = b.
Furthermore, ¢; can be taken as t; = 7(-,a) (s, — sp).

Now Sa(to)a = Sa(to)b = Sa(to + t1)a implies that Sa(t + t1)a =
Sa(t)a for all t > tg. Consequently, U4(7(t + t1,a))a = Ua(7(t,a))a
holds for ¢ > ¢y, which implies that, since U4 is one-to-one, U4(t +
w)a = Ux(t)a for all t € R where, e.g., w = 7(tg + t1,a) — 7(tg,a) > 0.

Given 0 < h < ty, let ap, = S(to — h)a, by = S(ty — h)b and
observe that ap # by, and S(h)a, = S(h)b,. The arguments above
imply that U4(t + wp)ap = Ug(t)ap hold for all ¢ € R where wy, =
7(h + tn,ap) — 7(hyap) and tp, = 7(-,ap) " (|7 (h,an) — 7(h,by)]). As
h — 0+, an — S(to)a, bp — S(to)a so by continuity, t, — 0
and wp, — 0. But a, belongs to the U4-orbit through e and so
Ua(t +wp)a = Ua(t)a holds for all ¢ € R and all small h. Therefore,
U.(t)a is periodic in ¢ with arbitrarily small periods. This implies that
a is an equilibrium. Since b = U4(sq — $p)a, it follows that a = b. This
contradiction proves that S4(t) is one-to-one for each ¢ > 0. O

Finally, note that S4(—t)a = b, t > 0, implies that a = Ua(7(¢,b))b
and b = U (—7(¢,b))a so 7(—t,a) = —7(t, Sa(—t)a).

The topological equivalence is the identity map on A.
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