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ON R.A. SMITH’S AUTONOMOUS
CONVERGENCE THEOREM

MICHAEL Y. LI AND JAMES S. MULDOWNEY

ABSTRACT. R.A. Smith [19] showed that his higher di-
mensional generalization of Bendixson’s criterion for the nonex-
istence of periodic solutions to an autonomous differential
equation implies that all bounded trajectories tend to an equi-
librium. Here it is shown that a similar conclusion can be
drawn from a generalized Dulac criterion. These conditions
are also shown to have strong implications for the structure
of invariant sets.

1. Introduction. Let the map z — f(z) from an open set D in R™
to R™ be such that each solution z(t) to the differential equation

(1) de/dt = f(z)

is uniquely determined by its initial value z(0) = z¢ and denote this
solution z(t, zy).

A point zg € D is wandering for (1) if there exists a neighborhood
U of zyp and T > 0 such that U N z(¢,U) is empty for all ¢ > T.
Thus, for example, any equilibrium, « limit point or w limit point is
nonwandering.

The closing lemma of Pugh [15, 16, 17] shows that if f is C" and z is
a nonwandering point which is not an equilibrium for (1), then there are
differential equations arbitrarily C"-close to (1) which have nonconstant
periodic solutions. Suppose now that f satisfies a condition which
precludes the existence of periodic solutions to (1). If the condition is
sufficiently robust that it is also satisfied by functions which are C"-
close to f, then the closing lemma implies that every nonequilibrium
point of (1) is wandering. In particular, every « or w limit set consists
entirely of equilibria; it follows that if the zeros of f are isolated, then
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every semi-trajectory either tends to an equilibrium or the boundary
of D.

Smith’s generalization [19] to higher dimensions of Bendixson’s cri-
terion, n = 2, for the nonexistence of nonconstant periodic solutions
of (1) has the required robustness in C*. He uses this fact to conclude
that, if D = R™ and his criterion is satisfied, all bounded solutions of
(1) tend to an equilibrium even without the assumption that equilibria
are isolated. In [10, 14] we gave other higher dimensional versions
of Bendixson’s criterion and its extension, Dulac’s criterion. We will
show that these also imply that trajectories which do not tend to the
boundary of D end at equilibria and, even more, any « or w limit set
which is not empty consists of a single equilibrium.

Theorem 2.5 is our generalization of Smith’s autonomous convergence
theorem; the proof is based on Pugh’s closing lemma and the center
manifold theorem. Theorem 2.10 shows that systems which satisfy the
generalized Dulac criterion cannot have invariant sets which are very
complex. In Section 3 we show how similar conclusions can be drawn
even when the Dulac inequality is not strict.

2. Wandering point theorems. We begin by formulating the
special case of the closing lemma which we use. Let | - | denote a norm
on R" and the operator norm which it induces for linear maps from
R" to R". The distance between two functions f,g € C'(D — R")
such that f — g has compact support is

sup{|f(z) — g(z)| + |Df(z) — Dg(x)| : € D}.

For a function g which is C'-close to f, we consider the corresponding
differential equation

(2) dz/dt = g(z).

Lemma 2.1. Let f € CY(D — R"). Suppose that xo is a
nonwandering point for (1) and that f(xzg) # 0. Then, for each
neighborhood U of xy, there exist functions g € C1(D — R™) arbitrarily
Cl-close to f such that

(a) f(z)=g(x), if c € D\U and
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(b) the system (2) has a nontrivial periodic solution whose trajectory
intersects U.

Now we consider the implications for (1) of the existence of V' €
C1(D — R) which satisfies

(3) (0V/0z)" f(x) <0, if f(z)#0,

where 0/0z is the gradient operator and the asterisk denotes transpo-
sition.

Proposition 2.2. If there exists a real-valued function z — V(z)
which satisfies (3), then every nonwandering point of (1) is an equilib-
rium.

Proof. This may be shown directly by observing that all trajectories
depart from a small neighborhood of a nonequilibrium and, since (3)
implies that V is strictly decreasing along trajectories, no trajectory
returns. In the spirit of the present development, it may also be deduced
from the C° version of Lemma 2.1. Evidently, if 2y is nonwandering
for (1) and f(zo) # 0, the set & in Lemma 2.1 may be chosen so that
it contains no zeros of f and &« C D is compact. Then the functions
g may be chosen sufficiently C%-close to f that (0V/dx)* g(z) < 0, if
g(x) # 0, and therefore V(z(t)) decreases strictly for all nonequilibrium
solutions z(t) of (2) so that no such solution can be periodic. Thus the
C° closing lemma implies that every nonwandering point of (1) is an
equilibrium. 0

Corollary 2.3. Suppose that D is simply connected and a C*
function x — a(z) € R"™ exists such that

(a) a*f(z) <0 if f(x) #0,
(b) Oa;/0x; — Oa;/0x; =0 1in D foralli,j=1,...,n.

Then every nonwandering point of (1) is an equilibrium.

This follows from the fact that (b) implies 0V/0x = a for some scalar
function V' and then (a) shows that (3) is satisfied. For example, if
f € CY and 9f;/0x; — Of;/0x; = 0, i,j = 1,...,n, then we may
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choose a = —f in Corollary 2.3. Corollary 2.3 may also be proved
using Stokes’ theorem.

Let B denote the Euclidean unit ball in R? and B, 9B its closure and
boundary respectively. A function ¢ € Lip (B — D) will be considered
a simply connected rectifiable 2-surface in D or, briefly, a surface in
D; a function ¢ € Lip(0B — D) is a closed rectifiable curve in D,
will be called simple if it is one-to-one, and we will write ¢ = ¢ if
©(0B) = ¢(0B) and ¢|gp is simple.

Let  — A(z) be a nonsingular (3) x () matrix-valued function

which is C! on D, and let | - | be a norm on R(:). We consider a
functional S on the surfaces in D defined by

(4) so= [

if u = (u1,u2) and u ~ ¢(u) is Lipschitzian on B. If |y = y*y
and A(z) = I, then Sy is the usual surface area of ¢(B) counting
multiplicities. The set D has the minimum property with respect to S
if, for each simple closed rectifiable curve v in D, there is a sequence of
surfaces ¢* in D which is a minimizing sequence for S¢ with respect to
all surfaces ¢ in D with 1 = d¢ and such that Uip*(B) has compact
closure in D. If n = 2, then any simply connected open set D has the
minimum property with respect to any S, since S¢ = fv(B) |A|. When

Op Oy
Al(p) 2 A 22
(90) 8U1 A 8u2

n > 2, for example, if S is the usual surface area, then any convex open
set D has the minimum property. The set D = R™ has the minimum
property with respect to § if A =1 and | - | is any absolute norm. In
fact, if ©* is a sequence with 1 = 9¢* which minimizes S in this case,
then for any interval Z C R™ with ¢/(0B) C Z we can obtain a sequence
% with Sg* = Sp* and @*F(B) C Z, by reflection in the sides of the
interval Z.

For a simply connected open set D which has the minimum property
with respect to S, we will assume that the generalized Dulac condition
[10, Theorem 3.4] is satisfied:

(5) w(AfA~ + A(8f)92)P A7) <0 in D.

Here g is the Lozinskii measure corresponding to the norm |- | on
R(%) considered in (4) 1, p. 41, 10], Ay = (DA)(f) or, equivalently,
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Ay is the matrix obtained by replacing each entry a;; in A by its
directional derivative in the direction f, (0a;;/0z)* f, and 9f? /0x
is a (g) X (’2’) matrix, the second additive compound of the Jacobian
matrix df/0z [14, 18]. The second additive compound matrix of an
n X n matrix is given in the Appendix for each of the cases n = 2, 3,4, 5.
For readers unfamiliar with the Lozinskii measure, the condition (5) is
equivalent to assuming that V(z,y) = |A(z)y| is a Liapunov function

whose derivative with respect to the n + (g) dimensional system

de dy ofP
(6) a f(z), dt oz (z)y
is negative definite.

A set Dy is absorbing with respect to (1) if solutions exist for all
t > 0 and each bounded subset Dy of D satisfies z(t,D1) C Dy for all
sufficiently large . When D does not necessarily have the minimum
property with respect to S, it will be assumed that there is a set Dy C D
which is absorbing with respect to (1) such that

(7) (A A=Y+ A0f/02)PATY) < —6 <0 in Dy.

Proposition 2.4. If (5) is satisfied in D, then the dimension of the
stable manifold of any equilibrium 1is at least (n — 1). If an equilibrium
is not isolated, then its stable manifold has dimension (n — 1) and it
has a local center manifold of dimension 1 which contains all nearby
equilibria.

Proof. For the definitions of center manifold and stable or unstable
manifold, see [6]. If 2y is an equilibrium, then

2 2]
(8) u( % A1> :;A(AfAl +Aaaf—mA1> <0

at x1, since f(z;) = 0 implies A, )(21) = 0. If v;(z;) are the eigen-
values of (8f/0z)(x1) with Revy(x1) > Reva(z1) > -+ > Revy(z1),
then v;(z1) + vj(z1), i # j, are the eigenvalues of (9f/0z)1 ()
[11, p. 505] and hence of A(8f/0z) A='(z;). Thus (8) implies that
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Re [vi(z1) + vj(x1)] < p[A(0f/0x)P1A7 (21)] < 0 [1, p. 41]; therefore,
0 > Rewvy(zy) > -+ > Rewvy(z1) and only vy (z1) can possibly have
nonnegative real part; the stable manifold has dimension at least n — 1.
If the equilibrium z; is not isolated, (0f/0z)(x1) is a singular matrix,
0 = v1(x1) so the stable manifold has dimension (n — 1) and there is
a one-dimensional center manifold (cf. [8, p. 48]). Since all positive
semi-trajectories near x; are asymptotic to a trajectory in the center
manifold, all equilibria near x; are in the center manifold. o

Theorem 2.5. Suppose that D is simply connected, f is of class C*
on D and there exists a (72’) X (g) matriz-valued function A which is
also C' on D and such that either (a) or (b) is satisfied:

(a) D has the minimum property with respect to S and (5) is satisfied.

(b) Do is an absorbing subset of D with respect to (1) and (7) is
satisfied.

Then:
(c) Ewvery nonwandering point of D is an equilibrium.
(d) Ewvery nonempty a or w limit set in D is a single equilibrium.

(e) Any equilibrium in D is the alpha limit set of at most two distinct
nonequilibrium trajectories.

Proof. If (a) or (b) is satisfied by f, then a similar condition is also
satisfied by all perturbations g of f considered in Lemma 2.1 which are
sufficiently C*-close to f. From [10, Theorems 3.4 and 3.6], no such
perturbation can have a nontrivial periodic solution to (2). Therefore,
every nonwandering point is an equilibrium for (1).

To prove the assertion that each nonempty « or w limit set is a single
equilibrium, first observe that since each limit point is nonwandering,
it is an equilibrium. Let z; € w(zy), the w limit set of zg; if z; is
an isolated equilibrium, then {z1} = w(zp). If z1 € w(xp) is not an
isolated equilibrium, then Proposition 2.4 implies that there is a one-
dimensional center manifold containing all nearby equilibria associated
with 7. Since w(zg) is locally a continuum of equilibria, z1 € w(xp)
may be chosen so that a local center manifold at x; in a small
neighborhood U of x; consists entirely of equilibria. Moreover, every
trajectory which intersects U is asymptotic to a trajectory in this center
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manifold. Thus, lim;_, (¢, z¢) = 1 so that w(zg) = {1} in this case
also. The proof that a nonempty alpha limit set is an equilibrium x4
is the same. Moreover, since the stable manifold of zo has dimension
(n — 1), z2 has either a one-dimensional center manifold or a one-
dimensional unstable manifold. Since all trajectories near the center
manifold are asymptotic to a trajectory in that manifold [8, p. 48] and
the stable manifold is asymptotic to x2, at most two nonequilibrium
trajectories can share xo as their o limit. The uniqueness of the
unstable manifold implies the same conclusion in the other case. ]

The equilibrium w(zg) need not be isolated as is seen from the
example

dml/dt: —T1, dIz/dtZO

Here (0f/0z)?l = divf = —1 < 0 so that (5) is satisfied with
A = 1. D = R? has the minimum property with respect to S, which
is the area in the plane in this case, and the conditions of Theorem
2.5 are all satisfied. Each solution satisfies lim; ,oo(z1(t),z2(t)) =
lim;, oo (21 (0)e ¢, 22(0)) = (0, 22(0)) a nonisolated equilibrium.

Theorem 2.5 gives a global asymptotic stability criterion for systems
with unique equilibria.

Corollary 2.6. Suppose

(a) D is simply connected,

(b) Dy is a compact set which is absorbing with respect to (1),
(c) inequality (5) is satisfied for some matriz A,

(d) the system (1) has a unique equilibrium x.

Then xq is globally asymptotically stable.

Proof. Clearly {z¢} is globally attracting since Theorem 2.5 implies
it is the w limit set of every trajectory. Moreover, it is stable since
otherwise it would be both the « limit set and the w limit set of some
homoclinic trajectory v = {z(t) : t € (—00,00)}. In this circumstance
we assert that C = y U {x} is the trace of a rectifiable simple closed
curve. This curve is invariant with respect to (1), z(¢,C) = C, and
existence of such an invariant curve is precluded by the generalized
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Dulac condition as shown in [10]. It remains to prove that C is
rectifiable. Since « is in the C'! center manifold or unstable manifold
of zy, and this is one-dimensional, it is only necessary to show that
v+ = {x(t) : t € [1,00)} is the trace of a rectifiable curve. This is
rectifiable if it also approaches its w limit through a center manifold.
If it does not approach zy through a center manifold, then, by the
center manifold theorem, it approaches zg exponentially in time. Thus,
|f(z(t))] < Ce ™ for some constants C, A > 0, since f(zy) = 0.
Considering 7(s) = (1—35)71, y(s) = z(7(s)), s € [0,1), we find /(s) =
F(z((s)))7'(s) so that |y (s)] < Ce= )/ (s) = Ce 1= (1 — 5)=2
and y’ is bounded with y[0,1) = 4. O

Corollary 2.7. The conclusion of Theorem 2.5 holds if D = R™ and
the generalized Bendizson criterion u(0f1?/0x) < 0 is satisfied in R™,
where p 1s the Lozinskii measure corresponding to an absolute norm.

Conditions (i), (ii), (iii) of [10, Theorem 3.3] give concrete examples
of the condition p(8f/8z)2 < 0. The conditions (iv), (v), (vi) of this
theorem are examples of u(—0f/0z)2 < 0 which, as we see below, has
similar consequences.

Denote by (1) the system (1) with f replaced by —f. The trajecto-
ries of (1)_ are the same as those of (1) with the direction of the flow
reversed. From this we deduce the following corollary.

Corollary 2.8. If the system (1)_ satisfies the conditions of Theorem
2.5 or Corollary 2.6, then the same conclusions may be drawn for
(1) except that the statements about o and w limit sets should be
interchanged.

Even in the case n = 2, this result gives a somewhat stronger
conclusion than that usually drawn from Bendixson’s criterion.

Corollary 2.9. Suppose D C R? is simply connected and
div f(z) <0 in D.

Then every nonwandering point with respect to (1) is an equilibrium,
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every nonempty o or w limit set is a single isolated equilibrium; any
equilibrium is the o limit set of at most two nonequilibrium trajectories.

A subset K of D is positively (negatively) invariant with respect to
(1)if x(t,K) C Kforallt >0, t <0, and is invariant if z(¢, ) = K for
all t. The o and w limit sets of a trajectory are important examples of
invariant sets, and we have seen in the preceding discussion that these
are very simple for systems which satisfy Dulac’s condition or its higher
dimensional generalizations. In fact, we will show that any compact set
which is invariant in such a system is at most one-dimensional.

Theorem 2.10. Suppose that f satisfies the conditions of Theorem
2.5 and KC C D is a compact set which is invariant with respect to (1).
Then its Hausdorff dimension satisfies

In particular, if K is also connected, then dim g/C = 0 or 1 depending
on whether KC contains one point or more than one point.

Proof. Since K is compact, Theorem 2.5 implies that every trajectory
in IC is either an equilibrium or is asymptotic at each end to some
equilibrium. Let Ky be the set of equilibria in K and K, its set of
cluster points. If z € Kf, then Proposition 2.4 implies that there
is a neighborhood U(x) of x such that all equilibria in U(z) lie in
a one-dimensional center manifold o(z) at . A finite set of these
neighborhoods U(z;), i = 1,...,N, covers the compact set K. The
set K is composed of complete trajectories of the following three types:

(i) trajectories in one of the one-dimensional manifolds o(z;),
i=1,...,N,
(ii) the finite set of equilibria Ko\ U; o(z;),
(iii) nonequilibrium trajectories whose o and w limit sets are each
single equilibria of types (i) and (ii).

Any trajectory or any smooth arc has Hausdorfl measure zero in
dimension s > 1 (see [5, p. 28]). From this it follows that the set of
all trajectories of types (i) and (ii) has s-dimensional measure zero.
Moreover, there are at most finitely many trajectories of type (iii).
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Otherwise, there would exist a rectifiable simple closed curve composed
of trajectories of types (ii) and (iii) together with a finite number of
invariant arcs from o(z;), i = 1,...,N. It was shown in [10] that
the conditions of Theorem 2.5 preclude the existence of such invariant
curves. We therefore conclude that the set of trajectories of type (iii)
also has s-dimensional measure zero. Thus, I has zero s-dimensional
measure, if s > 1, and dim g < 1 [5, p. 29]. If K is also connected
and contains more than one point, then the sum of the diameters of
the sets in any open cover exceeds the distance between any pair of
points in /C which allows us to conclude that dim g /C > 1 and therefore

Smith [19, Theorem 7] shows that if A;(z) > Aa(z) > -+ > A, () are
the eigenvalues of (1/2)[(0f/0x)*(x)+ (0f/0z)(x)], then each bounded
semi-trajectory of (1) converges to an equilibrium if A\;(z) + A2(z) <0
in R™ This also follows from Corollary 2.5 of this paper since
w((8f/0x)) = X\; + Ag if | - | is the Euclidean norm on R(G). Our
result shows that the same conclusion can be drawn if the boundedness
assumption is replaced by one of existence of an o or w limit point of
the semi-trajectory. The domain R™ may be replaced by any convex
open set D since such sets have the minimum property with respect to
S which is the usual surface area in this case. The domain may also
be any open set D which is simple connected and has an absorbing
subset Dy in which A (z) + A2(x) < —6 < 0 holds. Analogous results
may be inferred from conditions of the form A, _1(z)+ A, (z) > 0, since
—u(—(9f/0z)2l) = A\,,_1 + \,.. Smith’s proof shows that his condition
implies dim g/ < 2 for any compact invariant C; in fact, we see from
Theorem 2.9 that his condition implies dim g/ < 1. O

An earlier result of Hartman and Olech [7] is somewhat related to
observations of this paper. They show that if = 0 is the only
equilibrium of (1) and it is locally asymptotically stable, then it is
globally asymptotically stable provided A;(z) + A2(z) < 0 in R™ and
J° p = oo where p(u) = min{|f(z)| : |z| = u}.

3. A Weak Dulac Condition. If the condition (3) is replaced by
(9) (0V/0z)" f(z) <0, z€D

then, instead of Proposition 2.2, we can conclude the following:
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Proposition 3.1. If (9) is satisfied, then every nonwandering point
is in the set S = {x : (0V/0z)* f(z) = 0}.

This is a slightly stronger result than can be inferred from the
invariance principle of LaSalle [9, p. 30] which states in this case that
every w limit point is in the maximal invariant subset of S. The
statement follows from the fact that (9) is sufficiently robust that it
is also satisfied by systems which are sufficiently close to (1) in the
sense of Lemma 2.1 and that the inequality is strict at some points of
the periodic trajectory of that lemma.

A similar conclusion may be drawn if a weakened version of (5) is
used in Theorem 2.5:
of (2]

(10) u(AfA—l + Aa— A—1> <0 inD.
X

Let D; be the subset of D on which (10) is strict and Dy = D\D;.

Theorem 3.2. Suppose D is simply connected, f is of class C' and
there is a matriz A of class C* such that either (a) or (b) holds:

(a) D has the minimum property with respect to S and (10) is satisfied
on D.

(b) Dy is an absorbing compact subset of D and (10) is satisfied on
Dy.

Then the conclusions (c), (d), (e) of Theorem 2.5 hold if in those state-
ments D is replaced by D;.

This may be seen by again supposing that xg € D; is nonwandering
and f(zg) # 0. Then, choosing the neighborhood U of z( in Lemma 2.1
a sufficiently small subset of the region where (10) is strict, we find a
system C'-close to (1) which also satisfies (10), strictly near zy and has
a nontrivial periodic trajectory intersecting /. Then, using Criteria 3.1
and 3.2 of [10] in cases (a) and (b), respectively, we find a contradiction
as before. Thus, we must have f(xzo) = 0 if zp € D; is nonwandering.

The Corollaries 2.6, 2.7 and 2.8 may also be modified in this way.
Similarly, the considerations leading to Theorem 2.10, suitably altered,
lead to a modification of that result.
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Theorem 3.3. Suppose that D is simply connected,
(a) f satisfies condition (b) of Theorem 3.1,
(b) D, is invariant and

(c) at most a finite number of trajectories in K N Dy have a limit
point in Dsy.

Then dim g (K NDy) < 1.

This result is established by applying the proof of Theorem 2.10 to
the complement in XN D; of the at most one-dimensional set in X NDy
consisting of those trajectories with limit points in Ds.

The condition (c) may of course be difficult to establish in general
and may require the use of more than one functional S or function V'
or extensions of the ideas considered here.

Corollary 2.6 and Theorems 2.10 and 3.2 are somewhat surprising in
view of estimates on Hausdorff dimensions of attractors due to Smith
[19], Temam [20], Boichenko and Leonov [2], Eden, Foias and Temam
[4]. These results, which seem to give good estimates on attractors
whose dimension is greater than 2 even in delicate cases such as the
Lorenz system, would only give 2 as an upper bound in some cases
where Theorems 2.10 and 3.2 would give a bound 1 and Corollary
2.6 would give a value 0. For example, in the terminology of [4],
conditions such as (5) would imply that pq(z) + pe(z) < 0, where
W1 > pg > -+ > Wy, are the local Liapunov exponents which in turn
implies that any invariant compact set has Hausdorff dimension less
than 2.

Now consider the dissipative system
(11) dry/dt = z; — 3, dzo/dt = —x9

of Eckmann and Ruelle cited by Eden [3]. Here the global attractor is
K =[-1,1] x {0} so that dim g = 1.

If V(z) = 23, we find (0V/0z)* f(x) = —22% so we could infer inde-
pendently from this that K has dimension at most 1 since Proposition

3.1 implies it is located on the zj-axis. Since there is more than one
equilibrium, we conclude that dim g K = 1. Alternatively, consider
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A(z) = 22 + 1 so that

-1 of 2] -1 2/ 2 -1 2
AsA +A8_ac A7 = —2x5(x5 + 1) — 3x7
and the weak Dulac condition (10) is satisfied with Dy = {(0,0)}. At
most a finite number of trajectories can have limit points in Dy since
otherwise we could find an invariant rectifiable simple closed curve
which cannot exist by Criterion 3.2 of [10]. Theorem 3.3 therefore
implies dim g/ < 1.

APPENDIX

If A = [a;;] is an n X n matrix, its second additive compound Al g
the (g) X (g) matrix defined as follows. For any integer i =1, ..., (g),
let (i) = (i1,%2) be the i-th member in the lexicographic ordering of
the integer pairs (i1,42) such that 1 < i; < iz < n. Then the element

in the 4-row and j-column of AP is

Qiyi; T Qigiys if (.7) = (7“)

(=1)"*#q; j,, if exactly one entry 4, of (i) does not
occur in (j) and js does not occur in (7)

0, if neither entry from (7) occurs in (j).

The table on page 377 gives Al?! in the cases n = 2,3,4,5.
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