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ON THE STABILITY OF A WAVETRAIN
CAUSED BY INTERACTING WAVE MODES

M.C.W. JONES

ABSTRACT. This paper consists of an analysis of the
stability of Wilton ripples to long wave perturbations. Both
longitudinal and transverse perturbations are considered and
regions of instability are identified.

1. Introduction. Probably the simplest interaction which is present
in the theory of capillary-gravity waves is the one which occurs between
the fundamental mode and its second harmonic. This leads to the
creation of the so-called Wilton ripples and it is the purpose of this
paper to study the stability of these waves. Both transverse and
longitudinal perturbations will be considered. It will be shown that
the set of wavenumbers of the unstable perturbations usually consists
of an open interval but may exceptionally consist of the union of two
intervals.

These waves have attracted the attention of a number of researchers.
In the 1960’s, Nayfeh wrote a number of papers [9, 10] dealing with
the Wilton ripple phenomenon. He used the method of multiple scales
to obtain power series expansions for the wave profiles. Later Chen
and Saffman [3] considered the problem of perfectly general capillary-
gravity wave interactions. They employed a weakly nonlinear theory
to obtain formal series expansions for the wavetrains but their results
were largely confirmed by the work of Jones and Toland [8, 11]
who considered the same problem from a rigorous mathematical point
of view, making use of the tools of applied functional analysis and
bifurcation theory.

Recently a certain amount of work has been carried out on the
stability of resonant waves. In [7] it was shown that the nature of
the stability of deep water Wilton ripples is dependent on the nature of
the roots of a certain quartic equation. In that paper an approximate
form of that equation was used. However, in this paper we use the full
form of the equation and hence more accurate results are obtained. The
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methods employed, both in this paper and in [7], are a development of
those of Benjamin and Feir [2] who first showed that a uniform train of
deep water gravity waves is unstable in the presence of sidebands and
also of Zakharov [12] who first showed that the evolution of a wavetrain
may be described up to cubic order by the nonlinear Schrédinger
equation. The nonlinear Schrédinger equation, or modifications of it,
has been used by a large number of researchers to describe the evolution
and stability of various types of waves, see [4, 5, 6].

2. The mathematical set up. In this section we shall sketch
the derivation of the third order evolution equations which describe
the motion of Wilton ripples. Our method closely follows that of [7].
Consider the irrotational motion of an ideal fluid which is contained
in a deep channel and acted upon by the forces of gravity and surface
tension. The equations which describe the motion are

(2'13) D + ¢yy +¢.. =0, 2z < H,
(2.1b) ¢ —0, z = —00,
(2.1¢) ¢, —Hy — ¢ H, — ¢pyHy =0, z=H

(2.1d)  ¢e+(d3+00+02)/2+9H
S(Hyw(1+Hy)+Hyy(14+H7) —2H, Hy Hyy)
(1+HZ+H2)3/2

=0, z=H.

Here ¢(z,y, z,t) is the stream function; H(z,y,t) is the elevation of the
free surface, g is the force of gravity; S is the surface tension; (2.1c) is
the kinematic condition and (2.1d) is the result of applying Bernoulli’s
condition along the free surface.

We shall be considering the motion of a wave train caused by the
interaction of a sinusoidal wave of wavenumber k and frequency w and
its second harmonic. It is a straightforward exercise to show that such
waves are solutions of the linearized form of (2.1) provided w? = 3gk/2
and S = g/2k%. In order to develop a “weakly nonlinear” theory of
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these waves, we shall introduce a parameter ¢ which satisfies |¢] < 1
and which acts as a measure of the wave steepness. We also introduce
the following “slow variables”:

X = ez, Y = ¢y, T =et,

2.2 ,
(2.2) Ty =% andset E = elka=wt),

The next step is to develop ¢ and H in ascending powers of €. Taking
(2.1a), (2.1b) into account, it turns out that, as far as the relevant
order,

¢ =¢ <A +e(Ay —izAy)

2
+ 52 <A3 — iZAQX — %AXX — %Ayy>>E€kz

(23) +€<B+€(Bg —iZBx)

v e(By—i2Bay — “Byx - 2B E2e2k=

3 2X — 5 Pxx — g Pyy
+ 203 E3e3%% 4 20y E*e?** 4 (c.c.)

and

ik 9 ik 9 9

H=c¢| —A+4cecas+te‘az |E+ec| —B+eBy+e“p3|F

(2.4) w w

+ ey B3 + 2 E* + (c.c.).

Here the coefficients A, B, etc., are functions of the slow variables only
and (c.c.) denotes complex conjugate. The next step is the somewhat
tedious one of substituting (2.3) and (2.4) into (2.1cd) and equating
coefficient £! E7 to zero. We merely list the results at each stage.

The terms which are linear in e are satisfied automatically. The
coefficients of €2E yield that

5
(2.5) Ar + G—ZAX — —k?A*B  and
2k’ 7i

kAg + iwas = 2 A*B— LAy,
w 6
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(The asterisk denotes complex conjugate).

Consideration of the terms involving ¢2E? yields

Tw k2
2.6 Br+ —Bx = —A? d
(2.6) T+ 60X 5 an
3ik3 7
kBy +iwfy = ———A? - —B
2 + 1wfs 1o 1o Bx
At €2E3 and £2E* we have
2 3
Co= -2 4p 5= 4p,
(2.7) v v
4ik? _, 2k,
Cy=—-———B" and y=-—;B"
w w

When we consider the terms involving e3E we obtain two equations
involving A3 and as. If we eliminate As and a3 from these equations,
we obtain an equation involving the other coefficients which can be
simplified by means of (2.5)—(2.7). A similar calculation involving the
terms of order ¢3 E? yields an analogous equation. Then, if the variables
involved are rendered dimensionless by means of appropriate scalings,
the consequence is that the motion is described by the following set of
equations

(2.82) Ap + %AX — _A"B,
7 A?
5 11, Y} 3.
(28C) 2AT1 + 2A2T + §A2X — %’LAXX — EZAYY + §Z|A|2A

—13i|B|?A + 2BA} + %BA} 4 2B, A" — %BXA* =0,

and

7 23 7
2. 2B 2B —Byx — —1iB - —B
(2.8d) 7, +2Bar + 5Pax — iBxx — 5 Bry

39 19
- 7i|A|ZB —8i|B|?B — 244, + EiAAX =0.
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The preceding set of four equations in four unknowns describes up
to cubic order the evolution of a deep water wavetrain consisting
of waves caused by the interaction of the fundamental wave and its
second harmonic. They are the counterparts to the single nonlinear
Schrédinger equation which models the motion in the nonresonant case.
The equations are the same as those given in [7] with the correction of
a misprint.

3. Stability of a wavetrain. A set of solutions to the system (2.8)
is

T
; T
B= :I:%exp [21’(:& 3 +w1T1>}

(3.2) Ay = i(+1 — b)exp [z< + g + w1T1>] :

11 b . T
B _l<I:F§> exp [2z<i§+w1T1>],

where wy = 29/8 Fb/2 and b is a real arbitrary constant.
It is possible to use the relationships (2.5)—(2.7) to recover the
corresponding wave profile H. If this is done, there results that
H = —2ecos X + 2e?bcos X F £ cos 2X — £2(4 F b) cos 2X
F 62 cos 3X — 2 cos 4x + 0(g?)

wT 20 b
=z — + — — F — JwT;.
X=x—wt 2+<8:F2>w1

Thus, it may be seen that physically b represents the magnitude of the
coefficient of the second-order occurrence of the fundamental mode. In
order to study the stability of these waves, we shall make perturbations
to the leading order terms as follows:

(3.3)

where

A=i(l+a)exp [z( + g + w1T1> + iﬁ'] ,
(3.4) ] T
B = :I:%(l +3') exp [22( + 3 + w1T1> + w)'}
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We shall be considering plane wave perturbations so that

!/

(3.5) O =1 5 | explitox +ov - 1)
' Y

where the physical perturbation is represented by the real part of
(3.5). The next step is to substitute (3.5) into the equations (2.8)
and linearize. The result is that the amplitudes of the perturbations
satisfy a set of four simultaneous equations. These equations can only
be consistent if the following determinant is equal to zero:

(3.6)
TT65 — P —36(11 T 2b) +96 36(1 T b)
—P; — 108 TF65 18(15 F 2b) +96
4565 288(£1 — b) +2r TPy 4+ T2(£7+2b) |
72(+43 — 4b) 4565 TPy + 72(£11 + 2b) +2r

(In order to facilitate notation, 7 has been scaled to 7/72.)
In (3.6), Py = 1162 + 3002 and Pp = 2352 + 4202,

We shall confine ourselves to discussing the instabilities which can
occur when the perturbations are either in the same direction as the
wave or normal to it.

3.1.  Perturbations in the x-direction only. This corresponds to
putting ¢ = 0 in (3.6). If we expand (3.6) and take the top sign,
the condition that it should equal zero means that 7 must satisfy the
following quartic equation:

(3.7)
47 — (10135 — 9792052 +892857 +62208b* —264384b + 948672) 7>

+ (1710720b6° — 76496405° — 8211456625 +41150592b6 — 329391360) 7
+ 6400968 — 1220472665 — 27315726°

+ 25090566264 + 78029568b0* — 2705024166*

+ 33592320635 — 917630208b%5>

+ 6282883584b0% — 276730732862 + 2176782336

— 36461104128b + 193461530112 = 0.
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Expanding (3.6) with the choice of the bottom sign yields the same
equation as (3.7) with ¢ and b replaced by —¢ and —b, respectively.
Then, since § and b can each take either sign, there is no loss of
generality in working with (3.7) alone. In the stability discussion given
in [7] an approximate form of equation (3.7) was used.

Equation (3.7) will be written in abbreviated form as
(3.8) 4% — 6cr? +4dr +e = 0.

Thus, the waves are stable if and only if all four roots of (3.8) are real
and it follows from standard theory [1, p. 192] that this happens if and
only if

(3.9) c>0, A>0 and >0
where the functions (b, d) and n(b,d) are defined by
(3.10) A(b,8) = (de + 3c?)® — 27(dec — 4d* — 3)?

and
n(b,8) = 9¢* — de.

(Of course, the coefficients ¢, d and e are functions of b and ¢ but we
have suppressed this for notational convenience.) Thus, to determine
the nature of the stability of the waves it is necessary to determine
the signs of the quantities in (3.9). The first thing to note is that
a straightforward “completing the square” calculation shows that the
coefficient c is positive for all choices of b and § and hence the stability
only depends on the signs of A and n. A further calculation shows that:

n(b,8) = 6® + — (152576 — 768b)5°

(S

+ — (78145152 — 241847045 + 2244096b%)5*

—~

(3.11)

+ — (755758080 — 1528713216b 4 258895872b%) 5>

&~ & ~& -

+ —(—27103776768 + 1009262592b + 1890127872b

— 406093824b° + 4TTT5744b%).
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(We have scaled 1) by a positive constant in order to make the coefficient
of the leading term equal to unity. Some of these calculations were
carried out with the aid of MATHEMATICA.) It is clear that whatever
value is taken by b, n(b,d) is positive for sufficiently large 6. In
fact, numerical calculations indicate that if b < —2.934, then n is
nonnegative for all § while if b > —2.934 then 7 is negative for certain
values of 4.

The final quantity whose value influences the stablity of the waves is
A. The complexity of A is such that we shall not present it here but
merely remark that the leading order term is a positive multiple of §24
and A is, like 7, an even function in §. Further, numerical calculations
show that, whatever the value of b, A is positive for § = 0 (as well as
for large |§| of course) but always negative for some range of values of
b.

Having made these observations, we are now in a position to derive
the stability criteria. We shall consider a selection of values of b to
show the various types of instability regions which can occur. Since A
and 7 are even functions of §, we shall confine ourselves to describing
the results for positive §.

Case 1. b= 5. This case is depicted in Figure 1(a) which, together
with the other graphs in Figure 1, shows the qualitative configuration
of the curves A and . We do not give a vertical scale in Figure
1 because it is only intended to depict the relative positions of the
curves. Figure 1(a) shows that A is negative for 0.854 < ¢ < 1.595
and 7.304 < § < 7.649 and positive otherwise while n is negative
for 1.176 < § < 7.459 and positive otherwise. Hence, the waves are
unstable if 0.854 < § < 7.649, otherwise they are stable. (Here and
elsewhere numerical quantities are given to three decimal places.)

Case 2. b= 1. This is depicted in Figure 1(b). The results are that
the waves are unstable if 0 < § < 10.629; otherwise they are stable.

Case 3. b = —1. This is depicted in Figure 1(c). The results are that
the waves are unstable if 0 < § < 20.848; otherwise they are stable.

Case 4. b = —5. This is depicted in Figure 1(d). The results are that
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FIGURE 1(a).
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FIGURE 1(b).
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FIGURE 1(c).

10 20 30 40

FIGURE 1(d).
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the waves are unstable if 3.066 < § < 36.942; otherwise they are stable.

3.2. Perturbations in the y-direction only. This case corresponds to
putting § = 0 in (3.6). Then, on expanding this determinant and taking
the top sign (as before, this leads to no loss of generality), we obtain:
(3.12)

47* — (53640* — 20736bo* + 604807 + 62208b% — 264384b + 948672)7°
+ 15876000° — 14696640b0° — 223171200°
+ 18662400b%c* + 353465856b0* — 14546407680
+ 7614259260 — 1291064832b° 0
+ 7936745472b0 + 26428757760° + 2176782336b°

— 36461104128b + 193461530112 = 0.

One notes that, in contrast to (3.7), equation (3.12) contains no term
in 7 and this makes this case somewhat easier to analyze. We shall
write (3.12) in abbreviated form as

(3.13) dr* +pri+q=0.

It should first be noted that a straightforward calculation shows that
the coefficient p is negative for all b and o. Next, it is straightforward to
show that the nature of the roots of (3.13) is governed by the following
criteria:

(a) if ¢ <0, there are two real and two imaginary roots,
(b) if ¢ =0, the roots are all real,

(c) if ¢ > 0 and p* — 16¢ < 0, the roots are all imaginary,
(d) if ¢ > 0 and p? — 16¢ > 0, the roots are all real.

Before deriving the stability criteria, we remark that numerical calcu-
lations indicate that if b > —1.440, then ¢ is positive for all values of
o; while if b < —2.934, then p? — 164 is positive for all values of o. (We
shall not present the expression for p? — 16q since it is rather compli-
cated, but we remark that the leading order term is a positive multiple
of 08.)

We can now present the stability results. As before, we take a
selection of values of b, in order to show the various stability regions
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FIGURE 2(c).

which can arise. Since all the functions involved are even in o, we
confine ourselves to positive o.

Case 1. b = 5. This is depicted in Figure 2(a). In this case ¢ is
always positive, while p? — 16¢ changes sign at ¢ = 0.795 and 6.308.
The conclusion is that the waves are unstable if 0.795 < o < 6.308 and
stable otherwise.

Case 2. b =1. This case is depicted in Figure 2(b). It follows that
the waves are unstable if 0 < o0 < 4.393 and stable otherwise.

Case 3. b = —2. This case is probably the most interesting and is
depicted in Figure 2(c). The stability results are that the waves are
unstable if 0 < o0 < 1.599 or 3.344 < o < 4.909; otherwise they are
stable. Hence, there are two distinct intervals of instability.

Case 4. b= —5. This is depicted in Figure 2(d). (Recall that p*>—16¢
is always positive in this case.) The result is that the waves are unstable
if 2.254 < o < 5.754; otherwise they are stable.



312 M.C.W. JONES

FIGURE 2(d).

4. Conclusions. We have presented expressions for the wave profiles
of small amplitude Wilton ripples in the form of series expansions in
power of €, where € represents the wave steepness. It has been shown
that a large number of different wave profiles belong to the class of
Wilton ripples, each corresponding to a different value of b, where b is
the magnitude of the coefficient of the second order occurrence of the
fundamental mode. The stability of these waves to both longitudinal
and transverse perturbations is considered. In the case of perturbations
in the z-direction and with positive wave number, a region of instability
is always present, and it consists of an interval which (depending on b)
may or may not extend up to the origin. In the case of perturbations
in the y-direction, the region of stability is again usually of this form
but for certain values of b, close to b = —2, the region of instability
consists of two distinct intervals.
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