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CAN MUTUALISM ALTER COMPETITIVE
OUTCOME?: A MATHEMATICAL ANALYSIS

H.I. FREEDMAN AND BINDHYACHAL RAI

ABSTRACT. A model is described whereby two interacting
competitors also interact with a mutualist. After examining
equilibria and their stability, the question of “reversal of
competitive outcome” due to the mutualism is investigated.

1. Introduction. Even in the general Kolmogorov model of two
competitors, it is known (Albrecht et al. [1]) that the dynamics are
trivial, i.e., all solutions approach an equilibrium. The same is true
when two mutualists interact (Freedman et al. [5]).

The main purpose of this paper is to consider the situation when
two interacting competitor populations each interact with a mutualist
as well. We are particularly interested in determining criteria for
persistence of all populations in the case when one of the competitors
becomes extinct in the absence of its mutualist.

Kirlinger [9, 10] has shown for Lotka-Volterra models that the
bistable case in two-species competition can be made permanent (uni-
formly persistent) by two predators, but never by one predator. In this
paper we obtain similar results for more general competitive systems
regulated by two mutualists.

Original models of mutualism were two dimensional (Dean [3], Freed-
man [4], Freedman et al. [5]). Three dimensional models where the
mutualism arose due to the presence of either a predator or a competi-
tor were first analyzed in Rai et al. [12] and expanded upon by Ku-
mar and Freedman [11]. Since then other works involving competitor-
competitor-mutualist interactions have been published (Freedman and
Rai [6, 7]).
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This paper, to the best of our knowledge, is the first to incorporate
two mutualists, one for each competitor. This will be of particular in-
terest in the case where both competitor-competitor-mutualist subsys-
tems collapse, showing the possibility that in competitive communities,
mutualism may be one of the mechanisms leading to coexistence.

The organization of this paper is as follows. In the next section we
derive our model. Section 3 deals with the equilibria and their stability.
In Section 4 we give persistence criteria for the full model. Section 5
deals with reversal of outcome. We give an example to illustrate our
results in Section 6. A brief discussion follows in Section 7.

2. The model. We take as a model of two competitors interacting
with mutualists the system of autonomous ordinary differential equa-
tions

(2.1)

u̇1 = u1h1(u1, x1)

ẋ1 = x1g1(u1, x1) − x1x2q1(u1)

u̇2 = u2h2(u2, x2)

ẋ2 = x2g2(u2, x2) − x1x2q2(u2),

ui(0) ≥ 0, xi(0) ≥ 0, i = 1, 2,

where “·” = d/dt. Here ui(t) represents the mutualist population of
xi(t) at any time t, i = 1, 2, and xi(t) is the i th competitor. Corre-
sponding to these interpretations, we suppose the following hypotheses
hold for our model.

(H0) We assume that hi, gi, qi are sufficiently smooth so that solutions
to the initial value problem exist and are unique.

(H1) hi(0, xi) > 0; hiui
(ui, xi) < 0; hixi

(ui, xi) > 0; there exists
Li(xi), Li(0) > 0 such that hi(Li(xi), xi) = 0, i = 1, 2.

The above hypotheses impose the following properties on ui, respec-
tively. The mutualist population is capable of growing on its own,
and hence the mutualism of xi on ui is facultative. The growth rate,
however, is decelerated as its population numbers increase due to en-
vironmental limitations. xi is a mutualist of ui. There is a carrying
capacity of the environment which limits the mutualist populations as
a function of the number of xi.
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Note that clearly dLi(xi)/dxi > 0.

(H2) gi(ui, 0) > 0; gixi
(ui, xi) < 0; there exists Ki(ui), Ki(0) > 0

such that gi(ui, Ki(ui)) = 0 and such that limui→∞ Ki(ui) = K̃i < ∞.

These hypotheses are described as follows. Each competitor is capable
of growing on its own, but the growth rate decreases as the population
increases, limited by its carrying capacity which is a function of the
mutualist.

Note that we do not specify the sign of giui
(ui, xi). If giui

> 0, then
the mutualism is direct. If giui

≤ 0, then the mutualism is indirect
and results only as a consequence of the competition, and in this case
K̃i < Ki(0).

(H3) qi(ui) > 0, qiui
(ui) ≤ 0, i = 1, 2.

It may be that the competition effect is reduced by the mutualist. In
any case, competition is always increased by a rise in either population.

Note that if qiui
= 0, then giui

> 0, or else there will be no mutualistic
benefits for xi by ui.

From the above hypotheses, it is straightforward to show that the
system (2.1) is dissipative. In fact, we can describe a region A which
contains the region of attraction.

From ẋi = xigi(ui, xi) − x1x2qi(ui) ≤ xigi(ui, xi), we see that after
a finite amount of time, 0 ≤ xi(t) ≤ K̂i = max{K̃i, Ki(0)}. Let
L̂i = Li(K̂i). Then after a finite amount of time, 0 ≤ ui(t) ≤ L̂i.
Hence, A = {(u1, x1, u2, x2) | 0 ≤ u1 ≤ L̂1, 0 ≤ x1 ≤ K̂1, 0 ≤ u2 ≤ L̂2,
0 ≤ x2 ≤ K̂2} is such a set.

3. The existence and stability of equilibria. There are a large
number of possible equilibria for system (2.1). Some will always exist.
Others may or may not exist. We will discuss their existence and
possible values in order of complexity. Then we will turn to a discussion
of their stability.

First we note that E0(0, 0, 0, 0) always exists. As well, the follow-
ing one-dimensional and related two-dimensional equilibria are obvious,
E1(L1(0), 0, 0, 0), E2(0, K1(0), 0, 0), E3(0, 0, L2(0), 0), E4(0, 0, 0, K2(0)),
E5(L1(0), 0, L2(0), 0), E6(L1(0), 0, 0, K2(0)), E7(0, K1(0), L2(0), 0).
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There may or may not be a competitive equilibrium in the absence
of mutualism. If it exists, we denote it as E(0, x̄1, 0, x̄2).

On ecological grounds, there must exist equilibria in the u1 − x1 and
u2 −x2 planes, for otherwise the dissipativity and two-dimensional dy-
namics would imply that in the absence of competition and presence of
mutualism, one of the populations would become extinct, contradict-
ing the concept of mutualism. Hence we assume that Ê10(û1, x̂1, 0, 0)
and Ê02(0, 0, û2, x̂2) must exist and therefore the associated equilibria
Ê11(û1, x̂1, L2(0), 0) and Ê22(L1(0), 0, û2, x̂2) also exist.

There are two other possible equilibria which are in the three dimen-
sional subspaces. Criteria for their existence were given in Freedman
and Rai [7]. When they exist, we denote them by Ẽ1(ũ11, x̃11, 0, x̃21),
Ẽ2(0, x̃12, ũ22, x̃22). Finally, there may be a positive equilibrium de-
noted E∗(u∗

1, x
∗
1, u

∗
2, x

∗
2). Further on, we give a criterion for such an

equilibrium to exist.

In order to discuss the stability of these equilibria, we must compute
the variational matrices about the various equilibria. We denote by M
the general variational matrix and use corresponding notation for the
variational matrices about the corresponding equilibria. For example,
M̃1 is the variational matrix about Ẽ1, etc.

The general variational matrix M is given by M = (mij)4×4, where
m11 = u1h1u1 + h1, m12 = u1h1x1 , m13 = 0, m14 = 0, m21 = x1g1u1 −
x1x2q1u1 , m22 = x1g1x1 +g1−x2g1, m23 = 0, m24 = −x1x2q1x2 −x1q1,
m31 = 0, m32 = 0, m33 = u2h2u2 + h2, m34 = u2h2x2 , m41 = 0, m42 =
−x1x2q2x1 −x2q2, m43 = x2g2u2 −x1x2q2u2 , m44 = x2g2x2 + g2 −x1q2.
Hence the variational matrices corresponding to the various equilibria
(matching notations, i.e., Mi corresponds to Ei, etc.) have the following
nonzero entries.

For M0, m11 = h1(0, 0), m22 = g1(0, 0), m33 = h2(0, 0), m44 =
g2(0, 0).

For M1, m11 = L1(0)h1u1(L1(0), 0), m12 = L1(0)h1x1(L1(0), 0),
m22 = g1(L1(0), 0), m33 = h2(0, 0), m44 = g2(0, 0).

For M2, m11 = h1(0, K(0)), m21 = K1(0)g1u1(0, K1(0)), m22 =
K1(0)g1x1(0, K1(0)), m24 = −K1(0)q1(0, K1(0), 0), m33 = h2(0, 0),
m44 = g2(0, 0) − K1(0)q2(0, K1(0), 0).

For M3, m11 = h1(0, 0), m22 = g1(0, 0), m33 = L2(0)h2u2(L2(0), 0),
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m34 = L2(0)h2x2(L2(0), 0), m44 = g2(L2(0), 0).

For M4, m11 = h1(0, 0), m22 = g1(0, 0)−K2(0)q1(0, 0, K2(0)), m33 =
h2(0, K2(0)), m42 = −K2(0)q2(0, 0, K2(0)), m43 = K2(0)g2u2(0, K2(0)),
m44 = K2(0)g2x2(0, K2(0)).

For M5, m11 = L1(0)h1u1(L1(0), 0), m12 = L1(0)h1x1(L1(0), 0),
m22 = g1(L1(0), 0), m33 = L2(0)h2u2(L2(0), 0), m34 = L2(0)h2x2(L2(0),
0), m44 = g2(L2(0), 0).

For M6, m11 = L1(0)h1u1(L1(0), 0), m12 = L1(0)h1x1(L1(0), 0),
m22 = g1(L1(0), 0) − K2(0)q1(L1(0), 0, K2(0)), m42 = −K2(0)q2(0, 0,
K2(0)), m33 = h2(0, K2(0)), m43 = K2(0)g2u2(0, K2(0)), m44 =
K2(0)g2x2(0, K2(0)).

For M7, m11 = h1(0, K1(0)), m21 = K1(0)g1u1(0, K1(0)), m22 =
K1(0)g1x1(0, K1(0)), m24 = −K1(0)q1(0, K1(0), 0), m33 = L2(0)h2u2 ·
(L2(0), 0), m34 = L2(0)h2x2(L2(0), 0), m44 = g2(L2(0), 0) − K1(0) ·
q2(L2(0), K1(0), 0).

For M , m11 = h1(0, x̄1), m21 = x̄1g1u1(0, x̄1) − x̄1x̄2q1u1(0), m22 =
x̄1g1x1(0, x̄1), m24 = −x̄2q2(0) − x̄1q1(0), m33 = h2(0, x̄2), m43 =
x̄2g2u2(0, x̄2) − x̄1x̄2q2u2(0), m44 = x̄2g2(0, x̄2).

For M̂10, m11 = û1h1u1(û1, x̂1), m12 = û1h1x1(û1, x̂1), m21 =
x̂1g1u1(û1, x̂1), m22 = x̂1g1x1(û1, x̂1), m24 = −x̂1q1(û1), m33 =
h2(0, 0), m44 = g2(0, 0) − x̂1q2(0).

For M̂02, m11 = h1(0, 0), m22 = g1(0, 0) − x̂2q1(0), m33 =
û2h2u2(û2, x̂2), m34 = û2h2x2(û2, x̂2), m42 = −x̂2q2(û2), m43 =
x̂2g2u2(û2, x̂2), m44 = x̂2g2x2(û2, x̂2).

For M̂11, m11 = û1h1u1(û1, x̂1), m12 = û1h1x1(û1, x̂1), m21 =
x̂1g1u1(û1, x̂1), m22 = x̂1g1x1(û1, x̂1), m24 = −x̂1q1(û1), m33 =
L2(0)h2u2(L2(0), 0), m34 = L2(0)h2x2(L2(0), 0), m44 = g2(L2(0), 0) −
x̂1q2(L2(0)).

For M̂12, m11 = L1(0)h1u1(L1(0), 0), m12 = L1(0)h1x1(L1(0), 0),
m22 = g1(L1(0), 0) − x̂2q1(L1(0)), m33 = û2h2u2(û2, x̂2), m34 =
û2h2x2(û2, x̂2), m42 = −x̂2q2(û2), m43 = x̂2g2u2(û2, x̂2), m44 =
x̂2g2x2(û2, x̂2).

For M̃1, m11 = ũ11h̃1u1 , m12 = ũ11h̃1x1 , m21 = x̃11g̃1u1 − x̃11x̃21q̃1u1 ,
m22 = x̃11g̃1x1 − x̃11x̃21q̃1x1 , m42 = −x̃21q̃2, m34 = −x̃11q̃1, m33 = h̃2,
m43 = x̃21g̃2u2 − x̃11x̃21q̃2u2 , m44 = x̃21g̃2x2 , where a function with ∼
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over it means that the function is evaluated at Ẽ1 and similarly for M̃2

at Ẽ2 below.

For M̃2, m11 = h̃1, m21 = x̃12g̃1u1 − x̃12x̃22q̃1u1 , m22 = x̃12g̃1x,
m24 = −x̃12q̃1, m33 = ũ22h̃2u2 , m34 = ũ22h̃2x2 , m42 = −x̃22q̃2,
m43 = x̃22g̃2u2 − x̃12x̃22q̃2u2 , m44 = x̃22g̃2x2 .

Of course M∗ is just M evaluated at E∗.

From the eigenvalues of the above matrices, we can make the following
statements about the local stability of the equilibria.

E0 is totally unstable (all eigenvalues are positive).

E1 has the u1-axis as its stable manifold and x1 − u2 − x2 space as
its unstable manifold.

E2 is a saddle point whose stable manifold is the open x1 axis if
m2

44 = g2(0, 0)−K1(0)q2(0, K1(0), 0) > 0, and is included in the x1−x2

plane if m2
44 < 0.

E3 is a saddle point whose stable manifold is the open u2 axis.

E4 is a saddle point whose stable manifold is the open x2 axis if
m4

22 = g1(0, 0)−K2(0)q1(0, 0, K2(0)) > 0 and is included in the x1−x2

plane if m4
22 < 0.

E5 is a saddle point whose stable manifold is the open u1 −u2 plane.

E6 is a saddle point whose stable manifold is the open u1 − x2 plane
if m4

22 > 0 and is included in u1 − x1 − x2 space if m4
22 < 0.

E7 is a saddle point whose stable manifold is the open x1 − u2 plane
if m2

44 > 0 and is included in x1 − u2 − x2 space if m2
44 < 0.

E is a saddle point whose stable manifold lies in the x1 − x2 plane.
It is either one-dimensional (the bistable case) or two dimensional (the
coexistence cases). This will be discussed to a greater extent in Section
5.

Ê10 is by the nature of the dynamics known to be globally asymp-
totically stable with respect to solutions in the interior of the u1 − x1

plane. Let m̂0
44 = g2(0, 0) − x̂1q2(0, x̂1, 0). Then Ê10 is stable (unsta-

ble) locally in the x2 direction if m̂0
44 < 0 (> 0). It is always unstable

locally in the u2 direction.

Similar statements are valid for Ê02 with u1 and u2 interchanged, x1

and x2 interchanged, and m̂0
22 = g1(0, 0)− x̂2q1(0, 0, x̂2) instead of m̂0

44.
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x1K10
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E–

E
–

FIGURE 1. (a) E does not exist. x2 always outcompetes x1. (b) E exists. x1

and x2 coexist. (c) E exists. Either x1 or x2 go to extinction, depending on

initial conditions, unless they are in E’s stable manifold.
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Ê11 is globally stable for solutions initiating in the positive u1 − x1

plane and is stable locally in the u2 direction. Let m̂1
44 = g2(L2(0), 0)−

x̂1q2(L2(0), x̂1, 0). If m̂1
44 < 0 (> 0), then Ê11 is stable (unstable)

locally in the x2 direction.

Ê22 has analogous properties to Ê11 with u1 and u2 interchanged,
x1 and x2 interchanged, and m̂1

22 = g1(L1(0), 0) − x̂2q1(L1(0), 0, x̂2)
replacing m̂1

44.

Not much can be said about Ẽ1 and Ẽ2 without further assumptions,
other than Ẽi is unstable locally in the uj direction, i = 1, 2, j �= i.

Of course, the stability of E∗ is totally unknown at this point.

4. Persistence. Following Freedman and Waltman [8], we say that
a system of the form

(4.1) Ṅi(t) = Fi(N(t)), i = 1, . . . , n

persists if whenever Ni(0) > 0, i = 1, . . . , n, then lim inft→∞ Ni(t) >
0. Further, if there exists δ > 0 independent of Ni(0), such that
lim inft→∞ Ni(t) ≥ δ, then system (4.1) is said to exhibit uniform
persistence.

In this section we establish criteria for persistence and, as we shall see,
uniform persistence for system (2.1), following techniques established
in Freedman and Waltman [8], it will be sufficient to prove persistence
if we can show that all dynamics are trivial on the boundaries of R4

+,
that all equilibria are hyperbolic and acyclic, and that no equilibrium
is asymptotically stable. By acyclicity we mean that equilibria which
are connected to other equilibria through a chain of saddle connectors
are not eventually connected to themselves (see Butler et al. [2] for a
formal definition).

We first note that all boundary equilibria are acyclic. We then note
that E0 is totally unstable and that E1−E7, E,Ê10, Ê02 are hyperbolic
saddle points.

A sufficient condition for Ê11 (respectively, Ê12) to be a hyperbolic
saddle point is m̂1

44 > 0 (respectively, m̂1
22 > 0).

As far as Ẽ1 and Ẽ2 are concerned, we already know that they have
unstable manifolds. However, we have no guarantee that they are
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hyperbolic or that the dynamics in the respective three-dimensional
subspaces are trivial. However, conditions (albeit complicated ones) for
the interior equlibrium of a competitor-competitor-mutualist system to
be globally asymptotically stable were given in Freedman and Rai [7].

Hence we will require the following hypotheses.

(H4) m̂1
44 = g2(L2(0), 0)−x̂1q2(L2(0), x̂1, 0)>0, m̂1

22 = g1(L1(0), 0)−
x̂2q1(L1(0), 0, x̂2) > 0.

(H5) M̃1 and M̃2 have no eigenvalues with zero real parts.

(H6) Ẽi, if it exists, is globally asymptotically stable with respect to
solutions initiating in the interior of the positive ui − x1 − x2 space,
i = 1, 2.

From the above discussion the following theorem is now valid.

Theorem 4.1. Let (H0) (H6) hold. Then system (2.1) persists.

From the results in Butler et al. [2], the following two corollaries are
also valid.

Corollary 4.2. Let (H0) (H6) hold. Then system (2.1) persists
uniformly.

Corollary 4.3. Let (H0) (H6) hold. Then E∗ exists.

Note that by techniques similar to those used in Rai and Freedman
[6, 7] we could obtain a technique for constructing a Liapunov function
to test for global stability of E∗. However, the computations are very
messy and the results could not be biologically interpreted. Hence, we
choose not to do so in this paper.

Finally, we remark that if (H6) is violated, it still may be possible
to prove persistence, provided that in the appropriate subspace all
solutions eventually enter a compact set containing Ẽi together with
a fnite number of periodic and/or almost periodic motions. However,
the anaylsis is then extremely complicated and is not given here.
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5. Reversal of outcome. Theorem 4.1 indicates several ways in
whch reversal of competitive outcome could occur.

First we consider the two dimensional competitive plane. It is well
known (Albrecht et al. [1]) that in two dimensional competitive systems
the dynamics are always trivial, i.e., all solutions tend to an equlibrium.
If there is at most one equilibrium in the x1 − x2 plane, then the
possible competitive outcomes are similar to those of a Lotka-Volterra
system as described in Freedman [4]. If no positive equilibrium exists,
then one species always outcompetes the other, driving it to extinction.
If a positive equlibrium exists, then either it is asymptotically stable
(both species coexist) or it is a saddle point, (except for singular initial
conditions, one of the species will become extinct, depending on initial
conditions, i.e., the bistable case occurs as described in Kirlinger [9,
10]). Figure 1 shows these three possibilities. In two of them, extinction
takes place. However, if the conditions of Theorem 4.1 are satisfied,
both competitors persist.

It is of interest to note how the bistable case can be reversed by
describing the effect of the mutualists on the isoclines of the competitive
subsystem. Figure 2a shows the isocline picture with no mutualism
giving bistability (but not persistence). If only one mutualist, say u1,
were involved (as in Freedman and Rai [7]) it could effectively move K1

to the right and α1 (the solution of α1q1(0) = g1(0, 0)) up, resulting in
a situation as described in Figure 2b. Now x2 always goes extinct and
there is still no persistence. However, if u2 also influences the dynamics
by moving K2 up weakly and α2 (the solution of α2q2(0) = g2(0, 0))
strongly to the right so as to put the isoclines as described in Figure
2c, then persistence will occur.

As well, this same argument indicates how the second mutualist
could reverse competitive outcome when extinction occurs in either
of the three dimensional competitor-competitor-mutualist subsystems.
In that case we would suppose that one or both of the Ẽi do not occur.
Then the competitor without the mutualist will go extinct. The effect
of the second mutualist is to aid this second competitor sufficiently so
that all populations survive.

6. Example. In this section we give an example to illustrate our
results. The numerical coefficients are for illustrative purposes and do
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x2

K2

x1K10

(a)

x2

K2

x1K10

(b)

x2

K2

x1K10

(c)

α2

α1

E–

α2

α1

α2

α1

E–

FIGURE 2. (a) α1 <K2, α2 <K1. Dynamics are as in Figure 1c. (b) Influence
of u1. α1 > K2, α2 < K1. Dynamics are as in Figure 1a. (c) Influence of u1

and u2. α1 >K2, α2 >K1. Dynamics are as in Figure 1b.
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not necessarily represent any real system. Consider the system

(6.1)

u̇1 = 400u1

(
1 − u1

1150 + 4x1/95

)

ẋ1 = 300x1

(
1 − x1

1500

)
− 14x1x2

9(1 + u1/270)

u̇2 = 450u2

(
1 − u2

2394 + 76x2/875

)

ẋ2 = 250x2

(
1 − x2

1000

)
− x1x2

(1 + u2/475)
.

Various possible equlibria for the system (6.1) are E0(0, 0, 0, 0), E1(1150,
0, 0, 0), E2(0, 1500, 0, 0), E3(0, 0, 2394, 0), E4(0, 0, 0, 1000), E5(1150, 0,
2394, 0), E6(1150, 0, 0, 1000), E7(0, 1500, 2394, 0), E(0, 56500/271, 0,

45000/271), Ê10(2850/3, 1500, 0, 0), Ê02(0, 0, 17366/7, 1000), Ê11(3850/

3, 1500, 2394, 0), Ê12(1150, 0, 17366/7, 1000), and E∗(1200, 2375/2, 2413,
875/4).

We obtain that for the system (6.1)

m2
44 = −1250 < 0, m4

22 = −11300
9

< 0

m̂0
22 = −11300

9
< 0, m̂0

44 = −1250 < 0

m̂1
22 = 4.2253523 > 0 and m̂1

44 = 1.6556292 > 0.

We observe that the conditions (H0) (H4) are satisfied and the
conditions (H5) and (H6) hold vacuously (as Ẽ1 and Ẽ2 do not exist).
Hence all the conditions of Theorem 4.1 are satisfied and system (6.1)
persists.

Further, the existence of E, nonexistence of Ẽ1, Ẽ2 and then existence
of the interior equilibrium E∗ prove the occurrence of the change of the
competitive outcome.

7. Discussion. In this paper we have considered a system of
four autonomous ordinary differential equations as a model of four
interacting populations, two species competing with each other and
two mutualists, one for each competitor. Our main interest was to give
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criteria for the persistence of all four populations. We have been able to
obtain such criteria in terms of the parameters of the system and have
illustrated the conclusions with an example. We have shown that in the
absence of one of the mutualists the corresponding three-dimensional
subspace has no interior equilibrium for our system but if this mutualist
is allowed to interact, then we do have an interior equilibrium in the
four dimensional space, establishing the fact that the mutualist has
altered the competitive outcome, and the four species could persist.
Thus, mutualism is a very desirable interaction when we are looking
for the co-existence of a multispecies community.
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