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ESSENTIAL CRITICAL POINTS
IN PRODUCT MANIFOLDS

GILLES FOURNIER, LECH GORNIEWICZ AND TOMASZ KACZYNSKI

ABSTRACT. First, an analog of the deformation lemma is
proved for functions f: M x P — R, where M is an infinite-
dimensional Finsler manifold, P is a space of parameters, and
f is continuous in both variables and locally Lipschitz in the
first one. Taking P to be a compact manifold one derives a
result generalizing both the Chang’s extension of the defor-
mation lemma for locally Lipschitz functions and the Wille’s
displacement lemma concerning essential critical points of con-
tinuous (possibly nondifferentiable) functions. Examples of
theorems on multiplicity of critical points obtained that way
are presented. At the end, an example of application to peri-
odic boundary value problems is discussed.

1. Introduction. In a recent paper [14] F. Wille gave an elegant
definition of an essential critical point of a continuous real-valued
function defined on a Banach manifold. That definition (recalled in
Section 3) does not refer to any concept of differentiability and it has
a nice geometrical flavor. Moreover, if M is a C' manifold and a
function f : M — R is of class C'!, then any essential critical point of f
in the sense of Wille is a critical point. The main result of Wille is the
following extension of the classical Lusternik-Schnirelman theorem:

Theorem 1.1. Let M be a metrizable Banach manifold modelled on
X, without a boundary, and let f : M — R be continuous. Assume that
fY[a,b] is compact for all a,b € R, a < b, and that f is bounded below
(or above). Then there are at least cat (M) essential critical points of

f-

We recall that cat (M) is the least integer (or oo if such integers do
not exist) such that M can be covered by n closed subsets which are
contractible in M.
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It is instantly noticed that the compactness of f~![a,b] (replacing
the classical Palais-Smale condition) forces M to be locally compact,
therefore finite dimensional. Thus, Wille’s result is not really appli-
cable to problems in analysis and differential equations where infinite
dimensional spaces must be considered. This paper is motivated by the
following two observations:

i) First, even if f is a C! function satisfying the Palais-Smale
condition, results concerning lower estimates of a number of essential
critical points are stronger than those on critical points since we
conclude on the cardinality of a smaller set. Due to the geometrical
flavor, a conclusion on the number of essential critical points is more
informative.

ii) Next, in certain applications, the considered Banach manifolds
are products E x P of an infinite dimensional Banach space and a
compact manifold (see, e.g., [7]). The result of Wille suggests that
we should not need differentiability assumptions and the Palais-Smale
condition for the total derivative but only for the partial derivative with
respect to the variable in FE.

Proofs of critical points theorems, such as Theorem 1.1, are based
on the so-called Deformation Lemma (cf. [2, 11, 12]). We based
our results on Chang’s generalization of the Deformation Lemma [1]
for locally Lipschitz functions and Clarke’s generalized derivative. In
Section 2 we prove an analog of that lemma for a function f : M x P —
R, where M is a Banach manifold, P a metric space of parameters, and
f is locally Lipschitz with respect to the variable in M. We assume
that P is also a manifold and we prove a deformation lemma concerning
essential critical points of f in the product manifold M x P. Some
corollaries are derived: in the particular case when M is a singleton,
we get Wille’s result and, when P is a singleton, we get Chang’s
results with conclusions generalized to essential critical points. We give
two examples of critical points theorems obtained with the use of our
deformation lemma. The reader is referred to [5], where some results of
critical point theory are derived from an abstract “deformation lemma”
assumed as an axiom. In Section 4, an example of application to a
periodic boundary value problem is provided. By showing that the
trivial solution is not an essential critical point of a corresponding
functional, we prove the existence of nontrivial solutions.
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2. Deformation Lemma for functions with parameters. Let
be a Banach space, P a metric space, and f : E x P — R a continuous
function which is locally Lipschitz in z € E uniformly in p € P. More
explicitly, we assume that the following condition (L) is verified:

(L) For any (z9,po) € E x P, there exist an open neighborhood U of
(z0,p0) in E X P and a constant k > 0 such that, for all (z,p), (y,p) € U,

|f(z,p) = f(y,p) < kllz —yll.

If f satisfies (L), then the Clarke’s generalized gradient O, f (cf. [3,
4]) of the function x — f(z,p) is well-defined for each p. We recall
that 9, f(z,p) is the set of those w € E* that (w,v) < fO(z;p;v) for
all v € E, where

£0(w; ) = T Sf (@ + b 1) = f(a -+ R

t\0

We also recall that, for any (z,p) € E x P, 0, f(z,p) is a nonempty
convex w* compact subset of E*. By similar arguments as those in [1],
the set-valued map (z,p) — 9. f(z,p) is w*-upper semicontinuous and
the function

Az, p) = min{|[w||g- | w € 0, f (z,p)}

is lower semicontinuous, i.e., lim . Az, p) = A(z0, po) for any
(z0,50) € £ x P.

Definition. We say that f satisfies the Palais-Smale condition (PS)
if any sequence {(z,,p,)} C E x P such that {f(z,,p,)} is bounded
and (2, pn) — 0 has a convergent subsequence.

We introduce the following notations

K, :={(z,p) € ExP|0€0,f(z,p)};
K& :=K,n f (), c€eR;
7= 1 (=00,
B(c,e,0) :={(z,p) e EXP|c—e< f(z,p) <c+e
and dist ((z,p), K3) > 0}.
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As a consequence of the preceding discussion, if f satisfies (PS), then
K¢ is compact.

The following lemma can be proved by similar arguments as those
used in Section 3 of [1]:

Lemma 2.1. Let f : E X P — R be a continuous function satisfying
(L) and (PS). Then, for any § > 0, there exist b, £ > 0 and a continuous
vector field V : E x P — E satisfying (L) such that the following

conditions are verified:
(i) Az,p) > b for all (x,p) € B(c, 2¢,0);
(ii) (zp,V(z,p)) > b/2 for all (z,p) € B(c,2¢,9), z, € 0. f(z,p);
(iii) ||V (z,p)|| £ 1 for all (z,p) € E x P;
(iv) V(z,p) =0 if (z,p) ¢ B(c,£,20).

We are now able to prove the following theorem.

Theorem 2.2 (Deformation Theorem). Let f : E X P — R be
a continuous function satisfying (L) and (PS), and let U be an open
neighborhood of K&, U = @ if K = @. Then, for any o > 0 there
exist 0 < € < g9 and a continuous map n: E x P x[0,1] = E x P with
the following properties:

(i) no is the identity on E x P (where ny(x,p) := n(x,p,t));
(ii) ¢ is a homeomorphism for all ¢t € [0,1];

(iii) n(z,p) = (x,p) for all (z,p) € E x P — f~1([c—¢eo,c+e0]) and
all t €10,1];

(iv) f(m(z,p)) < f(x,p) for all (x,p) € E x P;
(v) m(fer=-U)cC fee.

Proof. By the fundamental existence and uniqueness theorem for
differential equations (cf. [13]), the initial value problem

y'(t) = =V(y(t),p), y(0)=p

has a unique solution y : R — FE, for any (z,p) € E x P. By the
Kurzweil-Vorel theorem [8] (see also [13]), the solution y(t) = n'(x, p,t)
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is continuous in (z,p,t) € E x P x R. We may define: Ex P xR —
E x P, n(z,p,t) :== (n'(z,p,t),p) and complete the proof by the same
arguments as in [1]. O

Let now M be a C' Finsler manifold modelled on E, i.e., a para-
compact manifold with a Finsler structure || - || : TM — [0,00), let
p: M x M — [0,00) be the metric on M defined by the Finsler struc-
ture (cf. [11]), and f : M x P — R a continuous function satisfying
the Lipschitz condition

(L) For any (zg,po) € E x P, there exists an open neighborhood
U of (zg,pp) in M x P and a constant k£ > 0 such that, for all (z,p),

(v,p) € U,|f(z,p) — f(y,p)| < kp(z — y).

Then fo (¢ xid) : E x P — R satisfies (L) for any chart ¢ : E — M
and we may define 9, f(z,p) C (IT,M)* by the same amalgamation
formula as in [10]. The correctness of the definition is a consequence
of the “chain rule” for compositions of locally Lipschitz functions with
diffeomorphisms, the proof of which is left to the reader.

Proposition 2.3. Let U be open in E, ¢ : U — E a C* diffeomor-
phism and f : ¢(U) — R a Lipschitz function. Then

(@) (fo¢)°(z,v) = f(¢(x), dp(x)v),
(b) O(f o ¢)(z) = 0f(¢(x)) o do(x).

Given a continuous f : M x P — R satisfying (L’) we define
Az, p) := min{||w||% | w € 0, f(z,p)}, and the Palais-Smale condition
can be formulated as before with M in the place of E. Similarly as for
C! functions, our deformation lemma (Theorem 2.2) can be extended
to functions on M x P:

Theorem 2.4. Let M be a C? Finsler manifold, P a metric space,
f: M x P — R a continuous function satisfying (L') and (PS), and
let U be an open neighborhood of KS in M x P. The conclusion of
Theorem 2.2 holds with E replaced by M.
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3. Essential critical points in product manifolds. Let E be a
Banach space, D an open subset of F/, and f : D — R a continuous
function. We recall from [14] that 2o € D is called an essential regular
point of f if there exists a homeomorphism h : U,, — V,, of open
neighborhoods Uy, V,,, of z¢ with the property h(zg) = ¢, such that
f o h is a nonconstant affine functional restricted to Ug,. A point z
is an essential critical point of f if it is not essentially regular. It is
known (cf. canonical form theorem for a regular point [10]) that if f
is of class C' and z° is a regular point then it is essentially regular.
Consequently, any essential critical point of a C! function is one of its
critical points.

Next, let M be a Banach manifold for F and f : M — R continuous.
A point ¢y € M is an essentially reqular point of f if ¢(xp) is an
essentially regular point of f o ¢! for at least one chart ¢. It is easy
to see that if that happens for one chart ¢, then it is true for all charts.
An essential critical point of f: M — R is again defined as one which
is not essentially regular. The following result is due to Wille:

Lemma 3.1 (Local Displacement [14]). Let M be a metrizable
Banach manifold, f : M — R a continuous function, and let oy € M
be an essentially reqular point of f. Then there exists a homotopy
n: M x[0,1] - M and a neighborhood Uy, of xo with the following
properties:

(i) no is the identity on M (where ni(x) := n(z,t));
(ii) n¢ is a homeomorphism for all t € [0, 1];

i) n(z) ==x for allz € M — Uy, and all t € [0,1];
) f(m(z)) < f(z) for all x € Uy, and all t € (0,1].

(iii
(iv
We now let M be a C? Finsler manifold, P a finite dimensional
topological manifold and f : M x P — R a continuous function

satisfying the conditions (L) and (PS) of the previous section. Since
M x P is now a Banach manifold, we may consider the set

Kess = {(z,p) € M x P | (x,p) is an essential critical point of f}.

It is easily proved that K is closed in M x P. If P is a C'' manifold,
fis a C! function, and K = {(z,p) € M x P | Df(z,p) = 0} is the set



PRODUCT MANIFOLDS 195

of its critical points, then K.ss C K C K,. We may now establish our
key result:

Theorem 3.2. Let M be a C? Finsler manifold, P a metrizable
Banach manifold, f : M x P — R a continuous function satisfying
(L") and (PS), and let U be an open neighborhood of Kess N KS in
M x P, U =9 if K =3. Then the conclusion of Theorem 2.2 holds
with E2 X P replaced by M x P.

Proof. For each (zo,po) € Ky — U let Uy, ) and n(@o:Po) : M x P x
[0,1] = M X P be the local displacement as given by Lemma 3.1 for
the manifold M x P. We may assume, without a loss of generality, that
U(zo,yo) C f_l([c —€n,C + 80])‘ Since f(,,ﬁzo,])o)(w’p)) < f(xap) for all
(7,p) € U(zy,po), We may take

1

0 < 8o pa) = 1 (@0, p0) = (17" (@0, p0))].

Then there exists an open U(’Io’po) C Ulzo,po) such that

F™P) (2,p)) < f(2,9) — 2620 p0)

for all (z,p) € Ug,, po)
ing {U(’Lp)}(w’p)eK;_U has a finite subcovering {U(’mhpl),U(’mz’pz), ceey
U('wmpn)}. Then U = U(’whpl) UU(lwz,pz) u-- -UU(’wmpn) is an open neigh-
borhood of K¢. Let 7: M x P x [0,1] = M x P and 0 < £ < g¢ as in

the conclusion of Theorem 2.2 for U replacing U. We now put

Since KS — U is compact, its cover-

€= min{f, 6(“”171’1)’ (5(9”27172)’ e ’é(ﬂfn,Pn)}
M = 77 ngzn,pn) o nt(wnflvpnfl) 0. 0 ngm,ln).

It is easily verified that n has the desired properties (i) through (v).
]

We shall now discuss some consequences of the Deformation Lemma.
We first obtain two special cases of Theorem 3.2.

Corollary 3.3 (Wille’s Global Displacement Lemma). Let P be a
finite dimensional topological manifold and f : P — R a continuous
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function such that f~'([a,b]) is compact for any compact interval
[a,b] € R. Then the conclusion of Theorem 2.2 holds with E x P
replaced by P.

Proof. We apply Theorem 3.2 with M = {0}. The (PS) condition is
trivially satisfied. ]

Corollary 3.4. Let M be a C? Finsler manifold, f : M — R a locally
Lipschitz function satisfying (PS), and let U be an open neighborhood
of the set K N Koss where

K={zeM|0e€df(x)}.

Then the conclusion of Theorem 2.2 holds with E x P replace by M.

Proof. We now let P be a singleton, in the statement of Theorem 3.2.
]

Our extension of the Deformation Lemma automatically includes
extensions of many results on multiplicity of critical points which
are based on that lemma. We reach analogous lower estimates of
multiplicity of critical points which are essential critical points. Here
are some examples:

Theorem 3.5 (cf. [11, Theorem 7.2]). Let M be a C? Finsler
manifold, P a metrizable Banach manifold, and f : M x P — R a
continuous function satisfying (L') and (PS). Then there exists at least
cat (M x P) of points in the set Kess N K.

Theorem 3.6 (cf. [7, Theorem 4.2]). Let M, P be as above. Suppose
that for two reals a < b, Kess N K3 = Kegs N KI; = &. Then there is at
least cat M><P7fa(fb) points in the set Kess N K, N f~1([a,b]).

For the definition of the relative category cat x,y(A), we refer the
reader to [7].

In a similar way, Theorems 3.2, 3.3 and 3.4 in [1] can be extended to
essential critical points.



PRODUCT MANIFOLDS 197

4. An application to differential equations. We consider the
periodic boundary value problem

(P) " = f(z,t), z(0) = z(T), te0,T7],

where f : R2 — R is continuous with the continuous partial derivative
f+ and f(0,t) = 0 for all ¢. Obviously, (P) has a trivial solution z = 0.
We shall impose further restrictions on f under which the existence of
one or more nontrivial solutions can be deduced. Assume that

(i) There exist constants «, 3, c such that F(z,t) > az? — 3 for all
|z| > ¢, where F(z,t) = [ f(s,t)ds.

(ii) There exist r > 0 such that f(z,t) > 0 for all 0 < |z| < r and
all ¢ € [0, 7).

Let H: = W%’z be the Sobolev space of order one of T-periodic
functions (cf. [9]), and let ¢ : H}. — R be given by

T 12
¢(x):/ %+F(m,t) dt, e Hk
0

It is verified that ¢ C C'(HL,R) and that any z € H} is a weak
solution of (P) if and only if z is a critical point of ¢ (cf. [9, Theorem
1.4]). Moreover, by standard arguments similar to those in the proof
of [9, Proposition 4.1], ¢ is bounded from below and it satisfies (PS).
Therefore ¢ has at least one essential critical point z where it assumes
a minimum value. However, we have the following

Lemma 4.1. The trivial solution x = 0 is an essential regular point

of ¢.

Proof. Let 7 = (1/T) fOT z(t)dt and T = ¢ — . We define ¢(z) =
Z + ¢(x). Then ¢ is continuous in z, ¥(0) = 0 and @(z) = a o ¢Y(z)
where a(z) = Z is a nontrivial linear functional. The conclusion
will follow from h = ¢~ ! if we show that 1 is a homeomorphism
from some neighborhood of the origin in H% onto another one. Note
that |Z(t)] < VT||z'||> < \/THIHH% Let 0 < ¢ < 7/VT and
B.={z € H}: ||zl 2. < e}. We define G : Be x [—r +VTe,r — VT¢]
by

G(z,s) :ATF(i+5,t)dt.
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Note that ¥ (z) = @ + (1/2)||2'[|3 + G(&,Z). It follows from (ii) that
G is strictly increasing in S. Moreover, by suitably reducing € one can
show that

1
Gl —r +VTe) <5 5lIy|3 < G(G,r — VTe)

for all y € B.. By the intermediate value theorem, for any y € B,
there exists a unique p(y) € R continuous in y, such that G(g, p(y)) =
g — (1/2)||y'||3. It is verified that h(y) := § + p(y) is the inverse of
Y :B. Ny 1(B.) - Be. O

Lemma 4.1 implies that (P) has at least one nontrivial solution;
however, the use of essential critical points can be easily avoided
since one can show by more elementary arguments that ¢(0) is not
a minimum. We shall give an example of ¢ which has at least three
essential critical points (two are local minima and one “saddle point”).
Then Lemma 4.1 is a simple argument for the existence of at least three
nontrivial solutions of (P). Indeed, let

f(z,t) = 6Rz?(z* — 1)(2z — 1) + 3asin® z cos z cos t, z,t e R,

where R and a are positive constants such that 872(31R+5a) < 5. We
take T' = 2. Then

F(z,t) = ?(mm6 — 62° — 152* 4+ 102°) + asin® z cost,

and f verifies the previous assumptions. Moreover, one can show that
#(£1) < p < 0 < ¢(&) for all z € H}, where p = —27R/5. Let
g=sup{o(s): -1 <s<1}, A=¢9 B =¢P. Thenq >0, B C A,
1 and —1 are in different connected components of B and in the same
connected component of A. It follows from [6, Theorem 2.2] and [7,
Theorem 4.2] that cat B > 2 and cat 4, 5(A) > 1. Therefore, ¢ has
at least two essential critical points in B and at least one in A — B.
Consequently, (P) has at least three nontrivial solutions.

Note that since f is smooth and 27-periodic in ¢, the solutions of (P)
extend to classical periodic solutions of "/ = f(z,¢) in R.
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