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EIGENVALUE ASYMPTOTICS FOR
A NON-SELFADJOINT ELLIPTIC PROBLEM
INVOLVING AN INDEFINITE WEIGHT

MELVIN FAIERMAN

ABSTRACT. Asymptotic formulae are established for the
distribution functions of the real parts of the eigenvalues
of a non-selfadjoint linear elliptic boundary value problem
involving an indefinite weight function under more general
conditions than hitherto considered.

1. Introduction. An inspection of the literature concerning the
eigenvalue asymptotics for linear elliptic boundary value problems
involving an indefinite weight function shows that all of the relevant
work to date has been devoted to either selfadjoint problems or non-
selfadjoint problems arising from perturbations of selfadjoint ones. We
refer to [4-7, 8, 10, 11], and [13, 14] for further information. We are
now going to focus our attention upon the eigenvalue asymptotics for
a non-selfadjoint problem which does not arise from a perturbation of
a self-adjoint one.

Accordingly, we shall be concerned here with the boundary value
problem

(1.1) Lu=Mw(z)u in Q,

(1.2) Bju=0 onI' for j=1,...,m,

where L is a linear elliptic operator of order 2m defined in a bounded
region 2 C R",n > 2, with boundary I', the B; are linear differential
operators defined on I', and w is a real-valued function in L*°(()
which assumes both positive and negative values. Our assumptions
concerning the problem (1.1-2) will be made precise in Section 2; and
in particular we might mention that it will always be supposed here that
2m > n and that 1/w € L (). As a consequence of our assumptions
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we are then able to appeal to the results of [9], wherein important
information was established concerning the angular distribution of the
eigenvalues of the problem (1.1-2); and in particular it was shown
that the only directions of condensation of the eigenvalues of (1.1-2)
were the positive and negative real axes. These results, together with
the method of Carleman-Agmon, enable us in Section 3 to establish
asymptotic formulae for the distribution functions of the real parts of
the eigenvalues of the problem (1.1-2).

2. Preliminaries. In this section we are going to introduce our
basic assumptions concerning the problem (1.1-2) and present some
results from [9] which we require in the sequel. Accordingly, for %
a non-negative integer, let H*(Q) denote the usual Sobolev space of
order k related to H = L%*(Q) and let (, )r.q and || ||r,o denote the
inner product and norm, respectively, in H*(Q2). We also let ( , ) and
Il || denote the inner product and norm, respectively, in #, while if «
denotes the multi-index (au,...,ay), then we let af = 337, a; and
D® = D{* .- D&, where D; = 0/0z;. Turning now to the problem
(1.1-2), we henceforth suppose that

Assumption 2.1. (1) 2m > n;
(2) Q is of class C?™1;

(3) L(z,D) = X \4)<2m @a(®)D* is uniformly strongly elliptic in Q
with ao real-valued if \&| = 2m and complez-valued otherwise and such
that a, € ClPI=1(Q) for |a| > 1, ay € L™(Q) otherwise, where —
denotes closure;

(4) Bj(z,D) = 05191 Jopsti—1 4 Plaj<sti1 Vja(x)D for j =
1,...,m, where s is an integer satisfying 0 < s < m, 0/0v denotes
differentiation at the boundary along a smoothly varying non-tangential
direction v (note that if we write d/0v =Y _ b.(x)D, forx € T, then
we require that b, € C*™~%Y(T) N Cs+t™~LY(T)), the bj o are complex-
valued functions satisfying bj, € C*"~*~3YT) N Cl*bY(T), and the
summation does not appear if s =0 and j = 1.

It is clear that apart from certain smoothness conditions, our assump-
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tions ensure that the boundary value problem:
(2.1) Lu=f inQ

together with the boundary conditions (1.2) is a regular boundary value
problem in the sense of [1, 16]. Note that if L* denotes the formal
adjoint of L and {C;}T* denotes a system of boundary operators adjoint
to {B;}7* with respect to the problem (2.1), (1.2) (see [16, p. 121, 17]),
then the formal adjoint problem of (2.1), (1.2),

L'v=f inQ,

(2:2) |
Ciju=0 on I for j=1,...,m,

is also a regular elliptic problem. Now let A (respectively A’) denote
the operator in H induced by L (respectively L*) and the boundary
conditions (1.2) (respectively (2.2)), and where we note from [9] that
D(A) and D(A’) are densely defined in H and are closed subspaces
of H*™(Q) (here D denotes domain). Then we know from [9] that
A’ = A*, where A* denotes the Hilbert space adjoint of A, and that A
and A* are Fredholm operators [15, p. 230].

Turning next to our assumptions concerning w(z), let

Qt = {z € Quw(z) >0},
Q" = {z e Quw(z) <0},
Q° = {z € Qyw(z) = 0}.

Assumption 2.2. We henceforth suppose that:

(1) Q%] > 0 and |Q°] = 0, where | | denotes n-dimensional Lebesgue
measure;

(2) |9F\int QF| = 0, where int stands for interior;

(3) int QT (respectively int Q™) is the union of a finite number of non-
empty disjoint regions, say {07} (respectively {Q2}), each of which is
of class C*™~11 and in each of which w(zx) is uniformly continuous
and |w(z)| has a positive infimum;

(4) each component F:'j of O+ (0 is boundary) is either a component
of I' or is contained in 2, and in this latter case ijj s also either a
component of OQF for some s # r, or a component of OQ for some s;
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(5) the same hypothesis as in (4) holds with the superscripts + and
— interchanged.

Let T denote the operator of multiplication in H induced by w.
Then the eigenvalue problem (1.1-2) can be formulated from a purely
operator-theoretic point of view, namely as the eigenvalue problem in
H : T~ 1Au = \u. Hence we call \ an eigenvalue of the problem (1.1-2)
if A is an eigenvalue of T71A; and by the multiplicity (geometric or
algebraic) of the eigenvalue A we mean it multiplicity as an eigenvalue
of T7'A. We shall also refer to the principal vectors and principal
subspace for the eigenvalue A of T~ 1A as those for the eigenvalue \ of
(1.1-2); and if X is an eigenvalue of (1.1-2), then we henceforth let M)
denote the principal subspace corresponding to A.

Assumption 2.3. We suppose from now on that p(T 1A) # @.

We refer to [9] for a detailed discussion of Assumption 2.3. Moreover,
from [9] we also know that (here, when we refer to the spectrum of the
problem (1.1-2), we mean the spectrum of T—1A),

Theorem 2.1. The spectrum of the problem (1.1-2) consists solely of
eigenvalues of finite algebraic multiplicity which form a denumerably in-
finite subset of C having no finite points of accumulation. Furthermore,
for any € satisfying 0 < € < w/2, there are infinitely many eigenvalues
of (1.1-2) lying in each of the sectors: |arg\| < € and |arg A — 7| < g,
while there are at most a finite number of eigenvalues in each of the
sectors: e <argA<m—¢€ and —m+¢e <arg\ < —¢.

In light of Theorem 2.1, we see that there is no loss of generality in
introducing

Assumption 2.4. We suppose from now on that 0 € p(T~1A).

Definition 2.1. Let X be a complex Hilbert space and S a linear
operator in X. Then the set of all non-zero complex numbers A such
that I — AS has an inverse in £(X) is called the modified resolvent set
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of S and is denoted by py,(S). For A € p,,,(S) we let Sy = S(I —\S) !
and call S the modified resolvent of S. A complex number A is called
a characteristic value of S if there exists a u # 0 in D(S) such that
(I — AS)u = 0; u is called a characteristic vector of S corresponding
to A. If X is a characteristic value of S, then a non—zero vector u is
called a generalized characteristic vector of S corresponding to A if for
some p € N, w € D(SP) and (I — AS)Pu = 0. The set consisting of all
generalized characteristic vectors of S corresponding to A together with
the zero vector in X is a subspace of X which we denote by G (S, X).
Finally, the ray arg A = 6 in the complex A-plane is said to be a ray of
minimal growth of Sy if for all A on the ray, with |\| sufficiently large,
we have A € p,,,(9) and ||Sy||x < ¢|A|™!, where ¢ denotes a positive
constant and || ||x denotes the norm in £(X).

It follows from what has been said above that 0 € p(A4) and that A~!
is compact. Hence let us now introduce in H the compact operator
K = A71T. Then from [9] we have

Theorem 2.2. X is an eigenvalue of the problem (1.1-2) if and only
if X is a characteristic value of K. Moreover, if \ is an eigenvalue
of (1.1-2), then M) = Gx\(K,H). Finally, every ray arg A = 0 in the
complex A-plane for which 0 # krn, k € Z, is a ray of minimal growth
Of K/\.

3. Main results. We are now going to use the foregoing information
to derive our main results. Accordingly, since A~! and A*~! both map
H into H?™((2), an easy argument involving the polar decomposition of
A~! and the results of [1] shows that K is of trace class (or nuclear in
the terminology of [12]). Furthermore, we know from [3] that K is an
integral operator with kernel G(z,y)w(y), where G(z,y) is continuous
and bounded in €2 x 2. Now for § € R such that 6 # kx for k € Z, let
=(6) denote the ray in the complex A-plane emanating from the origin
and making an angle § with the positive real axis and for a > 0, let
E(6,a) = {X € C|A € E(0), |A] > a}. We henceforth suppose that a
chosen large enough so that Z(6,a) C p,,,(K). Then for A € 2(0,a),
it is clear that K is of trace class, while from [3] we know that K is
an integral operator with kernel G (z,y)w(y), where G, is continuous
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and bounded in Q X 2, and that in this region we have
(3.1) |Gz, y)| < efa| 72,

where ¢ denotes a positive constant not depending upon A, z, nor y.
Also if Lo(z, D) denotes the principal part of L(z, D), then

Theorem 3.1. If z° € QF, then
G(2®, 2)(@®) = A2 [mg (o) + o(1)]
as |A\| = oo, A € E(0,a), where

mo(27) = (2m)~" / [w(®) " Lo(a®, i€) — '] de.

n

Proof. The theorem can readily be established by arguing as in
the proof of Theorem 7.1 of [3] and making use of the facts that
(A= XDYK\T~'f = f and (A* — A\T)(K\T~')*f = f for f € H,
where * denotes adjoint. mi

Finally let {);}{° denote the eigenvalues of the problem (1.1-2)
counted according to algebraic multiplicity, and for A > 0 let Ny ()
denote the number of eigenvalues A; for which 0 < Re A; < A, while for
A > 0let N_(X) denote the number of eigenvalues A; for which —\ <
Re); < 0 and put N_(0) = 0. Also let N(\) = Nx(\) + N_(A) for
A > 0 so that N () is the number of eigenvalues A; for which |Re );| <
A. Then putting w'(z) = max{w(z),0}, w (z) = max{-w(z),0},
and 7(z) = ‘{{ € R" | 0 < Lo(z,i) < 1}

n-dimensional Lebesgue measure, our main result is

, where here | | denotes

Theorem 3.2. It is the case that

Ni(X) = e A2 4 o(A2™) g5 A — oo,
N(A) = eA™2™ £ o(AV2™)  as X\ — oo,
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where

cs = (27)" /Q (w*(2))" " (z) da,

c=cito = (271')_"/9 (@)™ ?™r () da.

Proof. Tt follows from (3.1), Theorem 3.1, and the Lebesgue domi-
nated convergence theorem that

/GA z,x)w(x)de = |\~ H"/Zm /mg )dz + o(1 )}

as |A\| = 0o, A € E(6,a). On the other hand, it follows from Theorem
2.2 and arguments similar to those used in the proof of Theorem 13.10
of [2, p. 227] that

oo

/ Gi(z,z)w (A=A~

Q =

and hence we conclude that

(32) S (- A) L= e/ [/ mo () dz +o(1)|
i=1 @

as [A\| = oo, A € E(#,a). Taking 0 = 7/2, A = it, we see from (3.2)
that

)\ —lt /mw/Z )d.T —1+n/2m
sy 2 )

+o(t7H/2m) as t— 0.

Hence if we let A\; = p; 4+ iv; for j > 1 and bear in mind Theorem 2.1
and the fact that K is of trace class, then it is easy to deduce from
(3.3) that

i i —it)” /m,r/Q )d:v)t 1+n/2m

(34) j=1
+o(t™H/2m) ast — 0.
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We can now appeal to a Tauberian theorem of Hardy and Littlewood
and argue with (3.4) precisely as in the proof of Theorem 14.6 of [2,
p- 250] to arrive at the conclusions of the theorem. O
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