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ON THE DISCRETE RICCATI EQUATION
AND ITS APPLICATIONS TO
DISCRETE HAMILTONIAN SYSTEMS

LYNN H. ERBE AND PENGXIANG YAN

ABSTRACT. We obtain some comparison theorems for the
discrete Riccati equation

AW (t) +A(t)+B* ()W (£)+ W (¢) B(t) — B* () W (t) B(t)
+(I=B(®)*W(t)(C™ (&) +W ()W ($)(I-B(t)) =0

and some applications to the discrete Hamiltonian difference
system

Ay(t) = B(t)y(t+ 1) + C(t)z(t)
Az(t) = —A(t)y(t +1) — B*(t)=(t)

where A, B, and C are d X d matrix functions, y(¢), z(t) are
d x 1 vectors and ¢ takes on integer values in [M — 1, N + 1].

1. Introduction. In [5—8] the present authors introduced the
Hamiltonian vector difference system:

(1.1) Ay(t) = B(t)y(t + 1) ;L o(tzz(t)

Az(t) = —A(t)y(t + 1) — B*(t)2(t)

the corresponding matrix system

(1.2) AY(t) = B(t)Y(t+1)+C(t)Z(t)
’ AZ(t) = —A@)Y(t+1) — B*(t)Z(t)

where A(t), B(t),C(t), W(¢),Y(¢), and Z(t) are d x d matrices with

A(t) and C(t) Hermitian. We assume further that C(t) > 0 (positive

definite) and I — B(t) is invertible. Also, A denotes the forward
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difference operator Ay(t) = y(t+1)—y(¢) and B* denotes the conjugate
transpose. Here y(t) and z(t) are d x 1 vectors and ¢ takes on integer
values in [M —1, N+1], where M and N are two integers. We examined
the disconjugacy for these systems by introducing the discrete Riccati
equation:
(1.3)

R[W]:= AW (t) + A(t) + B*(t)W (¢t) + W(t)B(t) — B*(t)W (t)B(t)

+ (I = B@t) W) (C™H(t) + W ()" W () (I — B(t)) =0
and the quadratic forms

N+1

qlu] = Y (="t = 1)O(t = 1)=(t = 1) =y () A(t - 1)y(1)),

where
u={y(t),z(t)} € Q
={y,z2€C?:y(M -1)=0=y(N +1),
Ay(t) = B(t)y(t+1) + C(t)z() };

and
N+1
QU] =Y (Z*(t-1)C(t—1)Z(t—1) = Y*(t)A(t — 1)Y (1))
where
U={Y(t),Z(t)} € A
={Y,ZecC¥:Y(M -1)=0=Y (N +1),
AY(t) = B(t)Y (t+ 1)+ C(t)Z(t)}-

We introduce the further notation: AT := {U € A: there is a
M —1 <ty <N —1such that Y(¢y) =0 and Y (¢, + 1) is nonsingular
or there is M +1 <ty < N + 1 such that Y(¢p) =0 and Y(tp — 1) is
nonsingular}.

We say ¢ is positive on Q provided g[u] > 0 for all v € Q and
q = 0 if and only if v = 0; @ is positive definite on A provided for
allU € A, Q[U] > 0 and @ = 0 if and only if U = 0; Q is strictly
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positive on AT if Q[U] > 0 for all U € A*. The relation among (1.1)-
(1.3), q,Q is given in the “Reid Roundabout Theorem” [6, Theorem
2.5], which will be stated below for completeness.

We say (1.1) is disconjugate on [M — 1, N + 1] if and only if for
any nontrivial solution {y(t),z(¢)} of (1.1) there exists at most one
integer p € [M — 1, N] such that y*(p)C*(p)({ — B(p))y(p + 1) < 0.
A solution {Y'(¢), Z(t)} of (1.2) is said to be prepared if Y*(¢)Z(t) is
Hermitian. We say a prepared solution of (1.2) is a conjoined basis if

V(i)
Rank Z(t)
integer My for which

= d, and it is said to be recessive at oo if there exists an

(1.4) Y*t)C M t)(I-B@)Y(t+1)>0, t>M,

and

n -1

. * * —1 —

(1.5) nhﬁn;o Z u (Y (s)C ' (s)(I — B(s))Y (s + 1)) u = 00
s=Mo

for every unit vector u. A prepared solution of (1.2) is said to be

dominant at oo if (1.5) holds for some integer M, and

e -1

(1.6) 3w (Y*(s)Cil(s)(I—B(s))Y(s—i— 1)) u

s=Mjy

converges for every unit vector u.

Equation (1.1) is said to be eventually disconjugate in case there
exists an integer My such that (1.1) is disconjugate on [My—1, N3 +1] for
all integers N1 > My. A “Reid Roundabout Theorem,” (cf. Ahlbrandt
[2]) and many results of disconjugacy for (1.1) and (1.2) analogous to
the continuous case of Coppel [4] are given in [6—8]. Peterson [11]
gives the corresponding disfocality criteria for (1.1). For completeness
we state: (cf. [6, Theorem 2.5])

Theorem A. The following are equivalent:
(i) FEquation (1.1) is disconjugate on [M — 1, N + 1];
(i) qu] is positive definite on €
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(i) QU] is positive definite on A and strictly positive on A
(iv) There exists a Hermitian solution of the Riccati equation (3)
such that C~1(t) + W(t) >0, t € [M — 1, NJ;

(v) There exists a solution of equation (1.2) such that

Y*(t)C™Nt) (I — B(t))Y (t+1) >0, te[M—1,N].

Ahlbrandt [3] recently showed that under certain implicit solvability
hypotheses, (1.1) is equivalent to the discrete Euler equation, and
also proved that discrete linear Hamiltonian systems have a symplectic
transition matrix. Ahlbrandt’s results show that there is a possibility to
apply the results of discrete Hamiltonian systems to the control theory.

In control theory (cf. [12]), for the linear discrete-time system

z(k +1) = Az (k) + Bo(k), k>0
lim z(k) = 0,

k—o0

(1.7)

one wishes to minimize the cost functional
(2R (@ O\ (k)
(18) ””“%(v(k)) (&%) ()

The control v which minimizes this cost functional is given by the
formula

(1.9)  w(k)=—-(R+ B*P,B)"Y(C+ B*P,B)"'(C + B*P, A),

where A,B,C",Q and R have the dimensions d x d,dxl,lxd,dxl,
dxd, 1 x1. The pair (A, B) is assumed to be stabilized, i.e., there exists
a d X d matrix K such that all eigenvalues of A — BK are inside the
unit circle, and Py is the maximal Hermitian solution of the following
algebraic Riccati equation

(1.10) P = A*PA+ Q@ — (C+ B*PA)"(R+ B*PB) "' (C + B*PA),

In this paper, we are going to derive some comparison theorems for
(1.3), and derive sufficient conditions of disconjugacy for autonomous
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systems, i.e., the systems with all the coefficient matrices in (1.1)
constant.

2. Main results. The following theorem is an extension of
Proposition 2.4 [7].

Theorem 1. If V(t) is a Hermitian matriz solution of the inequality
R[V] <0 for t € [ko,0), W (t) is a Hermitian solution of (1.3) with
W(ko) > Vi(ko), W(ko) > V(ko), and V(t) + C71(t) > 0, then
W(t) > V(t), W(t) > V1), for t [k, 00).

Proof. Suppose U = {Y(t),Z(t)} is a prepared solution of (1.2)
corresponding to W (t), as in Proposition 1.4 [6]. Then

2.1) QU =Y*(N+1)Z(N +1) — Y*(ko)Z (ko)
' =Y (N+1)W(N +1)Y(N +1) — Y*(Ko)W(ko)Y (ko)
At the same time, since R[V] < 0, we have

AV (t) < —A(t) — B*(t)V(t) — V(t)B(t) + B*(t)V (t)B(¢t)
— (1 - B@®) V(O + V(1) V(I - B(E)).
By using the proof of Proposition 1.4 [6], we have

QUIZY*(N+ V(N + 1)Y(N +1) — Y7 (ko)V (ko)Y (ko)

N
(2.2) + Y (VY - zm) (C )

t=ko—1

+V () (VYR - Z()
Now combining (2.1) and (2.2), we get

YN+ 1)(W(N +1) - V(N +1))Y(N +1)
> Y (ko) (W (ko) — V (ko)) Y (ko) > 0.

where N can be any integer in [ky + 1,00). Therefore the proof is
completed. O
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The next theorem concerns the minimal solution of (1.3). For
B(t) = 0 Ahlbrandt [1] gave the explicit constructions for “maximal”
and “minimal” solutions of (1.3).

Theorem 2. Suppose that {Yy(t), Zo(t)} is the recessive solution of
(1.2) on [M, 00), and set Wy(t) = Zy(t)Yy ' (t). Then for any Hermitian
solution W (t) of (1.3), there exists an integer My > M such that
W (t) > Wy(t) for all t > M.

Proof. From the proof of Proposition 2.4 of [7], we have

W (t) = Wo(t) + ((S + Ho()T) vy

(2.3) ) )
(S*T + T*Ho(t)T) ((S + Ho(t)T) Yy ")
(

since {Yy(t), Zo(t)} is a recessive solution of (1.1), it follows that for
any unit vector u, we have

uw Hy(t)u — oo ast — oo.

Therefore, there exists an integer My > M such that if ¢ > My, we
have

S*T + T Ho(t)T > 0,
i.e., W(t) > Woy(t). This completes the proof. o

Note. Wy(t) is evidently a minimal solution of (1.3) in a neighborhood
of oo.

We say that (1.3) is solvable on the interval [M — 1, N + 1] if there
is a Hermitian solution W (t) of (1.3) with C~1(¢) + W(t) > 0, and is
strongly solvable if this property is preserved under a sufficiently small
variation of the coefficients A(t) and B(t).

Theorem 3. Suppose that there exists an oo > 0 such that C(t) > ol
fort € [M —1,N +1]. Then (1.3) is strongly solvable if and only if
there exists a § > 0 such that

(2.4) alu] > 8(/[yll* + [lwll*)
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where u € Q, ||yl[> = X0y v* By (1), Ay(t) = Bt)y(t +1) + w(t).

Proof. If (1.3) is strongly solvable, then there exists a § > 0 such
that if we replace A(t), C(t) by A(t) + 61, C(t) — 1, in (1.3) we still
may find a Hermitian solution W (t) of (1.3) with W (¢) + C~1(t) > 0.
Therefore the corresponding quadratic form §[u] > 0. Denote

D(t):(B*I(t) ?> <C_$(t) —£<t)> (é BP)'

Then
N
- - * * ™ Ay(t)
= > (oo (,60)
N
=qlul = D (Ay(0),y7(t+1))G(1) (yﬁfyfi)>
where

G(t)—<B*I(t) ?> <60[ JOI> <é By))'

Since § > 0, we obtain (2.4). On the other hand, if (2.4) holds, by
Theorem 2.5 of [6], we know (1.3) is strongly solvable. u]

For the autonomous system, we introduce the notations as in [12]:
M={W|W=Ww* C'4+W >0, R(W) <0}

where RW)=W—(I-B YW(([I-W)+A

1

+({I-B)'W(C'+W) W(I-B)

= {W |Well, R(W)=0}
-4 0
=[]

Let W (t) denote the maximal Hermitian solution of (1.3), (here the
maximal means in a neighborhood of c0.) If W () is a constant solution
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of R(W) = 0, it is obvious that it is also a solution of R(W) = 0.
Suppose I1;, II;, T;, R;, R; correspond to A;, B;, C;, i = 1,2. (i.e. we
replace A, B,C by A;, B;, C; in the previous notations).

Lemma. If (1.1) is an autonomous system, then R(W) = 0 has a
solution W (t) with W (t) + C~' > 0 if and only if R(W) = 0 has a
solution W ¢ IL

Proof. The “if” is obvious. Now we want to prove “only if.” Suppose
R[W] = 0 has a solution W (t) with W(¢) + C~! > 0. Then we can
find a minimal solution Wy(¢) as shown in Theorem 2, and we can then
show that after some time Wy () must be a constant matrix. In fact,
since Wy(t + 1) is also a solution of (1.3), by Theorem 2, we know that
there exists an integer M; such that when ¢ > M; we have

Wo(t + 1) > Wo(t)

In the same way, we can show that there exists an integer M> such that
when ¢ > My we have

Wo(t — 1) > Wo(t)
therefore when ¢ > max{M;, M2}, we have
Wo(t) = Wo(t + 1) = Constant matrix.
This completes the proof. a
Note. From Riccati equation (1.11) in [8], we know that if A —

B*C~'B > 0, then R[W] = 0 does not have any Hermitian solutions
W (t) with W (t) + C~ > 0.

Note that if Wf exists, it must be a constant matrix after some time,
and by setting A = (I - B), @ = A, R = C~1, B =1, then (1.9) is
equivalent to R(W) = 0. As a corollary of Theorem 3.2 [12], we have

Theorem 4. (i) Suppose I1; is not empty and 11} C Ty; then W,
and W2+ exist and both are constant Hermitian matrices, with

Wi > Wit
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(ii) If By = By, Ty > T3, then we have (i).

(i) If T > 0, then W exists and is a constant; furthermore,
W+t >0.

Note. From (ii), we know that if, for ¢ = 1, the system (1.1) is dis-
conjugate, then it is also disconjugate for ¢ = 2. A similar comparison
theorem for nonautonomous systems is given in [6]. Similarly, from
(iii) if T > 0, then (1.1) is disconjugate.

Theorem 5. Equation (1.1) is disconjugate if and only if 11 is not
empty.

Proof. From Theorem 3.1 of [12] we know that W € II' exists if
and only if IT is not empty. From the Lemma and Theorem 2.5 of [6]
we obtain the conclusion. ]

3. Discussion. In control theory, the condition C(t) > al, where
a > 0is of critical importance to guarantee the existence of the optimal
control for the system (cf. [12] and the references therein). However,
in the study of disconjugacy, the case C'(t) > 0 includes an important
class of difference equations, as pointed out by Ahlbrandt [3], since any
even order “self adjoint” difference equation may be represented by an
equivalent Hamiltonian difference system.

Consider the following scalar difference equation of order 2d (for the
continuous case, see [9])
d

S (—1)F A (pr(t)AFa(t — k+ 1)) =0
k=0

where py(t) > 0. If we suppose
Yy (t) = A"zt —k+1), k=1...d
2(a)(t) = pa(t) Ay(a)(t)
Z(a—k)(t) = =Azg_k41) + Pa— k() Ya—r4+1)(t + 1),
k=1...d—1
B(t) = (aij)axa
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with a;; =1if i = j + 1 and = 0 otherwise

C(t) = diag (0, ..., (1/pa) (t))
A(t) = diag (po(t), -+, Pa—1(t))

then we get the equivalent system (1.1) with C(¢) > 0.

For the case C(t) > 0, we may rewrite the Riccati equation (1.3) as
(3.1)
RW]:= AW (t) + A(t) + B*(t)W () + W(t)B(t) — B*(t)W (t)B(t)

* —1
+ (I =B@®) WH)(I+Ct)W(t) CH)W(t)(I - B(t))
=0.
Similar to Proposition 1.3 [6], we can show
Theorem 6. IfC(t) > 0, then, {Y (t), Z(t)} is a prepared solution of

(1.2) with Y (t) invertible if and only if there exists a Hermitian solution
of (3.1) on [M,N + 1].

Theorem 7. If there exists a Hermitian solution of (3.1) with
(1 + C’(t)W(t))_IC(t) > 0, then the functional q is positive definite.

Proof. For any u € Q, from Proposition 1.4 [6], we get

QUI= Y (W) —=(t)

t 1

x (I+CHW(t)

and g[u] = 0 if and only if

>
<
—
~
I
&
—~
~
<
~
+
—_
~—
+
Q
—~
~
N
—~
~
~
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i.e.,
(I-B@)yt+1)= (I +CHW()yt)y(M —1)=0;
therefore, y(t) = 0, i.e., ¢ is positive definite. o

It is natural to ask whether there exists a Hermitian solution of (3.1)
with (I+C(t)W(t)) 710(15) > 0 when ¢ is positive definite. In the case
of C(t) > 0, we have the conclusion “Reid Roundabout theorem” [6,
Theorem 2.5], W (t) is given by finding a solution {Y'(¢), Z(¢)} of (1.2).
We summarize this as a conjecture:

Conjecture. If C(t) > 0 and q positive definite, then there exists a
Hermitian solution W (t) of (3.1) such that I +C ()W (¢))~1C(t) > 0.
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