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MODELS FOR DISEASES WITH EXPOSED PERIODS
FRED BRAUER

ABSTRACT. A general model for a disease without im-
munity against reinfection having arbitrary distributions of
exposed and infective periods was formulated by Hethcote,
Stech and van den Driessche [5]. They showed that for con-
tact numbers exceeding 1, the endemic equilibrium is asymp-
totically stable if either the exposed period of the infective
period is exponentially distributed or if both exposed and in-
fective period have fixed length, and they conjectured that the
endemic equilibrium is always asymptotically stable.

We show that the endemic equilibrium is asymptotically sta-
ble if the mean exposed period is less than the mean infective
period, or if the contact number is sufficiently large, or if the
exposed period distribution function is convex. However, we
also show that for a more general type of model in which the
infective period distribution can depend on the length of the
exposed period it is possible to have instability of the endemic
equilibrium and a Hopf bifurcation.

1. There are three main categories of simple models for the spread
of communicable diseases, namely, S-I-R models with removal through
recovery and immunity against reinfection, S-I-R models with removal
through death caused by the disease, and S-I-S models with recovery
but with no immunity against reinfection. The formulation of these
models goes back to the three fundamental papers of Kermack and
McKendrick [8]. Descriptions which may be easier to follow may be
found in [1, 2, 7]. Variations such as an exposed period between infec-
tion by the disease and becoming infective, or a period of temporary
immunity following recovery from the disease are most readily incor-
porated into the framework of these three basic categories of models
by allowing the infectivity of an individual to depend on the time since
infection [3, 10].

For each of the basic models there is a basic reproductive number or
contact number Ry depending on the rate of transmission of infection,
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the size of the population, and the mean infective period. If the contact
number is less than 1, every solution of the model with nonnegative
initial data tends as t — oo to the disease-free state in which all
members of the population are free of infection. If the contact number
exceeds 1, the disease-free state is unstable and there is an endemic
equilibrium.

The behaviors of the three models when there is an endemic equilib-
rium are different. For the S-I-R (recovery) model, the endemic equi-
librium is always asymptotically stable, even with variable infectivity
[2, 3]. Thus, the endemic equilibrium in an S-E-I-R (recovery) model
is always asymptotically stable. For the S-I-R (permanent removal)
model, instability of the endemic equilibrium is possible even without
an exposed period [3, 10].

The endemic equilibrium in an S-I-S model with constant infectivity
is always asymptotically stable [2, 6] but instability is possible in an
S-1-S model with variable infectivity, notably in the case of temporary
immunity following recovery—an S-I-R-S model [4, 5]. However, it is
not established whether the endemic equilibrium in an S-E-I-S model
need be asymptotically stable. This is the question which we shall
study here.

2. Let S(t) denote the number of susceptible members, E(¢) the
number of exposed (but not yet infective) members, and I(t) the
number of infective members of a population at time ¢t. We assume
that:

(i) there are no births or deaths, so that total population size is
constant,

S(t) + E(t) + I(t) = K;

(ii) the number of contacts per infective in unit time is constant, so
that the rate of new infections in unit time is 8SI, with 8 a constant
(bilinear incidence);

(i) the fraction of exposed members who remain in the exposed
class a time s after exposure is a nonincreasing function Q(s), with

(1) Q(0+) =1, /000 Q(s)ds =0 < o0
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(iv) the fraction of infective members who remain in the infective
class a time s after infection is a nonincreasing function P(s), with

(2) P(0+) =1, /oo P(s)ds =1 < o0;

(v) infective members on recovery return to the susceptible class.

The disease is then modeled by the pair of integral equations

E(t) = / BS(2)I(2)Q(t — z) do

I(t) = /_ BS(@)I(2)U(t - o) do

(4) Us) = - / "QW)P(s — v)dv

[6]. The functions Ey(t) and Iy(t) represent initial data, the number of
exposed and infective members, respectively, at time ¢ who were already
exposed and infective, respectively, at time ¢ = 0. It is convenient to
retain the variable S in the model (3), although in the analysis of (3)
we replace S by K — E — I.

It is known [6] that if the contact number Ry = S7K exceeds 1, then
the disease-free equilibrium S = K, E = 0, I = 0 of (3) is unstable,
and there exists an endemic equilibrium

_ 1 _K
- BT Ry’
o BrK —1 o Ry -1
5 E: . = . K
(5) o+T Bt c+717 Ry ’
T BTK-1_ 7T RO—IK
o471 BT T o4T Ry '

Our purpose in this section is to give some conditions which guarantee
the (local) asymptotic stability of this endemic equilibrium.
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Theorem. The endemic equilibrium (5) of the S-E-I-S model (3) is
asymptotically stable if any of the following conditions is satisfied.

(6) (i) Ro>2+4o/T
(i) o<
(7) (i) 7 +/0 Q(s)cosysds > 0, 0<y<oo.

Proof. We linearize (3) about the endemic equilibrium and then form
the characteristic equation—the condition on the complex parameter
A that the linearization has solutions for which each component is a
constant multiple of e**. Then the equilibrium is asymptotically stable
if all roots of the characteristic equation have negative real parts [9].
This characteristic equation is

Ry—1
o+T

1. N R
(8) U =1+ [U(N) + QW]
where U(\) and Q()) are the Laplace transforms of U(s) and Q(s),
respectively. We consider R as a parameter which increases from 1.
For Ry = 1, (which implies E = I = 0) the characteristic equation (8)
reduces to 1

U\ =1
o)

which has A = 0 as a root because of (2). The root A(Rg) with A\(1) =0
obeys

0 X (Re) = ——[0() + QO]
D100 + QN (R

and because
0'(0) = — / sU(s) ds < 0,
0

vy~ @ ERO +00)]
(1/7)0"(0)

Thus this root moves into the left half plane as Ry increases. Because

lim U(\) = lim Q(A\)=0, RX>0,

[A] =00 |A| =00
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there are no roots of (8) with RA > 0 and || large; roots cannot appear
at infinity as Ry increases. If Ry > 1, A = 0 is not a root of (8). Thus,
(8) can have a root with RA > 0 only if for some value of Ry there is a
pair of complex conjugate roots A = +iy with y > 0. In order to prove
asymptotic stability of the endemic equilibrium, it suffices to show that
there is not root A = iy with 0 < y < oo of (8). The condition that
A =iy be a root of (8) is

0+

Uliy) =1+ S0 ) + Qi)

e

and separation into real and imaginary parts gives the pair of conditions

@)%AWWQmmmwz1+?;:AWW@+Q@thMS
Ry —1

T o+T

(10) llww@m@ng AWW@+Q@hmww&

Alternate forms of this pair of equations are

) (2= [T 0 costue) as

T o+T
Ry —1
=1+ Q s) cos(ys) d

o+ T
1 Ry-1
(12) (—— O'+T>/ U(s)sin(ys)d

_ Bl /000 Q(s)sin(ys) ds

o+T

and

a3 (2-20) [T + ) costus) ds

T o+rT1

1 [
=14 = Q(s s)ds
7_/0 (s) cos(ys)
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aa (2-520) [T+ Qelsints) ds

T o+T

=%AMQ®ﬁMwM&

Because @ and, as may readily be verified using (4), U + Q are
nonnegative, nonincreasing functions,

[ @)sintus)ds 2 o
(15) b
A[W@+Mmengo

and thus, in order to satisfy (14), we must have

L Ro—1_ .

T o+ T

It follows that if (6) is satisfied there can be no root A = iy of (8), and
thus the endemic equilibrium is asymptotically stable. Because, as is
easily verified, [;* U(s)ds < 7, we have

<.

[ s costus) as

Thus, the left side of (11) is at most 1—(7/(0+7))(Rop—1), and because

<o,

‘ /0 ~ Q(s) cos(ys) ds

the right side of (11) is at least 1 — (o/(c +7))(Ro —1). If o < 7, (11)
cannot be satisfied, and thus the endemic equilibrium is asymptotically
stable. If (7) holds and A = iy is a root of (8), by (13) we have

/OOO[U(S) + Q(s)] cos(ys) ds > 0.

Then the right side of (9) has absolute value at least 1 while the left side
of (9) has absolute value at less than 1. This contradicts (7). Thus,
(7) implies the asymptotic stability of the endemic equilibrium and
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this completes the proof of the theorem. In particular, convexity of @)
implies (7) and thence asymptotic stability of the endemic equilibrium.
O

The above theorem complements the result [6] that the endemic
equilibrium is asymptotically stable in the three cases.

(i) P arbitrary, Q(s) = e™*/7,
(ii) Q arbitrary, P(s) = e~°/7

|1, 0<s<o 1, 0<s<T
(i) Q(S)_{U, s>0 ’P(S)_{O, s>T

with global asymptotic stability for (ii) and lends credence to their con-
jecture that the endemic equilibrium is always asymptotically stable.
However, the general characteristic equation (8) remains intractable,
and we can neither confirm nor contradict this conjecture analytically
or numerically. This conjecture was made for models with constant
total population size and bilinear incidence.

For the more general S-E-I-S model with density-dependent birth and
death rates and a contact rate which depends on the total population
size, the characteristic equation is identical to (8) except for a removable
factor. Thus the assumptions (i) and (ii) made at the beginning of this
section can be discarded without affecting any of the results of this
paper. Also, the conjecture of [6] is equally plausible for this more
general model.

3. Models for diseases with an exposed period can be viewed as
models with variable infectivity. We think of an infected (rather than
infective) class which consists of the classes E and I with exposed
members having infectivity 0 and infective members having infectivity
1. The general model for an S-I-S disease with infectivity depending
on the time since infection [3] i

J(t) = Jo(t) + /Ot BS(zl)®(z)V(t — z)dz

B(t) = Do (t) +/0 BS(2)®(2)U(t — ) da.

Here J represents the size of the infected class (E + I in our case) and
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® represents the total infectivity (I in our case). V(s) represents the
function of members of the class J who remain in the class J a time s
after becoming infected (U(s) + Q(s) in our case) and U(s) represents
the total infectivity of the members of the class J who remain in the
class J a time s after becoming infected. If the fraction of infectives
who remain infective a time s after becoming infective is P(s), then U
is given by (4).

More generally, we could assume that the fraction of infected members
whose infectivity was zero for a time v after being infected and who
remain infected a time s after being infected is a function P(s — v, s)
of both the time (s — v) since becoming infective and the time s since
becoming infected. Then it is not difficult to calculate

U(s) = — /OS Q' (v)P(s —v,s)dv.

We may say that a generalized S-E-I-S model is characterized by the
conditions (i)—(v) of the previous section, with (iv) replaced by

(iv)* the fraction of infective members who remain in the infective
class a time s after becoming exposed is a function U(s).

As before, the assumptions (i) and (ii) may be discarded without
producing any essential change in the characteristic equation at the
endemic equilibrium.

We now take @ to be an arbitrary function satisfying (1) whose
support is contained in the interval [0, o + 7]. Define

1- ’ OS S

Then, as U(s) + Q(s) is a step function,

and the characteristic equation (8) takes the form

1. —1\1—e Aot
(17) UM =1+ (RO ) =
T

o+ T A
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which is precisely the form studied by Diekmann and Montijn [4], if
time units are chosen to make o +7 = 1. It has been shown in [4] that
Ry and U(s) (and hence Q(s)) can be chosen so that the characteristic
equation (17) has roots in the right half plane. Thus it is possible for
the endemic equilibrium in a generalized S-E-I-S model to be unstable;
it is indicated in [4] that such instability generally leads to a Hopf
bifurcation and oscillations about the endemic equilibrium, and this
appears to be confirmed by numerical simulations. The particular
choice (16) corresponds to a disease with an arbitrary exposed period
and an infective period equal to o + 7 less the exposed period, or a
fixed infected period of o + 7. The function P(s — v, s) representing
the fraction of infected members who became infective a time v after
becoming infected and who remain infective a time s after being
infected is given by

1, 0fv<s<o+T1
0, s>o0+T.

P(s—v,s):{

4. We have not been able to settle completely the question of
whether the endemic equilibrium of an S-E-I-S disease model must be
asymptotically stable. On the one hand, we have extended the cases
in which this equilibrium is asymptotically stable; on the other hand,
we have shown that instability is possible for a more general type of
model. Further stability results would require a more detailed analysis
of the pairs of conditions (9)—(14).

Another direction for investigation involves intermediate models, such
as diseases which are fatal to some fraction of their victims but for which
recovery leads to immunity against reinfection. Such models have not
been analyzed in general, even without an exposed period. The broad
question of which types of models can support oscillations caused by
the delay of an exposed period remains largely open.
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