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A NOTE ON THE NUMBER OF {-CORE PARTITIONS

KEN ONO

ABSTRACT. A partition of a positive integer n is a non-
increasing sequence of positive integers whose sum is n. A
Ferrers graph represents a partition in the natural way. Fix a
positive integer t. A partition of n is called a t-core partition
of n if none of its hook numbers are multiples of ¢t. Let c¢(n)
denote the number of t-core partitions of n. It has been con-
jectured that if ¢ > 4, then c¢(n) > 0 for all n > 0. In [7], the
author proved the conjecture for ¢ > 4 even and for those ¢
divisible by at least one of 5, 7, 9, or 11. Moreover if t > 5 is
odd, then it was shown that c¢(n) > 0 for n sufficiently large.
In this note we show that if k > 2, then c3x(n) > 0 for all n
using elementary arguments.

A partition of a positive integer n is a nonincreasing sequence of
positive integers with sum n. Here we define a special class of partitions.

Definition 1. Let ¢ > 1 be a positive integer. Any partition of n
whose Ferrers graph have no hook numbers divisible by ¢ is known as
a t-core partition of n.

The hooks are important in the representation theory of finite sym-
metric groups and the theory of cranks associated with Ramanujan’s
congruences for the ordinary partition function [3, 4, 5].

Ift > 1 and n > 0, then we define ¢;(n) to be the number of partitions
of n that are ¢t-core partitions. The arithmetic of ¢;(n) is studied in [3,
4]. The power series generating function for ¢;(n) is given by the infinite
product:
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One easily verifies that cz(n) and c3(n) are zero infinitely often. Here
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are the first few terms of the relevant generating functions.
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In fact, it is a classical fact that

Here t,, = n(n + 1)/2 are the usual triangular numbers.

Exact formulae for ¢5(n) and c7(n) appear in [4]. Given a positive
integer t, is ¢;(n) > 0 for all n > 07 In other words, does every positive
integer n admit at least one t-core partition? The results in [4] show
that c5(n) and c7(n) are positive for all n > 0. For ¢ > 5 prime, Garvan
and Olsson have asked if ¢;(n) > 0 for all n. It has been conjectured
that if ¢ > 4, then ¢;(n) > 0 for all n > 0.

The reader should note that ¢;(n) < ¢ (n) for all n. If a partition
has no hook numbers divisible by ¢, then it certainly has no hook
numbers divisible by any multiple of t. Hence the conjecture essentially
is reduced to a study of ¢, (n) where p is prime. The only obstructions
to this method is an analysis of ¢;(n) where ¢ is a multiple of 2 or 3;
when ¢ = 2 or 3 the conjecture is false.

In [7], the author proved the following partial solution to this con-
jecture using Deligne’s estimates on the Fourier coefficients of modular
forms, Gauss’s Eureka Theorem, and quadratic form theory.

Theorem 1. Ift > 4, then ¢;(n) > 0 for n sufficiently large.
Furthermore, if t > 4 is even, or divisible by 5, 7, 9, or 11, then
ce(n) >0 for all n > 0.
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The proof of the conjecture when ¢t = 2 mod 4 is an application of
Gauss’s Eureka Theorem. We now show that similar methods show
that czr(n) > 0 for all n > 0 if & > 2. First we recall the proof when
t=09.

Theorem 2. If cg(n) is the number of 9-core partitions of n, then
co(n) > 0 for all n > 0.

Proof. The generating function for cg(n) is
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The last infinite product corresponds to a weight 3 Eisenstein series
on I'g(3) with Dirichlet character (n) = (n/3) [6, Theorem 6]. This
means that its power series expansion is given by the divisor function
02,¢(n) in the following way:
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Here the divisor function o3 .(n) is defined by
(4) oae(n) = > e 2)d?
2,e - d .
0<d|n

It is an easy exercise to verify that all of the coefficients in (3) are
positive since o3 .(n) > 0 for all n € Z™.

Combining these facts we obtain from (2) and (3)
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Since the first 3 coefficients of the power series in braces are positive
and the generalized divisor function o3 (n) is always positive, we find
that cg(n) is always positive. This completes the proof. o
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It should be noted that Fine [2, 3.2.351, p. 79] has an elementary
proof of this fact.

Now we prove the main theorem of this note using Theorem 2.
Theorem 3. If k > 2, then c3i(n) > 0 for alln > 0.

Proof. If k = 0 mod 3, then 9 | 3k. By Theorem 2 we find that
0 < c9(n) < cap(n) for all n > 0. Therefore we may assume that
k # 0 mod 3.

We may assume that £ = 3¢t + ¢ with ¢ = 1 or 2. The generating
function for ¢z, (n) = cys13:(n) can be factored in the following way:
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Since 02.(n) > 0 for all n > 1, we see that the first factor of (5), the
tth power of the divisor function power series, has positive coefficients
for exponents that are multiples of 3¢ + i. The coefficients cz¢4,(n) of
the middle factor in (5) are positive for all 0 < n < 3t + ¢ — 1; one
needs at least 3t + ¢ nodes before a partition can have a 3t + i hook.
Therefore the product of the first two factors in (5) has nothing but
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positive coeflicients. Since c3(0) = 1, we find that the coefficients of
the entire product, namely cg;3;(n) are all positive. O
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