A NOTE ON THE NUMBER OF t-CORE PARTITIONS

KEN ONO

ABSTRACT. A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. A Ferrers graph represents a partition in the natural way. Fix a positive integer t. A partition of n is called a t-core partition of n if none of its hook numbers are multiples of t. Let $c_t(n)$ denote the number of t-core partitions of n. It has been conjectured that if $t \geq 4$, then $c_t(n) > 0$ for all $n \geq 0$. In [7], the author proved the conjecture for $t \geq 4$ even and for those t divisible by at least one of 5, 7, 9, or 11. Moreover if $t \geq 5$ is odd, then it was shown that $c_t(n) > 0$ for n sufficiently large. In this note we show that if $k \geq 2$, then $c_{3k}(n) > 0$ for all n using elementary arguments.

A partition of a positive integer n is a nonincreasing sequence of positive integers with sum n. Here we define a special class of partitions.

Definition 1. Let $t \geq 1$ be a positive integer. Any partition of n whose Ferrers graph have no hook numbers divisible by t is known as a t-core partition of n.

The hooks are important in the representation theory of finite symmetric groups and the theory of cranks associated with Ramanujan's congruences for the ordinary partition function [3, 4, 5].

If $t \geq 1$ and $n \geq 0$, then we define $c_t(n)$ to be the number of partitions of n that are t-core partitions. The arithmetic of $c_t(n)$ is studied in [3, 4]. The power series generating function for $c_t(n)$ is given by the infinite product:

(1)
$$\sum_{n=0}^{\infty} c_t(n) q^n = \prod_{n=1}^{\infty} \frac{(1 - q^{tn})^t}{(1 - q^n)}.$$

One easily verifies that $c_2(n)$ and $c_3(n)$ are zero infinitely often. Here

Received by the editors on November 2, 1993.

Copyright ©1995 Rocky Mountain Mathematics Consortium

1166 K. ONO

are the first few terms of the relevant generating functions.

$$\begin{split} \prod_{n=1}^{\infty} \frac{(1-q^{2n})^2}{(1-q^n)} &= \sum_{n \geq 0} c_2(n) q^n \\ &= 1+q+q^3+q^6+q^{10}+q^{15}+q^{21}+\cdots \\ \prod_{n=1}^{\infty} \frac{(1-q^{3n})^3}{(1-q^n)} &= \sum_{n \geq 0} c_3(n) q^n \\ &= 1+q+2q^2+2q^4+q^5+2q^6+q^8+2q^9 \\ &+2q^{10}+2q^{12}+\cdots \end{split}$$

In fact, it is a classical fact that

$$\prod_{n=1}^{\infty} \frac{(1-q^{2n})^2}{(1-q^n)} = \sum_{n>0} q^{t_n}.$$

Here $t_n = n(n+1)/2$ are the usual triangular numbers.

Exact formulae for $c_5(n)$ and $c_7(n)$ appear in [4]. Given a positive integer t, is $c_t(n) > 0$ for all $n \ge 0$? In other words, does every positive integer n admit at least one t-core partition? The results in [4] show that $c_5(n)$ and $c_7(n)$ are positive for all $n \ge 0$. For $t \ge 5$ prime, Garvan and Olsson have asked if $c_t(n) > 0$ for all n. It has been conjectured that if $t \ge 4$, then $c_t(n) > 0$ for all $n \ge 0$.

The reader should note that $c_t(n) \leq c_{tk}(n)$ for all n. If a partition has no hook numbers divisible by t, then it certainly has no hook numbers divisible by any multiple of t. Hence the conjecture essentially is reduced to a study of $c_p(n)$ where p is prime. The only obstructions to this method is an analysis of $c_t(n)$ where t is a multiple of 2 or 3; when t = 2 or 3 the conjecture is false.

In [7], the author proved the following partial solution to this conjecture using Deligne's estimates on the Fourier coefficients of modular forms, Gauss's Eureka Theorem, and quadratic form theory.

Theorem 1. If $t \geq 4$, then $c_t(n) > 0$ for n sufficiently large. Furthermore, if $t \geq 4$ is even, or divisible by 5, 7, 9, or 11, then $c_t(n) > 0$ for all $n \geq 0$.

The proof of the conjecture when $t \equiv 2 \mod 4$ is an application of Gauss's Eureka Theorem. We now show that similar methods show that $c_{3k}(n) > 0$ for all $n \geq 0$ if $k \geq 2$. First we recall the proof when t = 9

Theorem 2. If $c_9(n)$ is the number of 9-core partitions of n, then $c_9(n) > 0$ for all $n \geq 0$.

Proof. The generating function for $c_9(n)$ is

(2)
$$\prod_{n=1}^{\infty} \frac{(1-q^{9n})^9}{(1-q^n)} = \prod_{n=1}^{\infty} \frac{(1-q^{3n})^3}{(1-q^n)} \prod_{n=1}^{\infty} \frac{(1-q^{9n})^9}{(1-q^{3n})^3} = \sum_{n=0}^{\infty} c_3(n) q^n \prod_{n=1}^{\infty} \frac{(1-q^{9n})^9}{(1-q^{3n})^3}.$$

The last infinite product corresponds to a weight 3 Eisenstein series on $\Gamma_0(3)$ with Dirichlet character $\varepsilon(n) = (n/3)$ [6, Theorem 6]. This means that its power series expansion is given by the divisor function $\sigma_{2,\varepsilon}(n)$ in the following way:

(3)
$$\prod_{n=1}^{\infty} \frac{(1-q^{9n})^9}{(1-q^{3n})^3} = \sum_{n=1}^{\infty} \sigma_{2,\varepsilon}(n) q^{3(n-1)}.$$

Here the divisor function $\sigma_{2,\varepsilon}(n)$ is defined by

(4)
$$\sigma_{2,\varepsilon}(n) = \sum_{0 \le d \mid n} \varepsilon\left(\frac{n}{d}\right) d^2.$$

It is an easy exercise to verify that all of the coefficients in (3) are positive since $\sigma_{2,\varepsilon}(n) > 0$ for all $n \in \mathbf{Z}^+$.

Combining these facts we obtain from (2) and (3)

$$\sum_{n=0}^{\infty} c_9(n) q^n = \{1 + q + 2q^2 + \cdots\} \sum_{n=0}^{\infty} \sigma_{2,\varepsilon}(n) q^{3(n-1)}.$$

Since the first 3 coefficients of the power series in braces are positive and the generalized divisor function $\sigma_{2,\varepsilon}(n)$ is always positive, we find that $c_9(n)$ is always positive. This completes the proof.

1168 K. ONO

It should be noted that Fine [2, 3.2.351, p. 79] has an elementary proof of this fact.

Now we prove the main theorem of this note using Theorem 2.

Theorem 3. If $k \geq 2$, then $c_{3k}(n) > 0$ for all $n \geq 0$.

Proof. If $k \equiv 0 \mod 3$, then $9 \mid 3k$. By Theorem 2 we find that $0 < c_9(n) \le c_{3k}(n)$ for all $n \ge 0$. Therefore we may assume that $k \not\equiv 0 \mod 3$.

We may assume that k = 3t + i with i = 1 or 2. The generating function for $c_{3k}(n) = c_{9t+3i}(n)$ can be factored in the following way:

$$\sum_{n=0}^{\infty} c_{9t+3i}(n)q^{n} = \prod_{n=1}^{\infty} \frac{(1 - q^{(9t+3i)n})^{9t+3i}}{(1 - q^{n})}$$

$$= \prod_{n=1}^{\infty} \frac{(1 - q^{(9t+3i)n})^{9t}}{(1 - q^{(3t+i)n})^{3t}}$$

$$\cdot \prod_{n=1}^{\infty} \frac{(1 - q^{(9t+3i)n})^{3i}(1 - q^{(3t+i)n})^{3t}}{(1 - q^{n})}$$

$$= \left[\sum_{n=1}^{\infty} \sigma_{2,\varepsilon}(n)q^{(3t+i)(n-1)}\right]^{t}$$

$$\cdot \prod_{n=1}^{\infty} \frac{(1 - q^{(3t+i)n})^{3t+i}}{(1 - q^{n})} \prod_{n=1}^{\infty} \frac{(1 - q^{(9t+3i)n})^{3i}}{(1 - q^{(3t+i)n})^{i}}$$

$$= \left[\sum_{n=1}^{\infty} \sigma_{2,\varepsilon}(n)q^{(3t+i)(n-1)}\right]^{t}$$

$$\cdot \left[\sum_{n=0}^{\infty} c_{3t+i}(n)q^{n}\right] \left[\sum_{n=0}^{\infty} c_{3}(n)q^{(3t+i)n}\right]^{i}.$$

Since $\sigma_{2,\varepsilon}(n) > 0$ for all $n \geq 1$, we see that the first factor of (5), the tth power of the divisor function power series, has positive coefficients for exponents that are multiples of 3t+i. The coefficients $c_{3t+i}(n)$ of the middle factor in (5) are positive for all $0 \leq n \leq 3t+i-1$; one needs at least 3t+i nodes before a partition can have a 3t+i hook. Therefore the product of the first two factors in (5) has nothing but

positive coefficients. Since $c_3(0) = 1$, we find that the coefficients of the entire product, namely $c_{9t+3i}(n)$ are all positive.

Acknowledgments. I thank Carl Pomerance for suggesting that I find a proof for the case where t is a multiple of 3. After giving a seminar on the proof of Theorem 1, Carl suggested that I look for a proof for these cases using elementary methods akin to the $t \equiv 2 \mod 4$ case in [7] which uses Gauss's Eureka Theorem. I also thank the referee for several suggestions which improve the paper.

REFERENCES

- 1. G. Andrews, Eureka! $num = \Delta + \Delta + \Delta$ J. Number Theory 23 (1986), 285–293.
- 2. N.J. Fine, Basic hypergeometric series and applications, Amer. Math. Soc. 27, 1988.
- 3. F. Garvan, Some congruence properties for partitions that are t-cores, Proc. London Math. Soc. 66 (1993),
- 4. F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990),
- 5. A. Klyachko, Modular forms and representations of symmetric groups, integral lattices and finite linear groups, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 116 (1982),
- **6.** K. Ono, Congruences on the Fourier coefficients of modular forms on $\Gamma_0(N)$, Ph.D. thesis, The University of California, Los Angeles, 1993.
- 7. ———, On the positivity of the number of t-core partitions, Acta Arithmetica, to appear.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602

 $email\ address: \verb"ono@sophie". \verb"math.uga.edu"$