## A REFLEXIVE SPACE WITH NORMAL STRUCTURE THAT ADMITS NO UCED NORM

## DENKA KUTZAROVA AND THOMAS LANDES

1. Introduction. A Banach space X is said to have normal structure if every bounded convex subset C of X with positive diameter  $d = \sup\{||x - y|| : x, y \in C\}$  is contained in some ball with center in C and radius strictly smaller than d. This property was introduced by Brodskii and Milman [2] and happened to be important in the fixed point theory for nonexpansive mappings.

It was proved in [6] and [3] that uniform convexity in every direction implies normal structure. An example was constructed in [4] of a reflexive space Y without equivalent norm, uniformly convex in every direction, which answered a question in [3]. It is not difficult to see that the original norm of Y does not have normal structure. However, we shall prove here that Y admits an equivalent norm with normal structure. Since Y gives the only known pattern for constructing reflexive spaces without equivalent UCED norms, the problem if every reflexive space admits an equivalent norm with normal structure remains open (see [1]). In fact, the main result of the present paper was stated in [5], but the proof was not correct because of a misunderstanding of the construction in [4]. Since this article is to be considered as a correction to [5], we shall use almost the same notation.

**2. Notation and results.** A Banach space  $(Y, ||\cdot||)$  is said to be uniformly convex in every direction if the conditions  $x_n, y_n, z \in Y$ ,  $||x_n|| \to 1$ ,  $||y_n|| \to 1$ ,  $||(x_n + y_n)/2|| \to 1$  and  $x_n - y_n = \lambda_n z$ ,  $\lambda_n$  reals, imply that  $||x_n - y_n|| \to 0$ .

Following [5], for  $Z = (\mathbf{R}^n, |\cdot|)$  with symmetric norm  $|\cdot|$  the Z-direct sum of the normed spaces  $X_1, \ldots, X_n$  is its product space with norm  $||(x_1, \ldots, x_n)|| = |(||x_1||, \ldots, ||x_n||)|$ . A normed space X is said to have the sum-property if each Z-direct sum of finitely many copies of X has

Copyright ©1995 Rocky Mountain Mathematics Consortium

The research of the first author is partially supported by the Bulgarian Ministry of Education and Science under the contract MM-213/92. Received by the editors on June 1, 1993.

normal structure. The class of spaces having the sum-property is the largest subclass of spaces having normal structure which is closed under each finite Z-direct sum operation. We shall also need the following definition from [5]. Given a bounded sequence  $\{x_m\} \subset X$ , we consider the limit-functional

$$\Lambda(x) = \lim_{m \to \infty} ||x_m - x||$$

being defined for all  $x \in X$  for which the limit exists.

We present now the construction from [4]. Let  $\Gamma = \prod_{i=2}^{\infty} \{1, 2, \dots, i\}$ . That is,  $\Gamma$  is the family of all sequences  $\gamma = \{\gamma^i\}_{i=1}^{\infty}$  of positive integers such that  $1 \leq \gamma^i \leq i+1$ . Denote by  $\Phi$  the family of all finite subsets of  $\Gamma$  which have the property that, if  $\varphi \in \Phi$ , then there is a positive integer m such that, if  $\gamma_k = \{\gamma_k^i\}_{i=1}^{\infty}$  and  $\gamma_j = \{\gamma_j^i\}_{i=1}^{\infty}$  are different members of  $\varphi$ , then  $\gamma_k^m \neq \gamma_j^m$  and  $\gamma_k^i = \gamma_j^i$  for  $1 \leq i \leq m-1$ . Let  $\mathcal{F}$  be the set of all collections F of finitely many mutually disjoint elements of  $\Phi$ . Define

$$X = \{x : \Gamma \to \mathbf{R} : \sup_{F \in \mathcal{F}} ||x||_F < \infty\};$$

where

$$||x||_F = \left[\sum_{\varphi \in F} \left(\sum_{\gamma \in \varphi} |x(\gamma)|\right)^2\right]^{1/2}, \quad F \in \mathcal{F};$$

and let

$$||x||_{12} = \sup_{F \in \mathcal{F}} ||x||_F, \quad x \in X.$$

It is proved in [4] that X is reflexive and the dual space  $Y = X^*$  does not admit an equivalent UCED norm. Denote by  $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$  the natural unconditional basis of X. Since  $||e_{\gamma} + e_{\delta}||_{12} = 2$  for all  ${\gamma}, {\delta} \in {\Gamma}$ , it is easy to prove the following.

**Proposition.** The space  $Y = X^*$ , equipped with the dual original norm  $||\cdot||_{12}$ , lacks normal structure.

However, define for  $x \in X$ ,  $||x||_2 = (\sum_{\gamma \in \Gamma} |x(\gamma)|^2)^{1/2} \le ||x||_{12}$ , and let

$$||x|| = (||x||_2^2 + ||x||_{12}^2)^{1/2}.$$

Obviously,  $||\cdot||$  is an equivalent norm on X.

**Theorem.** The space  $(X^*, ||\cdot||)$  has the sum-property and consequently it has normal structure.

*Proof.* Assume that  $(X^*, ||\cdot||)$  does not have the sum-property. Then, by [5], there is a sequence  $\{x_n^*\}$  in  $X^*$  such that  $x_n^*$  is weakly null,  $||x_n^*|| \to 1$ ,  $\Lambda(x_n^*) = a_n \to 1$ , where  $\Lambda(x_n^*) = \lim_{i \to \infty} ||x_n^* - x_i^*||$ .

Take support functionals  $x_n \in X$  such that  $||x_n|| = ||x_n^*||^{-1}$ ,  $x_n^*(x_n) = 1$ . Clearly,  $||x_n|| \to 1$ . It is easy to see that  $x_n$  tends weakly to zero. Indeed, assume the contrary. Since the basis  $\{e_\gamma\}$  is shrinking, then for some  $\gamma \in \Gamma$ ,  $e_\gamma^*(x_m) \ge b > 0$  for infinitely many m. As  $||x+y||^2 \ge ||x||^2 + ||y||^2$  whenever  $x, y \in X$  have disjoint supports, then for the elements  $z_m = x_m|\Gamma\setminus\{\gamma\}$  we have  $||z_m|| \le 1 - \eta$  for some  $\eta > 0$  and infinitely many m. On the other hand, since  $x_n^*$  is weakly null, we get  $x_n^*(z_n) \to 1$ , which is a contradiction.

For each i,  $(x_i^* - x_n^*)(x_i - x_n) = 2 - x_i^*(x_n) - x_n^*(x_i) \to 2$  as  $n \to \infty$ . Hence, for each i,

$$\liminf_n ||x_i - x_n|| \ge 2a_i^{-1}.$$

Since  $||\cdot||$  is a lattice norm and  $x_n$  is weakly null, we obtain

(\*) 
$$\liminf_{n} ||x_i + x_n|| \ge 2a_i^{-1}, \quad \text{for every } i.$$

It is not hard to check that (\*), the uniform convexity of  $l_2$  and  $x_n \to 0$  weakly, imply  $||x_n||_2 \to 0$ .

Fix  $0 < \varepsilon < 1/7$ . Choose  $0 < \delta < \varepsilon$  such that whenever  $u, v \in l_2$ ,  $||u||_2$ ,  $||v||_2 \le 1 + \delta$ ,  $||u + v||_2 \ge 2(1 - \delta)$ , we get  $||u - v||_2 < \varepsilon$ .

Fix i such that  $||x_n|| < 1 + \delta$ ,  $||x_n||_2 < \delta/4$  and  $a_n < (1 - \delta/4)^{-1}$  for all  $n \ge i$ . Since  $\{e_\gamma\}$  is a basis, there exists a finite subset  $A \subset \Gamma$ , such that  $||x_{i|_{\Gamma \setminus A}}|| < \varepsilon$ .

It follows from the definition of  $\Phi$  that, for every choice of  $\gamma_1, \gamma_2 \in \Gamma$ , with  $\gamma_1 \neq \gamma_2$ ,

$$k(\gamma_1,\gamma_2) = \max\{|\varphi| : \varphi \in \Phi, \{\gamma_1,\gamma_2\} \subset \varphi\} < \infty,$$

where  $|\varphi|$  denotes the number of elements of  $\varphi$ . Let

$$k = |A| \max\{k(\gamma_1, \gamma_2) : \gamma_1, \gamma_2 \in A, \gamma_1 \neq \gamma_2\}.$$

Clearly,  $k < \infty$ . Since  $||x_n||_2 \to 0$ , there exists  $j \geq i$  such that, for  $n \geq j$ ,

$$\max_{\gamma \in \Gamma} |e_{\gamma}^*(x_n)| \le \varepsilon/k.$$

By (\*) and  $a_i < (1 - \delta/4)^{-1}$ , choose  $n \ge j$  so that  $||x_i + x_n|| > 2 - \delta$ . Thus, it follows from  $||x_i + x_n||_2 < \delta/2$  that  $||x_i + x_n||_{12} > 2 - 3\delta/2$ . Therefore, there exists an  $F = \{\varphi_j\} \in \mathcal{F}$  such that  $||x_i + x_n||_F > 2(1 - \delta)$ . We have  $||x_i + x_n||_F \le ||x_i||_F + ||x_n||_F \le 1 + \delta + ||x_n||_F$ , whence

$$||x_n||_F > 1 - 3\delta.$$

Let  $F_2 = \{ \varphi_j \in F : |\varphi_j \cap A| \ge 2 \}$  and  $F_1 = F \setminus F_2$ . Consider

$$u = \left(\sum_{\gamma \in \varphi_j} |e_{\gamma}^*(x_i)|\right)_{j=1}^{\infty},$$
$$v = \left(\sum_{\gamma \in \varphi_j} |e_{\gamma}^*(x_n)|\right)_{j=1}^{\infty}$$

like elements of  $l_2$ . By  $||u+v||_2 \ge ||x_i+x_n||_F$  and the choice of  $\delta$ , we obtain  $||u-v||_2 < \varepsilon$ . Since  $||x_i||_2 < \delta/4$  and  $||x_i|_{\Gamma \setminus A}|| < \varepsilon$ , then  $||x_i||_{F_1} < 2\varepsilon$ . Hence,  $||x_n||_{F_1} < 3\varepsilon$ . Moreover,  $||x_n||_{F_2} < k(\varepsilon/k) = \varepsilon$ . Thus,

$$||x_n||_F < 4\varepsilon$$
,

which is in contradiction with  $||x_n||_F > 1 - 3\varepsilon$ .

Therefore,  $(X^*, ||\cdot||)$  has the sum-property.

## REFERENCES

- 1. A. Aksoy and M. Khamsi, Nonstandard methods in fixed point theory, Springer, New York, 1990.
- 2. M. Brodskii and D. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837–840.
- 3. M. Day, R.C. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051–1059.
- 4. D.N. Kutzarova and S.L. Troyanski, Reflexive Banach spaces without equivalent norms which are uniformly convex or uniformly differentiable in every direction, Studia Math. 72 (1982), 91–95.
- 5. T. Landes, Normal structure and the sum-property, Pacific J. Math. 123 (1986), 127-147.

 $\bf 6.~\rm V.~Zizler,~\it On~some~rotundity~and~smoothness~properties~of~\it Banach~spaces,$  Dissertationes Math. (Rozprawy Mat.)  $\bf 87~(1971),~5–33.$ 

Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria; e-mail: denka@bgearn.acad.bg

University of Paderborn, D-4790 Paderborn, Germany