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ON THE ZETA FUNCTION VALUES
Ck+1), k=1,2,...

JOHN A. EWELL

ABSTRACT. In determinantal form new series representa-
tions of the values ((2k + 1) := 2:;1 n=2k-1 Ek=12...,
are presented. These follow from a certain trigonometrical
identity, which seems to have some independent interest.

1. Introduction. The Riemann zeta function ( is defined for each
complex number s having real part greater than 1 as follows.

()=

As intimated in the title we are here concerned about the values ((s)
when s is restricted to odd integral values not less than 3. Apery
[1] helped to rekindle interest in these values when he established the
irrationality of {(3). However, for each integer k > 1, the arithmetical
character of ((2k + 1) is entirely unsettled. Several authors have found
new series representations for some or all of the values ((2k + 1),
kE = 1,2,.... Ramanujan [4] discovered (without proof) that: if «
and B3 are positive real numbers such that a8 = 72 and n is a positive
integer, then
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where the coefficients Bog, £k = 0,1,2,..., are Bernoulli numbers
defined by the generating function

o0
T Bj
= _.’,E]
et —1 J'Z:o 4!

For the particular value {(3) we have the following three formulas
due, respectively, to Grosswald [3], Terras [5] and Apery [1]:

7 3 — —2mn
C(S)*mﬂ' —27;16 o_3(n),
_ 2 3 — —2mn
¢(3) 7 4; U_g(n){27r n® +mn + 2}
5 oo ( 1)n71
B)=35> —=m
2 n=1 n3(n)
(Of course, o_3(n) := > d~3, the sum extending over all positive

integral divisors of n.)

In [2], the author showed that, for each integer r > 2,

) = e 3 (1) A = 2)
" 1" 2m @m +2)I’

2m

m=0
where for each pair (m,r) of integers, m > 0 and r > 1, Ag,(r) is
defined as follows:
(i) Azm(1) := Bam and
(ii) forr > 1,
2m
<2i, 2ig,... ,2ir> Byi, B, + -+ Ba;,

Azm(r 2{211+1}{2(11+i2) + 1} {201 +i2 + -+ ipo) + 1}

where the sum is extended over all r-tuples (i1, i, .. ,%,) of nonnega-
tive integers such that ¢; + i3 + -+ - 4+ 7, = m, and

2m
241, 2%, ... , 21,
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is a multinomial coefficient.

In this paper we present new series representations of ((2k + 1),
k =1,2,.... These are given in the third corollary of the following
theorem (which also seems to have some independent interest).

Theorem 1. For each real number x € [0,7/2),

(1) —zlogz+z+ Z sin[2(2n + 1)z]

-1
2n 4 1)2

(221 — 1)¢(2m)
-9 2m—+1
Z m2mm(2m + 1) o

- z{gaz - % S mcosp@n—i- l)x]}.

n=0

The details of the proof are presented in Section 2. (Note that
lim, o+ (—cloge) =0.)

2. Proof of Theorem 1. We take as our point of departure the
well-known representations of sint and cost by infinite products. Let
0 < z < m/2. Then, on the one hand,

/Olog(tcott )dt = /{Zlog{ m}
_ibg{l_%}}dt
e / 3)> G T
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— 1 2m+1
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so that

On the other hand, since
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we have
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. — 1 —2(2n+1)iz
+ ZT;] (2n + 1)26

=zx-logx —x

o0

+> m sin[2(2n + 1)z

n=0

LT +i L cosi2(2n + 1)a]
—T— — —_— n x| o,
2”8 T 2n 1)

Now, equating the two evaluations of foz log (¢ cot t) dt and subsequently
simplifying, we obtain (1).

Notation. For positive integers k, m, let

(2>t —1)¢(2m)

Cm) = (27)2™m ’
Y(2k+1) := 2(271 +1)72-1

[2m + 1]2; := 2m + 1)(2m + 2) - - - (2m + 2k).

Clearly, these are definitions to abbreviate.

Corollary 1. For each positive integer k and each x € [0,7),

2 3 stwm 1)a]
k-1 by
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+ (2(2)k)' {w logz — x ;3 — (log2)z }
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and
k=1 ] 22+1
=S (12— §) + 1)
> (1720~ ) + D
7=0
(=1)k-! 2k+1 L2k g 2k+1
+ m{m logz — Z - — (log2)z }

O C(m)
1)kl 2mt2k+1
+(-1) Z[2m+1]2k+1x

Proof. (By induction on k). Since the left side of (1) is real and the
right side is purely imaginary, both sides vanish, whence

> ﬁ sin[2(2n + 1)z]

n=0

(22m-1 — 1)¢(2
_:clogmfx+22 JC2m) 2ms

= mmm(2m+ 1)
In the foregoing identity put ¢ := 2z to get
(o) 1 . 1
> g 1z nl@n+ 1] = S {tlogt — (log 2)t — ¢}
n=0

> C(m
t2m+1
+ Z 2m + 1 ?
m=1
0 <t < m. Now we operate on the foregoing identity with fo ) dt to
get
o0

Z m cos[(2n + 1)z]

n=0

1 1
=~(3) + 2—2{302 logz — 2” (1 + 5) — (log2)x2}

> C(m) 2m+2
+ mzzl 2m+ 15"
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This is (2) for k = 1. Next, in the foregoing identity we let z — ¢ and
subsequently operate on the resulting identity with fo ) dt to get

oo

1 .
Z oz sin[(2n + 1)7]
n:0(2n+l)
1 1 1
— 2’1 (14 =+ =) — (log2)z®
3)a:+2 '{a: ogxr — < +2+3> (log )x}
- C ) 2m—+3
+mz::1 emt1s

And this is (3) for k = 1.

Now for a fixed but arbitrary choice of k, we assume inductively that
identities (2) and (3) hold. Then, in (3) we let z — ¢, subsequently
operate on the resulting identity with fo )dt and simplify to get
an identity which is formally exactly like (2), but where k has been
everywhere replaced by k + 1. In this last mentioned identity we then
let x — t and subsequently operate on the resulting identity with
fo ) dt to get an identity which is formally exactly like (3), but where
k has been everywhere replaced by k 4 1. Inductively this establishes
Corollary 1.

Corollary 2. For each positive integer k,

(4)
k—1

=i ”/_)Zk_Zj (25 +1) +v(2k + 1)
% v

ok ¢ 2k
= o S L g

=1

<.

2. (2k)!

= Yk, say.

Proof. In (2) let z := /2.
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For a given positive integer k, we adopt the further abbreviations:

oy (/22

aki = (U G o

zj:=7(2j+1),

j=1,2,...,k; and realize that (4) has the form
k-1
Z QKT + Tk = Yk-

i=1

Hence, for a fixed but arbitrary choice of k, we consider the first k£ such

linear equations in x1,xs,... ,xr, where the matrix Ay of coefficients
is given by
1
az 1 0
Ap = a1 azz 1
ag1 ak2 ak3 cc Qgk-1 1

More precisely, Ay has size k x k; all entries of Ay above the diagonal
are zeros; the diagonal entries of Ay, are all ones; and the entries of Ay,
below the diagonal are as displayed. Clearly, det Ay, = 1. By Cramer’s
rule we then solve for z := v(2k+1) in terms of the y,., » = 1,2,... , k;
and, subsequently, multiply z; by 22+1/(22k*1 — 1) to find ((2k + 1).
Thus, we have proved

Corollary 3. For each positive integer k,

1 Y

o2k 41 az 1 0 Y2
1 Yk—1

a1 Qg2 Ak, k—1 Yk

Now the foregoing determinantal expression for ((2k +1) is essentially
one in “closed form.” However, we should perhaps illustrate its usage
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for “small” values of k, say k € {1,2,3}. First of all, we realize that
for each positive integer k,

(~D)FH(r/2)% [ S5 1

Yk = W{ Z 7 + log(4/m)
! =
e 22m 1 C(2m)
2k'21 T+ 1ot }
Then
72 (1 4 > (22m=1 — 1)¢(2m)

¢@3) = 14{2}“%? —4) (24mm[2m+1]1: }

j= m=

24mm[2m + 1]

C(5) %{Z§+log;_4z(2 me —1)C(2m)}

w4 1 4 20 (22— 1)¢(2m)
- Zflog— —4
744{23' e 8,; 24mm[2m + 1) }
56 [ 1 >0 (22m-1 —1)¢(2m)
= Ztlog= —4
(") = 5096 {; ] Og mzl 24mm[2m + 1] }
(1 4 (22m=1 _ 1)¢(2m)
log — — 48
5,096{;] tlog Z 4mm[2m + 1)1 }

: 2m—1
* 947,T440 { Z = + 10g — — 1440 Z (2 —1)¢(2m) }

24mm[2m + 1]g

Concluding remarks. Earlier we noted that both sides of identity
(1) vanish. The author has already observed vanishing of the right
side of this identity in an investigation similar to the present one
Accordingly, consequences of this vanishing are presented elsewhere
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