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NORMING SETS AND COMPACTNESS
B. CASCALES AND G. VERA

ABSTRACT. Let (X,| ||) be a Banach space and B
a norming subset of the closed unit ball Bxx of the dual
space X*. It is proved that if (Bx«,weak*) is sequentially
compact then the convex hull of the norm bounded o(X, B)-
relatively compact subsets of X are o(X, B)-relatively com-
pact (Moreover, when (Bxx,weak*) is angelic the norm
bounded o (X, B)- relatively countably compact subsets of X
are o(X, B)-relatively compact). As a consequence, if B is
assumed to be a boundary of Bx= (i.e. for every x € X there
exists e* € B such that e*(z) =|| z ||) then the norm bounded
o(X, B)- relatively compact subsets of X are relatively weakly
compact.

This note addresses the study of some aspects of the compact subsets
of Banach spaces X endowed with topologies coarser than their weak
topologies. It is well known that for a given Banach space X the clas-
sical theorems of Krein-Smulian (about the compactness of the closed
convex hull of compact sets), Eberlein-Grothendieck (about the coin-
cidence between relatively countably compact and relatively compact
sets) and Eberlein-Smulian (about the coincidence between relatively
countably compact, relatively compact and relatively sequentially com-
pact sets) are true for any locally convex topology between the weak
and the norm topology of X. Our aim here is to show that, under some
general assumptions on the dual unit ball Bx+ of X*, the previous the-
orems are still true for some topologies in X of the kind o (X, B), where
B is any norming subset of Bx«.

Our notation is standard: (X, || ||) will be a real Banach space, X*
its dual and By, respectively Bx«, the unit ball of X, respectively
of X*. A subset B of the dual unit ball By« is said to be norming,
respectively a boundary for Bx«, if || z ||= sup{|z*(z)| : z* € B} for
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every ¢ € X, respectively if for any € X there exists e* € B such
that e*(z) =|| z ||.

Given a compact Hausdorff space Y and a Radon probability x on Y,
we will write M, (Y) to denote the space of p-measurable real-valued
functions on Y. In the next theorem we shall use some of Talagrand’s
results concerning stable subsets of M,(Y"), [17] (see also [6]). Stable
subsets of M,,(Y) are reasonable pointwise compact subsets which in a
sense are “small.” If F is a uniformly bounded stable subset of M, (Y),
then the identity i : (F,t,(Y)) — (F,| |lz1(n)) is continuous (¢,(Y")
denotes the topology of pointwise convergence on Y'), [17, 9.5.3]. This
last result is the key to prove the following theorem.

Theorem 1. Let X be a Banach space and B a norming subset of
Bx-~. If the closed dual unit ball (Bx~,weak*) is sequentially compact
and H is a norm bounded o(X, B)-relatively compact subset of X, then

co (H)U(X’B) is o(X, B)-compact.

Proof. Consider Y := FG(X’B) endowed with the topology induced

by o(X, B). We have to prove that every Radon probability x on the
compact space Y has a barycenter z, in X. After doing this, standard
arguments will allow us to conclude the proof.

Take a Radon probability 4 on Y and define Z := {a*|y : a* €
co(B)} and F := {a*|y : * € Bx~}. Z is a uniformly bounded subset
of the space of continuous functions C(Y') on Y and has the property
that every sequence in it has a pointwise convergent subsequence. The
last implies that Z is a topologically stable subset of C(Y'), [17, 14.1.7]
and so it is a stable subset of M, (Y'), [17, 14.1.7]. On the other hand,
since B norming, the convex hull co (B) of B is weak* dense in Bx-
and so we obtain that Z*"") = {z*ly : * € Bx-}(= F). Since the
pointwise closure of stable subsets of M,(Y") is stable, we get that F
is a stable subset of M,(Y). Using the above mentioned Talagrand’s
theorem, [17, 9.5.3] we obtain the continuity of the map

(Bx+,weak") — (F, || [lz1(u))

¥ — x|y

Therefore the restriction to Bx« of the linear functional 7}, : X* —
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R given by T,(z*) ::/ z*|ydp is weak* continuous. Now the

Grothendieck completenes),/s theorem, [12, Section 21.9.4], applies to
conclude the existence of an element z, in X such that T,(z*) =
z*(z,) for every z* in X*. This z, is the barycenter of p that
we are looking for. The map u — z, from the o(C(Y)*,C(Y))
compact convex set P(Y) of all Radon probabilities on Y into X is
a(C(Y)*,C(Y)) — o(X, B)- continuous and its range is a o(X, B)-
compact convex set which contains Y, so the proof is concluded. a

If (Bx~,weak*) is assumed to be angelic (a topological space Y is
said to be angelic, [7], if the closure of every relatively countably
compact subset A of Y is compact and consists precisely of the limits of
sequences from A) the proof of the previous theorem can be simplified
and provides a stronger result. For doing this we will need some
results about measures on topological spaces. Given a topological
space Y, C(Y") is the Banach space of bounded continuous real valued
functions on Y endowed with the supremum norm || |l and M(Y)
is the dual space (Cp(Y),|| [|co)*, for which we adopt the Alexandroff
representation as the space of finite, finitely-additive zero-set regular
Baire measures on Y, [18].

Theorem 2. Let X be a Banach space and B a norming sub-
set of Bx~. If the closed dual unit ball (Bx~,weak*) is angelic
and H is a norm bounded o(X, B)-relatively countably compact sub-

———(X,B .
set of X, then co(H) 8) s o(X, B)-compact.  Therefore, the
norm bounded o(X, B)-relatively countably compact subsets of X are
o(X, B)-relatively compact.

Proof. Consider Y := FG(X’B) endowed with the topology induced

by (X, B). Now we will state that every Baire probability p on Y has
a barycenter z, in X.

Since H is o(X, B)-relatively countably compact, every o(X, B)-
continuous real function on Y is bounded, which means that Y is
a pseudocompact space. For pseudocompact spaces Y, the space
M(Y) is made up of countably additive measures defined on the
Baire o-field of Y, [8]. Take a Baire probability u on Y. Since B
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norming, the convex hull co(B) of B is weak* dense in Bx-. and
so the angelicity of (Bx«,weak*) allows us to ensure that for every
z* € Bx~ there is a sequence in co (B) that converges to z* for the
weak* topology. Therefore, for every z* € X* the function z*|y is u-
integrable and we can consider the linear functional T, : X* — R given

by T,(z*):= / x*|ydu. The Lebesgue convergence theorem gives

us that the restriction T),|p,. is weak*-sequentially continuous which
implies that it is weak® continuous since (Bx:,weak*) is an angelic
compact space. Now we follow the lines of the proof of the previous
theorem but considering the map p — z, from the o(M(Y), Cy(Y))-
compact convex subset P(Y) of all Baire probabilities on Y into X.
]

A particular class of angelic compact spaces are the Corson compact:
a compact space K is said to be Corson compact if it is (homeomorphic
to) a compact subset of RY (for some set I') such that for every
z = (z(y)) in K the set {7y : z(y) # 0} is countable, [3]. Assuming
that (Bx»,weak*) is Corson we can complete the previous theorem in
the following

Corollary 2.1. Let X be a Banach space and B a norming subset of
Bx-. If the closed dual unit ball (Bx~,weak*) is Corson compact and
H is any norm bounded subset of X, then the following are equivalent:

(i) H is o(X, B)-relatively countably compact in X.
(ii) H s (X, B)-relatively sequentially compact in X.
(i) H s o(X, B)-relatively compact in X .

Proof. The equivalence between (i) and (iii) follows from Theorem 2.
Since (ii) = i) is obvious, it remains to prove that iii) = ii).
Assume that H is o(X, B)-relatively compact, and consider K =

—o(X,B . .
H o(X.B) as a compact subset of the space of continuous functions on

(Bx~,weak*), C(Bx~,weak*), provided with the topology of pointwise
convergence on B. The separable subsets of (Bx«,weak*) are metriz-
able, because (Bx«,weak*) is Corson, and so an application of Theorem
4.3 of [14] gives us that K is a Radon-Nikodym compact space (see [14]
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for the definition). Now Corollary 5.4 of [14] can be applied to obtain
that K is sequentially compact and the proof is concluded. ]

Let us remark that many Banach spaces enjoy the properties required
in the previous theorems. The class of Banach spaces having weak*
sequentially compact dual unit ball contains the weakly countably
determined Banach spaces, [16] and the weak Asplund Banach spaces,
[5, p. 239]. In fact, the weakly countably determined Banach spaces
have Corson dual unit ball.

The previous results can be used to study the following question
formulated by Godefroy in [9]. Let X be a Banach space, B a boundary
for Bx- and H a norm bounded o(X, B)-compact subset of X. Is H
weakly compact? That this question has a positive answer when X
does not contain /! or when B is the set formed by the extreme points
ExtBx- of Bx~ has been stated by G. Godefroy [9], and J. Bourgain
and M. Talagrand [1], respectively. We also refer to [4, Problem I.1.2]
where this open question is recalled and annotated. Theorems 1 and 2
enable us to prove the following:

Corollary 2.2. Let X be a Banach space and B a boundary for Bx-.

(i) If (Bx~,weak*) is sequentially compact, then the norm bounded
o(X, B)-relatively compact subsets of X are relatively weakly compact.

(ii) If (Bx~,weak*) is angelic, then the norm bounded o(X, B)-
relatively countably compact subsets of X are relatively weakly compact.

Proof. i) If H is a norm bounded o (X, B)-relatively compact subset of
———(X,B) .
X, the closed convex hull of H, co (H) ( ), is o(X, B)-compact after
———(X,B

Theorem 1. Now the theorem in [7, p. 99] tells us that co (H) (5)
is weakly compact and the proof is done. The proof of ii) can be done
in the same way as the proof of i) but using Theorem 2 instead of
Theorem 1. o

Remark 1. When B =Ext Bx«, the above mentioned Bourgain-
Talagrand’s result, [1], about the weak compactness of the norm
bounded o(X, B))-relatively countably compact subsets of a Banach
space X, has been used by C. Stegall, [15], to give the following
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extension of a well known result of Namioka:

Theorem (C. Stegall, [15]). Suppose T is a Cech-complete space and
f:T — X is a function into the Banach space X such that for any z*
in B we have that * o f is continuous. Then f is norm-continuous at
each point of a dense G subset Ty of T'.

Let us finish pointing out that using Corollary 2.2 instead of Bourgain-
Talagrand’s theorem, Stegall’s proof of the previous theorem works for
the case of a general boundary B when the dual unit ball Bx« is as-
sumed to be angelic.

Remark 2. Take a fixed norm bounded o(X, B)-relatively compact
———0(X,B) .
subset H of a Banach space X. In order to prove that co (H) %5) i

o(X, B)-compact it is enough to assume that H satisfies the following
condition:

*

») in B there exists a subsequence

P(B) : For every sequence (x

*
Nk

() such that (z;, (h)) converges for every h in H.

This local property of H can be used to extend Theorem 1 without
assuming that By~ is sequentially compact. In the paper [2] we give
several sufficient conditions to ensure that a given H has property P(B)
and show that subsets having this property have a behavior analogous
to the weak* compact subsets of dual Banach spaces Z* for which Z
does not contain {!. Applications to spaces of vector-valued Bochner
integrable functions as well as to spaces of countably additive measures

are also included in [2].
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