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AN OSCILLATION CRITERION
OF ALMOST-PERIODIC
STURM-LIOUVILLE EQUATIONS

HORNG JAAN LI AND CHEH-CHIH YEH

ABSTRACT. The class Q C L} (R) of Besicovitch almost-
periodic functions is the closure of the set of all finite trigono-
metric polynomials with the Besicovitch seminorm. Consider
the half-linear second order differential equation

(F) L6 (1) = Ae(D)o(u(0)) =0,

where ¢(s) = |s|P~2s with p > 1 a fixed number and c(t) € Q.
We show that if M{c} := limy_ 00 (1/t) fot c(s+a)ds =0 and

M{|c|} > 0, then (E) is oscillatory at +oco and —oo for every
A€ R—{0}.

1. Introduction. Let R denote the real line. The class Q C L} (R)
of Besicovitch almost-periodic functions is the closure of the set of all

finite trigonometric polynomials with the Besicovitch seminorm || || g:

1 t
llells = limsup—/ lc(s)| ds,
t—o0 2t —t

where ¢ € Q. The mean value, M{c}, of ¢ € Q, always exists, is finite
and is uniform with respect to a for o € R, where

1 t
MA{c} = lim : c(s + a)ds,

t—o0 to

for some ty > 0 (see [1] and [3] for details).
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Consider the following half-linear second order differential equation

(E) SO0 (1) = Aelp(u(t)) =,

where

(i) ¢:R — R is defined by ¢(s) = |s|P~2s, with p > 1 a fixed real

number,
(i) c(t) € Q.

If p = 2, then (E) becomes the second order linear differential equation
u”(t) — Ae(t)u(t) = 0.

Ifw >0and v >0 (or v < 0), then (E) is reduced to the Euler-
Lagrange differential equation

d ! p—1 p—1 _
S P = el ) =0,
N i[—u'(zﬁ)]p’1 + Ac(t)uPL(t) = 0.
dt

Half-linear equation (E) was first considered by Bihari [2] in 1957 and
then Elbert [5] in 1987. For other related papers, we refer the reader
to Kaper, Knaap and Kwong [8], Lalli and Kusano [9], and Pino and
Manasevich [13].

In [5], Elbert established the existence and uniqueness of solutions to
the initial value problem for (E) on [T, c0), for some T > 0. Note that
any constant multiple of a solution of (E) is also a solution.

We say that equation (E) is oscillatory at +oo and —oo if every
solution of (E) has an infinity of zeros clustering only at +0co and —oo,
respectively.

In 1989, Dzurnak and Mingarelli [4] proved the following very inter-
esting result by using Levin’s comparison theorem [10].

Theorem A. Let c € Q and M{|c|} > 0. If p =2, then M{c} =0 if
and only if (E) is oscillatory at +00 and —oo for every A € R — {0}.
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Recently, Wong and Yeh [14] used the nonlinear Levin comparison
theorem [15] to extend the sufficient condition of Theorem A to the
following second nonlinear differential equation

' (t) — Ac(t) f (u(t)) = 0,
if f satisfies some suitable conditions.

The main purpose of this paper is to extend Theorem A to equa-

tion (E), which involves constructing three hard-to-come-by auxiliary
functions (see (9), (16) and (17) below).

For other related results, we refer the reader to [6, 11, 12].

2. Main result. In order to discuss our main results, we need the
following three lemmas, the first one is a half-linear extension of Levin’s
comparison theorem [10].

Lemma 2.1. Let ci,co € Li (R), and let u(t) and v(t) be nontrivial
solutions of

(E) )] o0 (0) - eDou(e) | <o
and
(E2) 960/ (1)) ~ ex(t)o((t)) = 0,

respectively, on a closed subinterval [a, 8] of [T, 00) satisfying either
(i) v(a) > u(e) >0, u>0 on [, f],
or
(i) v(a) <u(a) <0, u <0 on|a,d].
If

w) @) Ak@“>‘ L”

for all t € [a 8], then v(t) does not vanish on [a B], and we have

u(t)u'(¢) <0, v(t) > u(t) > 0 if (i) holds, v(t) < (t; 0 4f (ii) holds,

and

(R1) _ oW @) ‘ ¢(v'(2))
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for all t € [a, B]. If the inequality sign “>” in (Hy) is replaced by “>,”
then the inequality sign “>” in (Ry) should be replaced by “>.”

Proof. Since the proofs for (i) and (ii) are similar, we prove only case
(i). Since u > 0 on [a, 8], the continuous function

(1) w(t) = —

on [a, 3] satisfies

@) w(t) > w(a) — /at ci(s)ds+ (p—1) /: w(s)|7 ds
> u@) - [ e

c1(s)ds >0,

where 1/p+1/q = 1. Thus, u'(t) < 0 for all ¢ € [«, 8]. Since v(a) > 0,

(3) 2(t) == —

is continuous on some interval [a, ], where a < v < 8. Clearly, z(¢)
satisfies the integral equation

(4) z@=d®—/®@%+@—D/V@WB

for all t € [a,~]. From (4), (H;) and (2), we obtain

t t

2(t) > 2(a) — / c2(s)ds > —w(a) +/ c1(s)ds > —w(t).

[e% o

Hence w(t) > —z(t) on [a, 7]. Next, we claim that w(t) > z(t) on [a,¥].
Suppose to the contrary that there exists a point ¢y € [a, 7] such that
w(ty) < z(to). From (H;), we have w(a) > |z(a)|. As w(t) and z(t)
are continuous on [«, ], there exists t; € [a, to] such that z(t1) = w(ty)
and z(t) < w(t) on t € [, t1). Since we have established w(t) > —z(t)
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on [a, ], we obtain that |z(¢)| < w(t) for all ¢ € [a, ¢1). Thus, it follows
from (H;), (2) and (4) that

) =2(0) [ et (p 1) [ l(e)ds

t1

<w@ - [Ca@ast - [ s
<wlt), )

which is a contradiction. Thus

(5) 2(0)] < w(t)

for ¢t € [a,].

Next we show that v(t) cannot vanish on [, ]. Suppose that the
first point to the right of « at which v(t) vanishes is t = § < 3, that is,
v(t) > 0 on [a, ) and v(§) = 0. We claim that v'(6) # 0. Suppose that
v'(8) = 0. Then, for ¢ € [a, ],

which implies
[
v =07 [ e,
t
where ¢~!(s) = |s|?7?s is the inverse function of ¢. Thus

u(t) — v(8) = /f ¢1{ /: CQ(S)¢(U(5))ds}d:¢.

Hence,

é
#(v(t)) < (6 — a)pfl/t lea(s)|p(v(s))ds for a <t < 6.

It follows from the Gronwall inequality that v(t) = 0 for each t € [a, §],
which is impossible. Thus v'(4) # 0. This means that the solutions of



1422 H.J. LI AND C.-C. YEH

(E2) have only simple zeros. However, since |z(t)| < w(t) on [a, ) and
w(t) is bounded on [a, 8], we get

oo = limsup |z(¢)| < lim w(t) = w(d) < oo,
t—6— t—=6-

which is absurd. This contradiction proves that v(¢) cannot vanish on
[, B]. Thus, (5) holds on any interval [o,7] C [a, 8] on which z is
continuous. But this implies that z is continuous on the entire interval

[a, B] since w(t) is bounded on [a, 5] and v(t) cannot vanish on [a, 3].
Thus, (5) holds on the interval [a, £].

Clearly, it follows from (1), (3) and (5) that v(t) > u(t) on [a, 3].
Hence our proof is complete. a

Lemma 2.2. Ify>1,a>0 and b > 0, then (a +b)? > a” + 7.

Lemma 2.3. Suppose that

(C1) ¢ [to,00) = R is locally Lebesgue integrable and

has a mean value M{c}, where tqg > 0,

(C2) M{c} =0

If u(t) # 0 is a solution of

(E3) 0 (1)) — elt)o(u(t) = 0

. 1/t
lim —
t—oo to

on [tg,00), then
! p
w(s) ds = 0.

u(s)

Proof. Define

t
z(t) = — 1; for all ¢ € [tg, 00).
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It follows from (E3) that z(t) is a solution of
(6) 2'(t) = (p— D0z(t)| +¢(t) =0 on [ty,00),
where 1/¢ 4+ 1/p = 1. Since |z(¢)|7 = |u/(¢)/u(t)|P > 0 on [ty, 00), it

suffices to show that

1 t
lim sup —/ |z(s)|?ds = 0.
t—o0 t to
Assume to the contrary that
1 t
(7) lim sup —/ |z(s)|?ds > 0.
t—o00 t to
Integrating (6) from ¢y to ¢ and dividing it by ¢, we have
t t 1 [ -1 [
(8) o(t) _ 2lto) | E/ o(s)ds + I’T/ 2 (s)[7 ds,
to

t t t

for all ¢ > ty. It follows from (7), (8) and (C3) that there exist a
positive constant m and an increasing sequence {¢,,}52; of (f, c0) with
lim,, s t, = 00 such that

(9) —— > (p—1)mP for all n large enough.
It follows from (Csz) that there exists t* large enough such that

(10) ‘ /t t o(s) ds

< (p—=1)(m/2)Pt forall t >t".

Using (10), we have

(11) /tt cs)ds = /t: c(s)ds — /t:" c(s)ds

L < DmP )

for all ¢ > ¢, > ¢*. It follows from (9) and (11) that
(12)

o(ty) — /t o(s)ds > (p— )Pty — (p— 1)(m/2)P(t + )
D

> (p— DymPt, — (p— 1)(m/2)7[(2° — Dty + ]

(
0
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for all t € [ty,, (2P — 1)t,] C [t*,00). From the existence of solutions to
the initial value problem, the differential equation

(13) %qﬁ(u;(t)) — (P = 1)(m/2)"¢(un(t)) = 0

has a solution wu,(t) on [t,, (2P — 1)t,] satisfying u, (t») = u(t,) and

CAC) 2(tn) — 2(p — 1)(m/2)Pts.

It follows from (11) and (12) that

—¢(UI(tn)) — tCS S =T — tCS S
H(ultn)) A;(” () = [ e(s)a

> 2(t) — (p — 1)(m/2)P (¢ + )
— {altn) - 2p — 1)(m/2)Pt,}
(o - 1)(m/2)P (¢ — )

o) [
= Sl A@ 1)(m/2)P d

>0
on [tn, (2P — 1)t,] C (t*, 00). Using Lemma 2.1, we have

P(u'ltn)) ‘ _ 9w, (1)
¢(u(tn)) ¢(un(t))

Now, define

(14) - on [tn, (27 — 1)t,] C [t*, 00).

wn(t) = —2Wal) o or )], o0).

It is clear that x,,(¢) is a solution of the differential equation
(15) o (t) = (0= Diza () + (p = 1)(m/2) =
on [tn, (2P — 1)t,] C [t*, c0) with

Zn(tn) = z(ty) — 2(p — 1)(m/2)Pt,.
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Let

(16) o = [ea(tn) — (/2P
and

(17) at) = (/2P + (b — t+7,)' 7

on [tp,t, +7,) C [t*,00), where n is large enough such that z,(t,) >
(m/2)p/q. Then y,(t,) = z,(t,), and it follows from Lemma 2.2 that

y;(t) = (p - l)(tn —t+ Tn)ip
=@ —= D[t —t+r)"" + (m/2)"] = (p —1)(m/2)"
< (p = D[(m/2)P9 + (tn =t +72)' 7] = (p = 1)(m/2)?
=@ —Dlyn®)|* = (p—1)(m/2)" on [tn,tn +10) C [t*,00).

Y () — (0 — D]y ()7 + (p — 1)(m/2)P <0
=z, (t) = (p = D]z (®)|? + (p = 1)(m/2)P

for all t € [t,, (2P — 1)t,]) N [tn, tn +75n) C [t*,00). A simple comparison
argument shows that

Yn(t) < zn(t) on [tn, (2P — 1)tn] N [tn, tn + 7mn) C [t5, 00).
It follows from
T (tn) = z(tn) — 2(p — 1)(m/2)Pt, > (p — 1)(1 — 2 "P)m?Pt,

that t, + ry € [tn, (2P — 1)¢,] for n large enough. By the definition of
Yn(t), we see that

lim  y,(t) =oc0 for n large enough.
t=(tntrn)—

18 Jim | e(®)=oo forn large cnoug
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Now we take k large enough such that
tr + 7k € [tr, (2P — 1)t

Clearly, there exists a positive constant M such that
tn *
(i) <M< oo on [tk (2P — 1)tg] C [t*, 00).
It follows from (14) and (18) that

!
00 = lim  z,(t) < lim {—M}§M<oo,
t— (tre+re)~ t—(te+re) " t

which is a contradiction. Thus, the proof is complete. ]

Theorem 2.4. If c € Q satisfies (C2) and M{|c|} > 0, then (E) is
oscillatory at 400 and —oco for every A € R — {0}.

Proof. Without loss of generality, we only show that (E3) is oscillatory
at +00. Assume to the contrary that (E3) has a solution u(¢) which is
nonoscillatory at +oco. Thus, we can assume that there exists tg > 0
such that u(t) > 0 on [tg, 00). Define

t
z(t) = ~ o (ale ) for all ¢ € [to, 00).

Then z(t) is a solution of (6) on [to,c0). Hence, for any fixed § > 0,
we have

(19)
t+6 . t+6
%/t c(s)ds:—i(t;_(s)—i-% 5 / s)|7ds on [tg, o).

Applying the Besicovitch semi-norm || - || g/, essentially a restriction of
|| - || B to the interval [to, c0), defined by

I =msun [ 1709 as,

t—oo U
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o (19), we find

1 [t
0< HE/ c(s)ds
¢

z(t + )
)

_ t+6
<[5 [ o
t

5
o(t)
5

B’ B’

(20)

B’ B’

for all § > 0. It follows from Lemma 2.3 that M{|z|?} = 0; thus,
[|lz| - = ||x(t + 0)||pr = 0 for all § > 0. Using Fubini’s theorem, we

have
)|9drds = — // z(r+s)|?drds
[ e [
= —/ |z(r + s)|?dsdr
(21)

t—|—5
q
_t5//to s)|?dsdr
— — q
t/to [e(s)]7 ds

for any fixed 6 > 0. Using (21) and Lemma 2.3, we have

p— 1 t+6
(22) HT/ |z(s)|?ds|| =0 for any fixed § > 0.
t B
Applying (22) and ||z||p' = ||z(t + J)||sr = 0 to (21), we see that
1 to
(23) H—/ c(s)ds|| =0 foralld>D0.
5 t B/

Since ¢ is Besicovitch almost periodic, it follows from Besicovitch [1,

page 97] that
1 t+3
e(t) — = c(s)ds|| =0.
0 J, B
This and (23) imply M{|c|} = ||¢||p- = 0, which is a contradiction.

Thus, the proof is complete. a

lim
§—0
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Ezample. Consider the differential equation

(24) pr (' (t)) — Acos(t)p(u(t)) = 0.

Then c¢(t) = cos(t). Thus,

=0

L[t i
MA{c} = tlim n / c(s)ds = lim sin(?)
—00 0

t—0 ¢

and

.1
M{jely = Jim 7 [ fe(s)] ds

1 2(n+1)mw
=1 7)/ | cos(s)|ds
™ Jo

im

2 7|'/2
= lim —/ cos(s) ds
0

n—oco T

2
=—->0.
™

It follows from Theorem 2.4 that for each A € R—{0}, (24) is oscillatory
at +oo and —oo0.
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