AN OSCILLATION CRITERION OF ALMOST-PERIODIC STURM-LIOUVILLE EQUATIONS

HORNG JAAN LI AND CHEH-CHIH YEH

ABSTRACT. The class $\Omega\subset L^1_{\mathrm{loc}}(\mathbf{R})$ of Besicovitch almost-periodic functions is the closure of the set of all finite trigonometric polynomials with the Besicovitch seminorm. Consider the half-linear second order differential equation

(E)
$$\frac{d}{dt}\phi(u'(t)) - \lambda c(t)\phi(u(t)) = 0,$$

where $\phi(s) = |s|^{p-2}s$ with p > 1 a fixed number and $c(t) \in \Omega$. We show that if $M\{c\} := \lim_{t\to\infty} (1/t) \int_0^t c(s+\alpha) \, ds = 0$ and $M\{|c|\}>0,$ then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda\in\mathbf{R}-\{0\}.$

1. Introduction. Let **R** denote the real line. The class $\Omega \subset L^1_{loc}(\mathbf{R})$ of Besicovitch almost-periodic functions is the closure of the set of all finite trigonometric polynomials with the Besicovitch seminorm $\|\cdot\|_B$:

$$||c||_B = \limsup_{t \to \infty} \frac{1}{2t} \int_{-t}^t |c(s)| ds,$$

where $c \in \Omega$. The mean value, $M\{c\}$, of $c \in \Omega$, always exists, is finite and is uniform with respect to α for $\alpha \in \mathbf{R}$, where

$$M\{c\} = \lim_{t \to \infty} \frac{1}{t} \int_{t_0}^t c(s + \alpha) \, ds,$$

for some $t_0 \geq 0$ (see [1] and [3] for details).

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on August 25, 1993, and in revised form on January 10,

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 34C10, 34C15.

Key words and phrases. Besicovitch almost-periodic function, half-linear second order, oscillatory, Euler-Lagrange equation, Levin's comparison theorem. This research was supported by the National Science Council of the Republic of

China.

Consider the following half-linear second order differential equation

(E)
$$\frac{d}{dt}\phi(u'(t)) - \lambda c(t)\phi(u(t)) = 0,$$

where

(i) $\phi: \mathbf{R} \to \mathbf{R}$ is defined by $\phi(s) = |s|^{p-2}s$, with p > 1 a fixed real number,

(ii)
$$c(t) \in \Omega$$
.

If p = 2, then (E) becomes the second order linear differential equation

$$u''(t) - \lambda c(t)u(t) = 0.$$

If u > 0 and u' > 0 (or u' < 0), then (E) is reduced to the Euler-Lagrange differential equation

$$\frac{d}{dt}[u'(t)]^{p-1} - \lambda c(t)u^{p-1}(t) = 0,$$

or

$$\frac{d}{dt}[-u'(t)]^{p-1} + \lambda c(t)u^{p-1}(t) = 0.$$

Half-linear equation (E) was first considered by Bihari [2] in 1957 and then Elbert [5] in 1987. For other related papers, we refer the reader to Kaper, Knaap and Kwong [8], Lalli and Kusano [9], and Pino and Manasevich [13].

In [5], Elbert established the existence and uniqueness of solutions to the initial value problem for (E) on $[T, \infty)$, for some $T \ge 0$. Note that any constant multiple of a solution of (E) is also a solution.

We say that equation (E) is oscillatory at $+\infty$ and $-\infty$ if every solution of (E) has an infinity of zeros clustering only at $+\infty$ and $-\infty$, respectively.

In 1989, Dzurnak and Mingarelli [4] proved the following very interesting result by using Levin's comparison theorem [10].

Theorem A. Let $c \in \Omega$ and $M\{|c|\} > 0$. If p = 2, then $M\{c\} = 0$ if and only if (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \mathbf{R} - \{0\}$.

Recently, Wong and Yeh [14] used the nonlinear Levin comparison theorem [15] to extend the sufficient condition of Theorem A to the following second nonlinear differential equation

$$u''(t) - \lambda c(t) f(u(t)) = 0,$$

if f satisfies some suitable conditions.

The main purpose of this paper is to extend Theorem A to equation (E), which involves constructing three hard-to-come-by auxiliary functions (see (9), (16) and (17) below).

For other related results, we refer the reader to [6, 11, 12].

2. Main result. In order to discuss our main results, we need the following three lemmas, the first one is a half-linear extension of Levin's comparison theorem [10].

Lemma 2.1. Let $c_1, c_2 \in L^1_{loc}(\mathbf{R})$, and let u(t) and v(t) be nontrivial solutions of

$$(\mathrm{E}_1) \qquad \qquad u(t) \left\{ \frac{d}{dt} \phi(u'(t)) - c_1(t) \phi(u(t)) \right\} \leq 0$$

and

$$\frac{d}{dt}\phi(v'(t)) - c_2(t)\phi(v(t)) = 0,$$

respectively, on a closed subinterval $[\alpha, \beta]$ of $[T, \infty)$ satisfying either

(i)
$$v(\alpha) \ge u(\alpha) > 0$$
, $u > 0$ on $[\alpha, \beta]$,

or

(ii)
$$v(\alpha) \leq u(\alpha) < 0$$
, $u < 0$ on $[\alpha, \beta]$.

Ιf

$$(\mathrm{H}_1) \qquad -\frac{\phi(u'(\alpha))}{\phi(u(\alpha))} - \int_{\alpha}^{t} c_1(s) \, ds > \left| -\frac{\phi(v'(\alpha))}{\phi(v(\alpha))} - \int_{\alpha}^{t} c_2(s) \, ds \right|$$

for all $t \in [\alpha, \beta]$, then v(t) does not vanish on $[\alpha, \beta]$, and we have u(t)u'(t) < 0, $v(t) \ge u(t) > 0$ if (i) holds, $v(t) \le u(t) < 0$ if (ii) holds, and

$$-\frac{\phi(u'(t))}{\phi(u(t))} > \left| \frac{\phi(v'(t))}{\phi(v(t))} \right|$$

for all $t \in [\alpha, \beta]$. If the inequality sign ">" in (H_1) is replaced by " \geq ," then the inequality sign ">" in (R_1) should be replaced by " \geq ."

Proof. Since the proofs for (i) and (ii) are similar, we prove only case (i). Since u > 0 on $[\alpha, \beta]$, the continuous function

(1)
$$w(t) := -\frac{\phi(u'(t))}{\phi(u(t))}$$

on $[\alpha, \beta]$ satisfies

(2)
$$w(t) \geq w(\alpha) - \int_{\alpha}^{t} c_1(s) ds + (p-1) \int_{\alpha}^{t} |w(s)|^q ds$$
$$\geq w(\alpha) - \int_{\alpha}^{t} c_1(s) ds > 0,$$

where 1/p + 1/q = 1. Thus, u'(t) < 0 for all $t \in [\alpha, \beta]$. Since $v(\alpha) > 0$,

(3)
$$z(t) := -\frac{\phi(v'(t))}{\phi(v(t))}$$

is continuous on some interval $[\alpha, \gamma]$, where $\alpha < \gamma < \beta$. Clearly, z(t) satisfies the integral equation

(4)
$$z(t) = z(\alpha) - \int_{\alpha}^{t} c_2(s) \, ds + (p-1) \int_{\alpha}^{t} |z(s)|^q \, ds$$

for all $t \in [\alpha, \gamma]$. From (4), (H₁) and (2), we obtain

$$z(t) \geq z(lpha) - \int_{lpha}^t c_2(s) \, ds > -w(lpha) + \int_{lpha}^t c_1(s) \, ds \geq -w(t).$$

Hence w(t) > -z(t) on $[\alpha, \gamma]$. Next, we claim that w(t) > z(t) on $[\alpha, \gamma]$. Suppose to the contrary that there exists a point $t_0 \in [\alpha, \gamma]$ such that $w(t_0) \leq z(t_0)$. From (H_1) , we have $w(\alpha) > |z(\alpha)|$. As w(t) and z(t) are continuous on $[\alpha, \gamma]$, there exists $t_1 \in [\alpha, t_0]$ such that $z(t_1) = w(t_1)$ and z(t) < w(t) on $t \in [\alpha, t_1)$. Since we have established w(t) > -z(t)

on $[\alpha, \gamma]$, we obtain that |z(t)| < w(t) for all $t \in [\alpha, t_1)$. Thus, it follows from (H_1) , (2) and (4) that

$$z(t_1) = z(\alpha) - \int_{\alpha}^{t_1} c_2(s) ds + (p-1) \int_{\alpha}^{t_1} |z(s)|^q ds$$

$$< w(\alpha) - \int_{\alpha}^{t_1} c_1(s) ds + (p-1) \int_{\alpha}^{t_1} |w(s)|^q ds$$

$$< w(t_1),$$

which is a contradiction. Thus

$$|z(t)| < w(t)$$

for $t \in [\alpha, \gamma]$.

Next we show that v(t) cannot vanish on $[\alpha, \beta]$. Suppose that the first point to the right of α at which v(t) vanishes is $t = \delta \leq \beta$, that is, v(t) > 0 on $[\alpha, \delta)$ and $v(\delta) = 0$. We claim that $v'(\delta) \neq 0$. Suppose that $v'(\delta) = 0$. Then, for $t \in [\alpha, \delta]$,

$$\phi(v'(t)) = \int_t^{\delta} c_2(s)\phi(v(s)) ds,$$

which implies

$$v'(t) = \phi^{-1} \left\{ \int_t^{\delta} c_2(s) \phi(v(s)) \, ds \right\},$$

where $\phi^{-1}(s) = |s|^{q-2}s$ is the inverse function of ϕ . Thus

$$v(t)-v(\delta)=-\int_t^\delta\phi^{-1}igg\{\int_x^\delta c_2(s)\phi(v(s))\,dsigg\}dx.$$

Hence,

$$\phi(v(t)) \leq (\delta - \alpha)^{p-1} \int_t^{\delta} |c_2(s)| \phi(v(s)) ds$$
 for $\alpha \leq t \leq \delta$.

It follows from the Gronwall inequality that $v(t) \equiv 0$ for each $t \in [\alpha, \delta]$, which is impossible. Thus $v'(\delta) \neq 0$. This means that the solutions of

(E₂) have only simple zeros. However, since |z(t)| < w(t) on $[\alpha, \delta]$ and w(t) is bounded on $[\alpha, \beta]$, we get

$$\infty = \limsup_{t \to \delta^-} |z(t)| \le \lim_{t \to \delta^-} w(t) = w(\delta) < \infty,$$

which is absurd. This contradiction proves that v(t) cannot vanish on $[\alpha, \beta]$. Thus, (5) holds on any interval $[\alpha, \gamma] \subset [\alpha, \beta]$ on which z is continuous. But this implies that z is continuous on the entire interval $[\alpha, \beta]$ since w(t) is bounded on $[\alpha, \beta]$ and v(t) cannot vanish on $[\alpha, \beta]$. Thus, (5) holds on the interval $[\alpha, \beta]$.

Clearly, it follows from (1), (3) and (5) that $v(t) \geq u(t)$ on $[\alpha, \beta]$. Hence our proof is complete. \square

Lemma 2.2. If $\gamma > 1$, a > 0 and b > 0, then $(a + b)^{\gamma} > a^{\gamma} + b^{\gamma}$.

Lemma 2.3. Suppose that

(C₁) $c:[t_0,\infty)\to \mathbf{R}$ is locally Lebesgue integrable and has a mean value $M\{c\}$, where $t_0\geq 0$,

$$(C_2) M\{c\} = 0$$

If $u(t) \neq 0$ is a solution of

(E₃)
$$\frac{d}{dt}\phi(u'(t)) - c(t)\phi(u(t)) = 0$$

on $[t_0, \infty)$, then

$$\lim_{t \to \infty} \frac{1}{t} \int_{t_0}^t \left| \frac{u'(s)}{u(s)} \right|^p ds = 0.$$

Proof. Define

$$x(t) = -rac{\phi(u'(t))}{\phi(u(t))} \quad ext{for all } t \in [t_0, \infty).$$

It follows from (E_3) that x(t) is a solution of

(6)
$$x'(t) - (p-1)|x(t)|^q + c(t) = 0 \quad \text{on } [t_0, \infty),$$

where 1/q + 1/p = 1. Since $|x(t)|^q = |u'(t)/u(t)|^p \ge 0$ on $[t_0, \infty)$, it suffices to show that

$$\limsup_{t \to \infty} \frac{1}{t} \int_{t_0}^t |x(s)|^q \, ds = 0.$$

Assume to the contrary that

(7)
$$\limsup_{t \to \infty} \frac{1}{t} \int_{t_0}^t |x(s)|^q ds > 0.$$

Integrating (6) from t_0 to t and dividing it by t, we have

(8)
$$\frac{x(t)}{t} = \frac{x(t_0)}{t} + \frac{1}{t} \int_{t_0}^t c(s) \, ds + \frac{p-1}{t} \int_{t_0}^t |x(s)|^q \, ds,$$

for all $t > t_0$. It follows from (7), (8) and (C₂) that there exist a positive constant m and an increasing sequence $\{t_n\}_{n=1}^{\infty}$ of (t_0, ∞) with $\lim_{n\to\infty} t_n = \infty$ such that

(9)
$$\frac{x(t_n)}{t_n} > (p-1)m^p \quad \text{for all } n \text{ large enough.}$$

It follows from (C_2) that there exists t^* large enough such that

(10)
$$\left| \int_{t_0}^t c(s) \, ds \right| < (p-1)(m/2)^p t \quad \text{for all } t \ge t^*.$$

Using (10), we have

(11)
$$\int_{t_n}^{t} c(s) ds = \int_{t_0}^{t} c(s) ds - \int_{t_0}^{t_n} c(s) ds < (p-1)(m/2)^p (t+t_n)$$

for all $t \geq t_n \geq t^*$. It follows from (9) and (11) that (12)

$$x(t_n) - \int_{t_n}^t c(s) \, ds > (p-1)m^p t_n - (p-1)(m/2)^p (t+t_n)$$

$$\geq (p-1)m^p t_n - (p-1)(m/2)^p [(2^p-1)t_n + t_n]$$

$$= 0$$

for all $t \in [t_n, (2^p - 1)t_n] \subset [t^*, \infty)$. From the existence of solutions to the initial value problem, the differential equation

(13)
$$\frac{d}{dt}\phi(u'_n(t)) - (p-1)(m/2)^p\phi(u_n(t)) = 0$$

has a solution $u_n(t)$ on $[t_n,(2^p-1)t_n]$ satisfying $u_n(t_n)=u(t_n)$ and

$$-\frac{\phi(u_n'(t_n))}{\phi(u_n(t_n))} = x(t_n) - 2(p-1)(m/2)^p t_n.$$

It follows from (11) and (12) that

$$-\frac{\phi(u'(t_n))}{\phi(u(t_n))} - \int_{t_n}^t c(s) \, ds = x(t_n) - \int_{t_n}^t c(s) \, ds$$

$$> x(t_n) - (p-1)(m/2)^p (t+t_n)$$

$$= \{x(t_n) - 2(p-1)(m/2)^p t_n\}$$

$$- (p-1)(m/2)^p (t-t_n)$$

$$= -\frac{\phi(u'_n(t_n))}{\phi(u_n(t_n))} - \int_{t_n}^t (p-1)(m/2)^p \, ds$$

$$\geq 0$$

on $[t_n, (2^p-1)t_n] \subset (t^*, \infty)$. Using Lemma 2.1, we have

$$(14) \qquad -\frac{\phi(u'(t_n))}{\phi(u(t_n))} > \left| -\frac{\phi(u'_n(t))}{\phi(u_n(t))} \right| \quad \text{on } [t_n, (2^p - 1)t_n] \subset [t^*, \infty).$$

Now, define

$$x_n(t) = -\frac{\phi(u'_n(t))}{\phi(u_n(t))}$$
 on $[t_n, (2^p - 1)t_n] \subset [t^*, \infty)$.

It is clear that $x_n(t)$ is a solution of the differential equation

(15)
$$x'_n(t) - (p-1)|x_n(t)|^q + (p-1)(m/2)^p = 0$$

on
$$[t_n, (2^p-1)t_n] \subset [t^*, \infty)$$
 with

$$x_n(t_n) = x(t_n) - 2(p-1)(m/2)^p t_n$$
.

Let

(16)
$$r_n = \left[x_n(t_n) - (m/2)^{p/q}\right]^{1-q}$$

and

(17)
$$y_n(t) = (m/2)^{p/q} + (t_n - t + r_n)^{1-p}$$

on $[t_n, t_n + r_n) \subset [t^*, \infty)$, where n is large enough such that $x_n(t_n) > (m/2)^{p/q}$. Then $y_n(t_n) = x_n(t_n)$, and it follows from Lemma 2.2 that

$$y'_n(t) = (p-1)(t_n - t + r_n)^{-p}$$

$$= (p-1)[(t_n - t + r_n)^{-p} + (m/2)^p] - (p-1)(m/2)^p$$

$$< (p-1)[(m/2)^{p/q} + (t_n - t + r_n)^{1-p}]^q - (p-1)(m/2)^p$$

$$= (p-1)|y_n(t)|^q - (p-1)(m/2)^p \quad \text{on } [t_n, t_n + r_n) \subset [t^*, \infty).$$

Thus

$$y'_n(t) - (p-1)|y_n(t)|^q + (p-1)(m/2)^p < 0$$

= $x'_n(t) - (p-1)|x_n(t)|^q + (p-1)(m/2)^p$

for all $t \in [t_n, (2^p - 1)t_n] \cap [t_n, t_n + r_n) \subset [t^*, \infty)$. A simple comparison argument shows that

$$y_n(t) \le x_n(t)$$
 on $[t_n, (2^p - 1)t_n] \cap [t_n, t_n + r_n) \subset [t^*, \infty)$.

It follows from

$$x_n(t_n) = x(t_n) - 2(p-1)(m/2)^p t_n > (p-1)(1-2^{1-p})m^p t_n$$

that $t_n + r_n \in [t_n, (2^p - 1)t_n]$ for n large enough. By the definition of $y_n(t)$, we see that

$$\lim_{t \to (t_n + r_n)^-} y_n(t) = \infty \quad \text{for } n \text{ large enough.}$$

Hence,

(18)
$$\lim_{t \to (t_n + r_n)^-} x_n(t) = \infty \quad \text{for } n \text{ large enough.}$$

Now we take k large enough such that

$$t_k + r_k \in [t_k, (2^p - 1)t_k].$$

Clearly, there exists a positive constant M such that

$$-\frac{\phi(u'(t_n))}{\phi(u(t_n))} \le M < \infty \quad \text{on } [t_k, (2^p - 1)t_k] \subset [t^*, \infty).$$

It follows from (14) and (18) that

$$\infty = \lim_{t \to (t_k + r_k)^-} x_n(t) \le \lim_{t \to (t_k + r_k)^-} \left\{ -\frac{\phi(u'(t_n))}{\phi(u(t_n))} \right\} \le M < \infty,$$

which is a contradiction. Thus, the proof is complete.

Theorem 2.4. If $c \in \Omega$ satisfies (C_2) and $M\{|c|\} > 0$, then (E) is oscillatory at $+\infty$ and $-\infty$ for every $\lambda \in \mathbf{R} - \{0\}$.

Proof. Without loss of generality, we only show that (E_3) is oscillatory at $+\infty$. Assume to the contrary that (E_3) has a solution u(t) which is nonoscillatory at $+\infty$. Thus, we can assume that there exists $t_0 > 0$ such that u(t) > 0 on $[t_0, \infty)$. Define

$$x(t) = -\frac{\phi(u'(t_n))}{\phi(u(t_n))}$$
 for all $t \in [t_0, \infty)$.

Then x(t) is a solution of (6) on $[t_0, \infty)$. Hence, for any fixed $\delta > 0$, we have

$$\frac{1}{\delta} \int_t^{t+\delta} c(s) \, ds = -\frac{x(t+\delta)}{\delta} + \frac{x(t)}{\delta} + \frac{p-1}{\delta} \int_t^{t+\delta} |x(s)|^q \, ds \quad \text{on } [t_0, \infty).$$

Applying the Besicovitch semi-norm $||\cdot||_{B'}$, essentially a restriction of $||\cdot||_B$ to the interval $[t_0,\infty)$, defined by

$$||f||_{B'}=\limsup_{t o\infty}rac{1}{t}\int_{t_0}^t|f(s)|\,ds,$$

to (19), we find

(20)
$$0 \leq \left\| \frac{1}{\delta} \int_{t}^{t+\delta} c(s) \, ds \right\|_{B'} \leq \left\| \frac{p-1}{\delta} \int_{t}^{t+\delta} |x(s)|^{q} \, ds \right\|_{B'} + \left\| \frac{x(t+\delta)}{\delta} \right\|_{B'} + \left\| \frac{x(t)}{\delta} \right\|_{B'}$$

for all $\delta > 0$. It follows from Lemma 2.3 that $M\{|x|^q\} = 0$; thus, $||x||_{B'} = ||x(t+\delta)||_{B'} = 0$ for all $\delta > 0$. Using Fubini's theorem, we have

(21)
$$\frac{1}{t\delta} \int_{t_0}^t \int_s^{s+\delta} |x(r)|^q dr ds = \frac{1}{t\delta} \int_{t_0}^t \int_0^\delta |x(r+s)|^q dr ds \\
= \frac{1}{t\delta} \int_0^\delta \int_{t_0}^t |x(r+s)|^q ds dr \\
\leq \frac{1}{t\delta} \int_0^\delta \int_{t_0}^{t+\delta} |x(s)|^q ds dr \\
= \frac{1}{t} \int_{t_0}^{t+\delta} |x(s)|^q ds$$

for any fixed $\delta > 0$. Using (21) and Lemma 2.3, we have

(22)
$$\left\| \frac{p-1}{\delta} \int_t^{t+\delta} |x(s)|^q ds \right\|_{B'} = 0 \quad \text{for any fixed } \delta > 0.$$

Applying (22) and $||x||_{B'} = ||x(t+\delta)||_{B'} = 0$ to (21), we see that

(23)
$$\left\| \frac{1}{\delta} \int_{t}^{t+\delta} c(s) \, ds \right\|_{B_{t}} = 0 \quad \text{for all } \delta > 0.$$

Since c is Besicovitch almost periodic, it follows from Besicovitch [1, page 97] that

$$\lim_{\delta \to 0} \left\| c(t) - \frac{1}{\delta} \int_t^{t+\delta} c(s) \, ds \right\|_{B'} = 0.$$

This and (23) imply $M\{|c|\} = ||c||_{B'} = 0$, which is a contradiction. Thus, the proof is complete. \square

Example. Consider the differential equation

(24)
$$\frac{d}{dt}\phi(u'(t)) - \lambda\cos(t)\phi(u(t)) = 0.$$

Then $c(t) = \cos(t)$. Thus,

$$M\{c\} = \lim_{t \to \infty} \frac{1}{t} \int_0^t c(s) \, ds = \lim_{t \to 0} \frac{\sin(t)}{t} = 0$$

and

$$\begin{split} M\{|c|\} &= \lim_{t \to \infty} \frac{1}{t} \int_0^t |c(s)| \, ds \\ &= \lim_{n \to \infty} \frac{1}{2(n+1)\pi} \int_0^{2(n+1)\pi} |\cos(s)| \, ds \\ &= \lim_{n \to \infty} \frac{2}{\pi} \int_0^{\pi/2} \cos(s) \, ds \\ &= \frac{2}{\pi} > 0. \end{split}$$

It follows from Theorem 2.4 that for each $\lambda \in \mathbf{R} - \{0\}$, (24) is oscillatory at $+\infty$ and $-\infty$.

REFERENCES

- 1. A. Besicovitch, Almost-periodic functions, Dover, New York, 1954.
- 2. I. Bihari, Ausdehnung der Sturmschen Oszillations und Vergleichssätze auf die Lösungen gewisser nicht-linearen Differentialgleichungen zweiter Ordnung, Publ. Math.Inst. Hungar. Acad. Sci. 2 (1957), 159–173.
 - 3. H. Bohr, Almost-periodic functions, Chelsea, New York, 1951.
- 4. A. Dzurnak and A.B. Mingarelli, Sturm-Liouville equations with Besicovitch almost periodicity, Proc. Amer. Math. Soc. 106 (1989), 647-653.
- 5. A. Elbert, On the half-linear second differential equations, Acta Math. Hung. 49 (1987), 159-173.
- 6. S.G. Halvorsen and A.B. Mingarelli, On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant, Proc. Amer. Math. Soc. 97 (1986), 269–272.
- 7. G.H. Hardy, J.E. Littlewood and G. Polya, *Inequalities*, Second edition, Cambridge University Press, 1988.
- 8. H.G. Kaper, M. Knaap and M.K. Kwong, Existence theorems for second order boundary value problems, Differential Integral Equations 4 (1991), 543–554.

- 9. T. Kusano and B.S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J., to appear.
- 10. A. Yu and A. Levin, A comparison principle for second order differential equations, Sov. Math. Dokl. 1 (1960), 1313–1316.
- 11. L. Markus and R.A. Moore, Oscillation and disconjugacy for linear differential equations with almost-periodic coefficients, Acta Math. 96 (1956), 99–123.
- 12. A.B. Mingarelli and S.G. Halvorsen, Non-oscillation domains of differential equations with two parameters, Lecture Notes in Math. 1338 (1988).
- **13.** M. Del Pino and R. Manasevich, Oscillation and nonoscillation for $(|u'|^{p-2}u')' + a(t)|u|^{p-2}u = 0, p > 1$, Houston J. Math. **14** (1988), 173–177.
- 14. F.H. Wong and C.C. Yeh, An oscillation criterion for Sturm-Liouville equations with Besicovitch almost-periodic coefficients, Hiroshima Math. J. 21 (1991), 521-528.
- 15. C.C. Yeh, Levin's comparison theorems for second order nonlinear differential equations and inequalities, Math. Japon. 36 (1991), 703-710.

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN