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SPECTRUM WHERE THE BOUNDARY OF
THE NUMERICAL RANGE IS NOT ROUND

MATTHIAS HUBNER

ABSTRACT. For a bounded linear operator A on a complex
Hilbert space, we prove that the boundary points of the
numerical range W (A) with infinite curvature of the convex
boundary curve are included in the spectrum of both A and
A*. If, additionally, W(A) is closed, then the ‘non-round’
boundary points are eigenvalues of A and A*.

The numerical range W (A) of the operator A is defined as the set
of complex numbers (Au,u) where u runs through the vectors of norm
1. The basic fact concerning numerical range is the Toeplitz-Hausdorff
theorem which states that the numerical range of a bounded linear
operator on a Hilbert space H is convex [2]. The closure W(A) of
the numerical range contains the spectrum of A, is convex too and is
compact because of boundedness of the operator A. The boundary of
W(A) is a Jordan curve and will be called C(A). For some related
material on the numerical range of operators, see [3, 4].

Convex compact sets have enough extreme points and we would like
to ask whether extreme points of W (A) belong to the spectrum. The

example
0 1
(0 0)

on a 2-dimensional Hilbert space shows that this is not necessarily
so; the matrix is nilpotent, has spectrum {0} and numerical range
equal to the closed disk with center 0 and radius 1/2. On the other
hand, Donoghue considered in [1] the corners, which are the points of
C(A) N W (A) where C(A) fails to have a unique tangent, and proved
that they are eigenvalues of A. For normal operators, where we can use
the spectral theorem, it is easy to prove that W (A) equals the convex
hull of the spectrum.

Our proposal to generalize Donoghue’s result is to consider points
where C'(A) is not round, i.e., where the curvature is infinite. To be
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explicit, we translate and multiply the operator with complex numbers
so that 0 € C(A) and the real axis is a (possibly nonunique) tangent
to C'(A) at 0. The first assumption is

(1) inf Im (Au,u) =0.

ull=1

The second assumption is that C(A) is not round at 0, in the sense
of infinite curvature:
Im (Au, u)

2 Lim inf — 1 - = 0.
) 6—>0Hu|\=iTRlen(Au,u)\<5(Re(Au,u))2 o

Because of the Toeplitz-Hausdorff theorem, this implies that 0 is the
only real point in W(A). To see how non-round boundary points can
appear, consider the curve y = c|z|P in the Cartesian plane, z,y real
and ¢ > 0. Then p = 1 corresponds to a corner at x = 0, and
for p > 2 the curve is twice continuously differentiable, with finite
curvature everywhere. The cases 1 < p < 2 are the interesting ones
for us: unique tangent at 0, but infinite curvature there. Our aim is to
prove the

Theorem. If (1) and (2) are fulfilled, 0 belongs to the spectrum of
both A and A*.

The strategy to prove the theorem is to take an appropriate sequence
(up,) of unit vectors from Hilbert space and to show that ||Au,|| — 0.
A sequence of unit vectors with

(3) (Aup,u,) =:ie, -0 asn — oo,

with purely imaginary ic,, will be appropriate. If C(A) has a corner at
0, i.e., the left and right tangent include an angle smaller than 7, it may
be impossible to choose such a sequence immediately (the imaginary
axis may be disjoint from W (A)). But then we can rotate W (A) about
0 by multiplication of A with a unimodular number, such that both
assumptions (1) and (2) remain fulfilled. In case W(A) = {0} the
theorem is trivially true.



NUMERICAL RANGE 1353

Because of (3), we can decompose Au,, as
Auy, =t igq Uy + Tpop, (un,v,) =0, [lvn]] = 1.

Since ¢, — 0, we have to show that z, — 0. Motivated by the
2-dimensional case, we try the linear combination u, + z,v, as an
input to assumption (1). Taking care of normalization and introducing
Yn = (Avp, u,), we get

. _ 204
m 1€, + ZnYn + ZpnTy + ‘Zn| ( ’Un,’Un) > 0.

I
L+ [zn[? -

A good choice is now z, = 1/g,€'® with the phase ¢ still free. We get
for all real ¢,

Im (g, + ¢ 2,)] < VEn(L+ Im (Avy, vy))
< (1+ |41 vz,

Thus, application of (1) provided us only with knowledge that the
imaginary parts of sums involving x,, must be small. To get more
information about z,,, we now apply (2) to u, + z,v, with z, = \/aew’
again. As the real part of (A(un + 2,Vn), Un + 2nV5) goes to 0, we have

(4)

en + /Enlm (e?y, + e x,)) + e,Im (Avy,, vy)

: : — 00,
[VenRe (€%y, + e~ ?x,) + e, Re (Av,, v,)]? o
which implies using (4),
201+ ||Al)e,,
(1+ 14l o

en[Re (e¥y, + e %x,) + /EnRe (Avp,vp))?

with a sequence M, diverging to oo such that the inequality holds
uniformly in ¢. We estimate the real part from above, uniformly in ¢.

2(1 + [|A])

|Re (eid’yn + eii¢xn)| < i,

— venRe (Avp, vp).

Re (Avy, vy,) and Im (Avy,, v,) are bounded by ||A]|, so the righthand
side of the last inequality tends to 0. We choose now for every n, the
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angle ¢, so that the complex numbers z,,, y, have the same phase or,
loosely speaking, point in the same direction on the complex plane.
Then

|n| + lyn| = \/[Re (€0myn + e *Pnxp)]? + [lm (e*rny, + e~ nay,)]?
converges to 0. This implies

|Au,||> =2 + 22 — 0, hence 0 € spec A.

The numerical range W (A*) of the adjoint operator is the complex
conjugate set of W(A) and has, consequently, the same geometric
boundary properties. If (1) and (2) hold for the operator A, then they
hold for the adjoint A* too, with the only change that the imaginary
parts are replaced by their opposites. So 0 belongs to spec A*, too,
which completes the proof of the theorem. o

What about variation of the exponent in condition (2)? As this
infimum condition is only sensitive to changes in the behavior of C'(A)
for small Re (Au,u), we see that the theorem holds a posteriori with
exponent 2 replaced by any positive exponent less than or equal to 2 in
condition (2). On the contrary, condition (2) with an exponent greater
than 2 is insufficient to conclude that 0 € spec A; the matrix above
provides a counterexample.

In case that 0 is known to belong to W(A), it should be possible to
obtain a stronger conclusion and indeed this is so. Let (Au,u) = 0 and
Au = zv, |[v|| = 1, (Av,u) = y. Trying again the linear combination
u+ zv for small complex z, we see that x, y must be complex conjugate
to each other, otherwise complex numbers with negative imaginary part
would enter W (A), contrary to (1). If z = § # 0, the curve

z v, v)t? u -+ teiy
(Aut), u(e) = (VL LRIE g

parametrized by the real ¢ and with appropriately chosen ¢, belongs
to W(A) and has finite curvature at 0 which contradicts (2). Hence
z=0.
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Corollary. If (1) and (2) are fulfilled and 0 € W (A), then 0 belongs
to the point spectrum of both A and A*.

This is a slight generalization to Donoghue’s theorem, but our argu-
ment is similar to his. We conjecture that if 0 is not a corner, i.e., C'(A)
has a unique tangent at 0, then the ‘non-round’ condition (2) implies
that 0 belongs even to the essential spectrum of A. This has not yet
been proved, as far as I know.
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