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NONRESONANCE CONDITIONS ON THE
POTENTIAL WITH RESPECT TO THE
FUCIK SPECTRUM FOR THE
PERIODIC BOUNDARY VALUE PROBLEM

PATRICK HABETS, PIERPAOLO OMARI AND FABIO ZANOLIN

ABSTRACT. The existence of periodic solutions to a class
of second order nonlinear ordinary differential equations is es-
tablished under some rather mild restrictions on the behavior
of the primitive of the nonlinearity with respect to the Fu&ik
spectrum of the periodic problem.

1. Introduction. In this paper we study the solvability of the
periodic boundary value problem

(1.1) v’ + g(u) = h(t
(1.2) u(0) = u(27), u'(0) = o' (27),

where ¢ : R — R is continuous and h : [0,27r] — R is Lebesgue
integrable. The conditions we consider relate the asymptotic behavior
of g(s) and of its primitive G(s) = f[o,s} 9(&) d¢, with the Dancer-Fucik
spectrum of the positively homogeneous problem

(1.3) u" + put —vuT =0,

subject to the boundary conditions (1.2). We recall that the Dancer-
Fu¢ik spectrum S (cf. [4, 12]) is made by all pairs (u,v) € R? such
that (1.3)—(1.2) has nontrivial solutions. Precisely, it can be expressed

as
S={J Cum,

meN
where

Co={(w,v) : pv =0}
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and, for m > 1,

c ( ) 1 n 1 2
= V): —+ —==—.
m H VE v om
This research, initiated in [4, 12], found new interesting motivations
by some recent studies in the theory of suspended bridges involving
the consideration of asymmetric nonlinearities (cf. [19]). In the liter-
ature, various conditions have been introduced in order to guarantee
nonresonance, that is, the existence of solutions to (1.1)—(1.2) for any
given h. Usually, such conditions require that g(s)/s does not interfere
asymptotically with the critical branches C,, in the sense that

g(s) g(s)

(1.4) g+ < liminf == <limsup == < Q,

s—>too 8 s—4oo S

where, for some m € N,

(15) (q—a q-l—) €Cm and (Q—a Q-i-) € Cm+1‘

Note that, in the symmetric case ¢_ = ¢ = m? and Q_ = Q4 =
(m+1)%, (1.4) and (1.5) are the classical nonresonance conditions with
respect to the spectrum {m? : m € N} of the differential operator
—d?/dt?, with periodic boundary conditions on [0,27], considered by
Mawhin in [20] for the solvability of (1.1)—(1.2).

In subsequent papers, assumptions (1.4)—(1.5) have been generalized
in various directions, see [25, 18, 16, 11, 7, 13, 6, 8]. In particular,
in [13] (adapting a technique introduced in [9]), the strict inequalities
in (1.4) have been replaced by the weaker ones

9(s) 9(s)

(1.6) ¢+ <liminf =+ <limsup =+ < Q4,
s

s—doo s s—too

and nonresonance has been achieved by requiring, for instance, that

G(s)

2
82 < Q+a

2
(1.7) g+ < liminf Gls) and limsup

s—=+oo 8 s—+o00

or analogous conditions at —oo. According to (1.6) and (1.7), one
can consider, in particular, nonlinear functions g(s) such that the ratio
g(s)/s oscillates between two consecutive eigenvalues m? and (m +1)2.
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Actually, when m = 0, even more general conditions have been
introduced with respect to Cyp and for more general equations as well.
Indeed, in [14] it is proved that the assumptions

2
(1.8) lim sup @ <@+ and limsup C;gs) < Q4,

s—too S s—+00

(or a similar condition at —oco) imply the solvability of (1.1)—(1.2) for
any bounded h, whenever

(1.9) inf g(s) = —co and sup g(s) = +oo.
s€R seR

This result holds true also for the Liénard equation
(1.10) u' + f(u)u' + g(u) = h(t),

with the boundary conditions (1.2), where f : R — R is an arbitrary
continuous function. A similar problem was previously considered in
[22] and [17].

More recently, in the symmetric case ¢ = ¢, = m? and Q_ =
Q.+ = (m+1)2, with m > 1, the above-recalled result in [13] has been
extended in [23], by assuming (1.5)—(1.6), but replacing condition (1.7)
with

2
(1.11a) m? < lim sup Ggs)
s—+00 S
and
2
(1.11b) lim inf Ggs) < (m+1)2

s— 400 S

or similar conditions at —oo, which allow us to consider some larger
classes of nonlinearities g than those in [13] (see the example given in
[23]).

The aim of this paper is twofold: on the one hand, we obtain an
existence result with respect to two consecutive branches C,, and C,,, 11,
which generalizes the above quoted result in [13] in the direction of [23];
on the other, we improve the main theorem in [14] for what concerns
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the nonresonance condition with respect to C;. Some results in [6, 10]
are completed as well. Precisely, the following results hold.

Theorem 1.1. Suppose that (Q—,Q+) € C1. Assume

lim sup @ <Q+
s

s—+oo

and

lim inf 2G(s) <Q, or liminf 2G(s)

< .
s——oco g2 s—4o0  §2 Q+

Then problem (1.1)—(1.2) has at least one solution for any given h €
L>(0,2m), provided that (1.9) holds.

Theorem 1.2. Suppose that (¢—,q+) € Cp, and (Q—,Q+) € Cpt1,
for some m > 1. Assume that

g+ < liminfﬁ < lim sup @ < Q.
s—too s s—+oo S

Suppose also that at least one of the following conditions holds

G(s) GG g

and liminf
S——00 S

2
q— < limsup

s——o0 S

2
oo <imop 50 and it 250 < 0.,
2
g+ < limsup G(s) and liminf G(s) <Q_,
s—+o00 52 s——oo 2
. G(s .. .2G(s
g+ < Erililo? sg ) and 181§+1{.1£ 85 ) < Q4.

Then problem (1.1)—(1.2) has at least one solution, for any given
h € L*(0,27).

Theorem 1.1 is a consequence of a more general result which is stated
and proved in Section 2 for the Liénard equation (1.10), under a weaker
condition than (1.9). In the same section we produce as well a variant
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of this result for the variational equation (1.1),where an Ahmad-Lazer-
Paul condition at the eigenvalue 0 is considered. Section 3 is devoted
to the proof of Theorem 1.2. Actually, in Sections 2 and 3 we produce
a class of assumptions on the nonlinearity g(s), which include the
above-mentioned hypotheses on G(s)/s? and are expressed by means
of asymptotic conditions on ratios of the form

1
) /[O,S}p“) do(¢),

where ® is a suitable convex function satisfying the As-condition near
infinity (see [1]) and g(s)/s — p(s) — 0 as s — 400 (similar conditions
are considered at —co0). We refer to the appendix for a more detailed
discussion of this topic.

We point out that the proofs given here simplify in a significant way
the argument in [23], as well as that in [13] and [14], where (1.7) and
(1.8) were exploited only through their equivalence to suitable density
conditions. In particular, we observe that the method of proof in [23]
makes use in an essential way, of the symmetry of the problem as well
as the properties of the usual (linear) spectrum and, therefore, cannot
be adapted to the present setting, which is definitely nonsymmetric.

We also stress that in both Theorem 1.1 and 1.2, the conditions on
2G(s)/s? cannot be replaced by similar ones on g(s)/s. Indeed, in
view of the nonexistence result in [5, Theorem 5.2] we know that one
can find pairs of points (¢—,¢+) and (Q—,®@+) such that the segment
joining them intersects the critical set S, and mappings g satisfying

9(s) 9(s)

g+ <liminf == <limsup == < Q4
s—+oo 8§ s—a4+oco S

or

g+ < liminf@ < lim sup @ < Qu,
s—too s s—+oo S

for which problem (1.1)—(1.2) has no solution for some smooth function
h.

Finally, we notice that similar results can be obtained for equation
(1.1) with Dirichlet or Neumann boundary conditions.
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2. Nonsymmetric nonlinearities with coefficients between
and C;. Let us consider the periodic problem for the Liénard equation

(2.1) u' + f(u)u' + g(u) = h(t),
(2.2) u(0) = u(27), u'(0) =/ (27),
with f,g : R — R continuous functions and A € L*°(0,27). In

what follows, for any real number s, the notation s = max{s, 0} and
s~ = max{—s,0} is used.

Theorem 2.1. Assume that (a,b) € C, = {(p,v) : 1/\/p+1/\/v =
2} and suppose that g can be written in the form

g(s) = p(s)s* —q(s)s™ +r(s),
where p,q,7 : R = R are continuous functions such that
(i) 0<p(s) <a,0<g(s) <b for all s;
(ii) liminfs, o (1/s) f[o 0 2(8)dg <bor

s—+oo 8§

(2.3) lim inf L /[0 ]p(f) d¢ < a;

(ili) limyg| 400 7(s)/s = 0;

(iv) there exist constants A and B such that
(2.4) g(A) < h(t) < g(B), fora.e. tel0,2n].

Then problem (2.1)—(2.2) has at least one solution.

Proof. We start by observing that A is an upper solution and B
is a lower solution. Therefore, if A > B the conclusion follows from
known results (see, e.g., [2]) and assumptions (i), (ii) and (iii) are not
needed. Accordingly, we can assume in (iv) A < B. Moreover, it is not
restrictive to suppose that A < 0 < B. Indeed, if it is not the case, one
simply makes the change of variable v := u — (A + B)/2.

We will use the following homotopy

(2.5)) u” + Af(w)u' + pa(u)ut — gx(u)u™ +ra(t,u) =0
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with A € [0,1] and

pa(s) = Ap(s) + (1 — A)(a/2),
ax(s) :== Ag(s) + (1 = A)(b/2),
ra(t, s) := Ar(s) — Ah(t).

To apply degree theory, we need to define in H*(0, 27) an open bounded
set Q, with 0 € Q such that no solution of (2.55)—(2.2), with A € [0,1],
belongs to the boundary of 2. Basically, our proof consists in building
such a set. We will write the proof only in the case (2.3) is satisfied.

Claim 1. If u is a solution of (2.5x)—(2.2), for some X\ € [0, 1[, then

(2.6) minu # B and maxu # A.

Proof of Claim 1. Suppose, by contradiction, there is a solution u of
(2.5))—(2.2), for some A € [0, 1], such that minu = u(ty) = B (> 0).
Hence, as (1 — A)(a/2)B + A(g(B) — h(t)) > (1 — N)(a/2)B > 0, for
almost every ¢, and u’(tp) = 0, there exist numbers ¢,¢ > 0 (depending
on u and A) such that (1 — A)(a/2)u™(t) + A(g(u(t)) — h(t)) > e,
|f(u(t))u'(t)] < e/2 and u(t) > 0 for almost every |t — tp| < §. Then
we have almost everywhere on this interval,

—u"(t) = Mf (u(t))d' (t) + Ag(u(t)) + (1 = N)(a/2)u™(t)
— (1= N)(b/2)u"(t) — A(t) > £/2 > 0.

Hence, taking t; € [tg — 9, to[, we get

u(t) ~ulte) = [ w'(@)(€-n)de <0,
[t1,t0]
which is impossible. Similarly, one proves the second part of (2.6).

O

According to Claim 1, in the sequel w will denote a solution of
(2.5))—(2.2), for some A € [0, 1], such that, for at least one ¢,

(2.7) B < u(t) < A.
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By condition (2.3) we can find n > 0 and a sequence (R,),, such that
R,, — 400 and

(2.8) "Ry < /[OR (o= p(e) e

Claim 2. For any ng > 0, there exists n > ng such that, for all
A € [0,1], (2.5))—(2.2) has no solution u satisfying (2.7) such that

(2.9) maxu = R,.

Proof of Claim 2. Suppose to the contrary that there exists ng such
that, for all n > ng, we can find a solution u, of (2.55)—(2.2), for some
An, € [0,1], that satisfies (2.7) and (2.9). In this case the function
Vn = Un/||un||, where || - || denotes the H'-norm, solves the equation

_ X, (ta un)

(210) U;{ + /\nf(un)vil —}-p)‘n(un)v,f - Q)\n(un)vn + Hu || =0

and satisfies the boundary conditions (2.2). Notice that, by (iii), for
any € > 0,

"An ('7 un)

oM < (eltin]oo + Ko + |hloo)|tn]| < re,

oo

for some fixed constant x > 0, provided that n is sufficiently large.
Hence, it follows that

T, (£, un(t))

| — 0, uniformly a.e. on [0, 27].
Un

Moreover, possibly passing to a subsequence, we still denote by (vy,)n,
we have
v — v, weakly in H'(0,27),

and
vy, — v, uniformly on [0, 27].
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We can also suppose that A, — X € [0,1]. We start by observing that,
by (2.7), v(t) = 0, for at least one ¢, and v # 0. Indeed, if v = 0,
multiplying equation (2.10) by v, and integrating, we get

[ooml= [ paw
[0,27] [0,27]
t,un(t
b P [ et
[0,27]

[0,27] [[un ]

as n — +oo. This is impossible as v, — v uniformly and ||v,|| = 1.

Further, since the sequences (pxn(ur))r and (gan(uy)), are bounded
in L>(0,27) by (i), we can also assume that

Pan(un) = po, @an(un) = qo,
in the L*°-weak* topology, and

0 < po(t) < a, 0<qo(t) <,
for almost every t € [0, 27].

To conclude the proof of Claim 2, we need the following result.

Claim 3. Eztending pg, qo,v by 2mw-periodicity on R, there exist an
interval [o, o + 2] and a constant o > 0 such that, for almost every

t € o, a+m/v/al,

po(t) = a, v(t) = % sinv/a(t — a),

and, for almost every t € [a + 7/+v/a, o + 2],

w(t)=b,  v(t)= —%sinﬁ(t— a— %)

Proof of Claim 3. We recall that there exists at least one t € [0, 27|
such that v(¢) = 0. Then we suppose for a moment that v(¢) > 0 on
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[0, 27]. Integrating equation (2.10) on [0, 27] and going to the limit, we

get
/ pOUJ’_ = 07
[0,27]

which implies that pgv™ = 0 almost everywhere on [0, 27]. Multiplying
equation (2.10) by v,, integrating and going to the limit, we derive

/ W2 = 0.
[0,27]

Hence, v must be constant and therefore v = 0, which is impossible.
Similarly, one can conclude that v(¢t) < 0 on [0,2n] is impossible.
Accordingly, v changes sign on [0, 27| and therefore

M, = maxu,, — 400, m, = minu, — —o0.

Let [an, Bn] and [yn, 0,] be intervals such that

up, >0 on Jag,Bn|, up, <0 on |y, dn,
max u, = M,, min u, = m,.
[o‘nvﬂn] ["/na‘sn]

Passing to subsequences, we can suppose that «, — «, 8, — B,
Y — 7, 0p — § and

v>20 onfa,fB], ©v<0 onlyd],
v(a) = v(B) = 0=1v(7) = v(9),

and [a, A, [v, 8] have disjoint interiors. We will prove that —a > 7/1/a
and § — v > 7/v/b. Let us consider the first inequality. Multiplying
equation (2.10) by wy, -||u,|| and integrating on [a,, B,] we get, by (iii),
for any € > 0,

[P = pawlP
[anvﬁn] [anvﬁn]
+ / P (s i (£) )t
[anvﬁn]

< / Do (1) [n? +e/ i 2
[anvﬂn] [anvﬁn]
(K. + hl) / thn,

[an,Bn]
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Dividing by [|u,||?> and passing to the limit as n — +oco, we have

[ owPs [ morapr
(e8] (o8]

and then, going to the limit as ¢ — 0,

(2.11) / WP < / po|v|ZSa/ Jo]?.
[e,8] [e,8] [a,B]

Using the Poincaré inequality, we get

2
[l S o
[a,8] ™ [a,B]

which implies 8 — a > m/+/a. Similarly, one proves the inequality
§—~>m/vVb. Now, as (8 —a)+ (0 —v) < 27 and 7/ /a+7/vb = 2,
we conclude that

™ ™
—a=—7 and d—v=—.
o Va ! Vb

Finally, Poincaré inequality yields

/ |v'|2§a/ |v|2s/ o' ?
[a,B] [a,B] [a,B]

v(t) = %sinﬁ(t —a), ona,p].

Coming back to (2.11), we also get

and

po(t) =a, ae. on |a,f].

The first part of Claim 3 is then proved. Similarly, one gets the second
part. O

According to Claim 3, we have that A\, = A = 1, p(u,) — po and
q(un) — qo, in the L*°-weak* topology. Since v, — v uniformly in
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[0,27], Claim 3 also implies that, for all large n, v, takes positive and
negative values. Hence we can pick ¢, and ¢! € [t],t] + 27| such that

un(t,) =0 and wu,(t))=maxu, = R,,

with ¢/, — « and ¢, — o+ 7/(2v/a). (Of course, also in this context
we suppose u,, as well as the other involved functions, extended by
2mr-periodicity.) We now observe that

/ (po — plun))
[t/ /al

Indeed, since 0 < p(u,) < a = po, on [o, a + 7/+/a] and p(u,) — po in
the L*°-weak™* topology, we have, as n — 400,

/ (o — p(un)) — 0,
o, a+7//a]

250, asn— 4oo.

and hence

/ (Po — p(un))® < a / 1po — p(un)| — 0.
[oe+7/v/a] [aya+7/v/a]

Then it follows, for each ¢ > 0 and all large n, we have, by (2.8) and
(22),

DRy < /[O,Rn](“ —p(e) de

B /[t o) (a —p(un(t)))u,(t) dt

(212) < fusle|( /. @ —p(un(t>>>2)1/2

+( /[am (b0 p(un(t)))2>1/2]

Multiplying equation (2.10) by w,, - ||u,|| and integrating on [0, 27|, we
get

S 6|u,’n|2.

= [ pnwnllP 5 [ gl

[0,27]
(2.13) n / Pan (b tn (£))
[0,27]

< erfunld + 1),
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for some constant ¢; > 0. Moreover, using Claim 3 and the uniform
convergence of (v,), to v, we deduce that, for K > 0 small enough and

n large,
1\/3<l/\/_—K< max vy,
2V a 1/\/5+K ~  minv,
__maxun _ 1/ya+ K b
" minu, — 1/\/5_]{ a’

Hence, for some constant c; > 0, |upleo < caR,. Accordingly, we
obtain from (2.12) and (2.13)

nR, < ey/ei(caRp + 1),

which yields a contradiction if € is chosen sufficiently small and n
sufficiently large. Thus, Claim 2 is proven. ]

Claim 4. For each n large enough, every solution u of (2.55)—(2.2),
for any X € [0, 1], with maxu < R,,, is such that

minu > —2\/%1%" =:5,.

Proof of Clawm 4. If it were not the case, we should have sequences
(An)n and (uyn)n, where u, solves (2.5))—(2.2), with A = \,,, such that

maxu, < R, and minu, < —2\/%}3".

As before, going to subsequences, one proves that u,/||u,|| — v,
uniformly on [0, 2], where v is such that

o . o
maxv = — and minv=-——,
Va Vb
for some o > 0. Hence, we easily get a contradiction. ]

Consider now the set

Q={uc H(0,2r): A <maxu < R,S < minu < B, |u/|; < C},
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where we choose R = R,, and S = §,,, with n so large that R > B,
S < A and Claims 2 and 4 hold; moreover, we take C' = ,/c3+ 1, where

c3 = (a+ b+ 1)(max{|S|, R})? + K1 max{|S|, R}

and K is such that |ry(¢, s)| < |s| + K1, for almost every ¢ € [0, 27],
s € R, and X €]0,1].

Assume that u is a solution to (2.5,)-(2.2) for some X € [0, 1], with
u € ), that is, A < u(t) < B, for at least one t; S < u(t) < R for every
t; |u'|2 < C. Then, we have

2 =/[02 ]PA(U)|U+|2+/ NOITNG

[0,27]
+ / DY (ta u)u
[0,27]

< (a+0)|uls + (Julz + Kiluls)

< (a+b+ 1)(max{|S|, R})*> + K, max{|S|, R}

=C3
and therefore |u'|; < C.Moreover, by Claim 1, we get A < u(t) < B,
for at least one ¢ and, by Claims 2 and 4, S < u(t) < R for every t.

Hence, we conclude that u € Q. Standard results in degree theory then
yield the existence of at least a solution u € Q to (2.1)—(2.2). o

Remark 2.1. Tt is easy to give conditions on g so that it can be written
as

g(s) =p(s)s™ —a(s)s™ +r(s),

where p, g, r satisfy (i) and (iii). Precisely, we have the following result.

Proposition 2.1. Let g : R — R be continuous. Then

() lim sup M <a, lim sup @ < b;
s—4+o0o0 S s——00
) lim inf 9(s) > 0;

s—+oco S
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hold if and only if there exist p,q,7 : R — R continuous such that g
can be written in the form

with
(k) 0<p(s)<a,  0<g(s) < b
(kk) im ") g

[s|=>+o0 S

Proof. We only need to prove that (j), (jj) imply that g can be written
in the form

9(s) = p(s)s™ — q(s)s™ +r(s),
where p, ¢, 7 satisfy (k), (kk). If |s| > 1, we take

p(s) = min {a,max{ (Ss),o}},
q(s) = min {b, max{ (), 0}}

and interpolate linearly p and ¢ for |s| < 1. To verify (kk), let us fix
e > 0 and choose M > 0 such that s > M implies —¢ < g(s)/s < a+e¢
and s < —M implies —¢ < g(s)/s < b+ e. It follows that, for s > M,

Q

S
©»

—els| <r(s) = g(s) — p(s)s < els|
and, for s < —M,

—els| < r(s) = g(s) — q(s)s < es].
Hence, (kk) follows. i

Remark 2.2. Notice that if g is unbounded from below and from
above, either the existence of a solution follows from the existence of
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(well-ordered) upper and lower solutions, or (jj) and (iv) hold. Indeed,
if g is unbounded from above and from below, then either

limsup g(s) = 400, lim inf g(s) = —o0,

s—+400 s—+00

or
lim sup g(s) = 400, liminf g(s) = —o0,
s——00 §—>—00

or
limsup g(s) = +oo, lim inf g(s) = —oo,
s——00 s—+00

or else

(2.14) limsup g(s) = 400, lim inf g(s) = —oo0.
s—+o00 §—>—00

In the first three cases we can find B < A such that (2.4) holds. The
constants A and B are an upper and a lower solution, respectively; the
existence then follows from known results (cf. [2]). If we assume that
none of these three cases holds, we have

liminf g(s) > —oo0, lim sup g(s) < 400

s—+o00 S——00
and (jj) is satisfied. Further, from (2.14), constants A < 0 < B can be
found satisfying (iv).

Remark 2.3. Whenever (i) is satisfied, condition (ii) is equivalent to
the following one:

)

Ji0.q 9(€) dE

. PO de

s—+o00

<a

or

 Jpgp©oehds
A D

where ¢ : RT™ — R™T is an (arbitrary) nondecreasing continuous
function, with ¢(s) > 0, for s > 0, such that, for some k¥ > 0 and
d>0,

sp(s) <k ¢(&)dg, for all s >d.
(0]
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The equivalence occurring between (ii) and (1), under (i), is proved in
the Appendix. In particular, if we choose ¢(s) = s and Proposition 2.1
applies, condition (1) turns out to be equivalent to a condition on the
potential G(s) = [, ; 9(£) d§ of g(s). Namely,

(1) iminf 223) <o or Timinf 26) <,

s—+o0 s2 S——00 52

This follows from the fact that

Fiy)—(ﬂmf@ﬁﬁ)/<4ﬂ£%>
<

%(4}&0%)%&

as s — +00. A similar computation has to be performed for s — —o0.
From the above remarks we can write the following corollary.

Corollary 2.1. Assume (a,b) € C; and

(h) inf g(s) = —oc0 and supg(s) = +o0;
seR seR
() lim sup M < a, lim sup @ < b;
s—+oco S s——oc0 S
2 2
(1) iminf 225) <o or timint 28 <y
s—4oco  §2 s——o00 §2

Then problem (2.1)—(2.2) has at least one solution for any given h €
L*>(0,2m).

The final part of this section is devoted to the study of problem
(2.1)-(2.2), in the case where f =0, i.e.,

(2.15) u” + g(u) = h(t
(2.2) u(0) = u(2w), u'(0) = u/(27).
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Exploiting the variational structure of this problem, we are able to state
a variant of Theorem 2.1, where the pointwise condition (iv) is replaced
with the, in a sense more natural, Ahmad-Lazer-Paul condition at the
eigenvalue 0 (cf. [3]):

(v) lim (G(s) — hs) = 400,

where h = (1/27) f{ h(t) dt. Precisely, we have the following result.

0,27]

Theorem 2.2. Assume that (a,b) € C1 and

(v) lim (G(s) — hs) = +o0;
|s]—+o0
§) lim sup 9(s) <a, lim sup 9(s) < b;
s—+oo S s——oc0 S
2 2
() lim inf () <a or liminf Gls) <b
s——+o00 32 S§——00 32

Then problem (2.15)—(2.2) has at least one solution.

Proof. This proof borrows some arguments from [15] and from [10].
As in [15], we distinguish between two cases:

inf g(s) = —c0 and sup g(s) = +oo,

seER seR
or

inf g(s) > —oo or supg(s) < +oo.

sER sc€R
In the former case, Corollary 2.1 applies and yields the existence of
a solution. Therefore, let us consider the latter case and assume, for
instance, that

(2.16) sup g(s) =:y < +oo.
s€R
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We are going to prove the existence of a solution, under conditions
(2.16) and (v), by a variational argument based on a variant of the
mountain pass lemma, as stated in [24, Theorem 3.10]. Accordingly, we
denote by H the Hilbert space of all functions u € H'(0, 27), satisfying
u(0) = u(27). H is endowed with the H!'-norm

||ul| = (/{0 2ﬂ(|u(t)|2 + u'(t)|2)dt>

)

1/2

We consider the functional
P(u) = / [(1/2)]'(8)]* — G(u(t)) + h(t)u(t)] dt.
[0,27]

Clearly, ¢ is well-defined on H, weakly lower semicontinuous and C*.
Moreover, its critical points are precisely the solutions of problem
(2.15)—(2.2).

At first, following [15, Proposition 2], we prove that the functional ¢
satisfies the Palais-Smale condition. Let {u,} be a sequence in H such
that, for some constant ¢; and all n,

(2.17) ‘ /[0 , ][(1/2)IUZ(15)|2 — G(un(t)) + h(t)un(t)] dt‘ < e,
and, for every v € H,
(2.18) /[0 , ][UZ(t)v'(t) = g(un(t))v(t) + h(t)o(t)] dt| < en|lv]],

with g, — 0. We will show that {u,} has a bounded subsequence,
which suffices in the present situation to derive the Palais-Smale con-
dition. Taking v =1 in (2.18), we have, for some constant c,

(2.19) / g(un(t))dt| < cq, for all n.
[0,27]

Now, by (2.16), we get

‘/ g(un(t))dt‘ g02+/ g(un()) dt < 5+ 27
[g<0] [g>0]
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and hence, for some constant cs,

(2.20) / l9(un(®)| dt < c5, for all n.
[0,27]

Taking in (2.18), v = wp = up — Uy, Where 4y = (1/27) [;g 5.y un(t) dt,
we have by (2.20) and standard inequalities for some constants ¢4 and
Cs,

cal|wn| = ‘/[0 ) ]Hw;(t)lz = 9(un(8))wn(t) + h(t)wn(t)] dt

> fwpl3 = (cs + [hl) lwnls
> (1/2)]lwnl* = es][wnl]-

Accordingly, we conclude that there exists a constant cg such that
(2.21) ]2 < [|wn| < ce.
Assume now by contradiction that

llup|| = +o00, as n — +oo.

Because of (2.21) we have, possibly passing to a subsequence, that
either

my, = minu, — +00, asn — +oo,

or

M, = maxu,, - —0o0, asn — 4oo.

In either case we get, by (v),

(2.22) G(M,) — hM,, — +00, asn — +00.
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On the other hand, from (2.17), (2.21) and (2.16), it follows that
o> / (1/2)]ud (1) ?
[0,27]
+ / (G un(t)) — h(t)un(t)) dt
[0,27]

—(1/2)|ul)3 + 27 (G(M,,) — hM,,)
_ /[W] /[un(w,Mn] [9(&) — h(t)] ¢ dt

2
> f%ﬁ + 27 (G(M,) — hM,,)

[ -l
[0,27] J [un(t),Mn]

2
>~ 4+ 2m(G(My) — hMy) — |y — hl1[ M — un| o

2

,%6 + 21(G(M,,) — hM,,) — V/2mcg|y — hls.

v

Hence, we reach a contradiction with (2.22).

Now we look at the shape of the functional ¢; we will see that it has
a mountain pass geometry. Precisely, following [10, Theorem 2], we
define in H the open set

B ={u € H:minu > 0}
and we show that

(2.23) uie%fB é(u) > —oo.

Indeed, if v € OB, i.e., minu = u(t,) = 0, extending the involved
functions by 2m-periodicity on R, we can write

P(u) = / [(1/2)|u' (@) — G(u(t)) + h(t)u(t)] dt.
[tu,tu+27]
Hence, using condition (2.16), we get

¢(u) Z/[t s ][(1/2)IU'(t)\2 — |y = h(®)lu(t)] dt
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and, by Poincaré inequality,
¢(u) = (1/2)[[w'[3 = |y — hl2|u/2].
This implies that
¢(u) = +oo0, as ||ul]| > 400, u€IB,

because, when minu = 0, ||u|| — 400 if and only if |u'|ls — +oo.
Then the weakly lower semicontinuity of ¢ yields (2.23). Moreover, by
condition (v) we know that

¢(r) = —o0, as||r|| > o0, reR,
and then there exists a number R > 0 such that

max{¢(~R),¢(R)} < inf é(u),
where obviously the constant functions R and —R are such that R € B
and —R € H\B. Hence, Theorem 3.10 in [24] applies and yields the
existence of a critical point of ¢, which corresponds to a solution of
(2.15)—(2.2). Similarly, one should work in the case where, instead of
(2.16), the condition infscr g(s) > —oo holds. O

Remark 2.4. Theorem 2.2 extends and improves a similar result
obtained in [15], which was also motivated by a question raised in [21,
Remark 10]. We notice that in [15] only the symmetric case a = b =1
could be dealt with, and the more restrictive condition
G(s) G(s)

limsup —— <1 or limsup—;,
s—+oo 8 s——oo0 S

<1

was assumed in place of (I1).

3. Nonsymmetric nonlinearities with coefficients between
Cn, and C,,4+1. In this section we study the solvability of the following
periodic problem

(3.1) u" + g(u) = h(
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with g : R — R continuous and h € L(0,27). As in the preceding
section, for any real number s, the notation s* = max{s,0} and
s~ = max{—s, 0} is used.

Theorem 3.1. Assume that (a,b) € Cpr, = {(1,v) : 1/\/n+ 1//v =
2/m} and (cd) € Cmys = {(0) : 1/y/E+ /7 = 2/(m + D},

Suppose that g can be written in the form
9(s) = p(s)s* —a(s)s™ +r(s),

where p,q,7 : R = R are continuous functions such that
(i) a<p(s)<e, b<q(s)<d, for all s,

and
(i) limg— 400 7(s)/s = 0.

Suppose also that at least one of the following conditions holds:

1 1
(3.3) a <limsup —/ p(§)d¢ and liminf —/ p(€)dE < c,
[0,s] [0,5]

s—+oo S s—=+o0 §

s—+—oo0 § §——00 §

1 1
(3.4) b < limsup - / q(§)d¢ and liminf - / q(§)d¢ < d,
[0,s] [0,s]

1 1
(3.5) a<limsup —/ p(€)d¢ and liminf —/ q(§) d¢ < d,
[0,s] [0,s]

s—+oo S §—+—-00 §

(3.6) b < limsup l/ q(€)d¢ and liminf 1/ p(§)d¢ < c.
[0,s] [0,s]

s——oo S s—+o00 §

Then problem (3.1)—~(3.2) has at least one solution, for any given
h € L'(0,27).

To prove Theorem 3.1, we shall need the following lemma.
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Lemma 3.1. Assume that (a,b) € Cp and (c,d) € Cpy1. Let
Do, Qo € L>®(0,27) be such that, for almost every t € [0, 27],

a<po(t) <c, b< qo(t) <d.
Suppose that v € W2°°(0,27) is a nonzero solution of
(3.7) v +povT —qov =0, v(0) = v(2m), v’ (0) = ' (27).

Then, extending po, qo, v by 2m-periodicity on R, there exists an interval
[to,to + 27| and a constant o > 0 such that either v has m positive
humps [t2;—2,t2i—1] and m negative humps [t2;—1,t2] on [to,to + 27,
i1=1,...,m, with

(§) tai—1 — tei_o = w/+/a and, for almost every t € [ty;_2,t2i 1],
(3.8) polt) =a,  w(t)= % sinv/a(t — tai_s),

(4j) toi —tei1 = 7r/\/5 and, for almost every t € [to; 1, ta],

—0

(3.9) qo(t) =, v(t) = 7 sin Vb(t — to;_1);

or v has m + 1 positive humps [ta;—o,t2;—1] and m + 1 negative humps
[tgifl,tzi] on [to,to + 27('], i1=1,...,m+1, with
(Jij) toi—1 — te2i—2 = w/+/c and, for almost every t € [ta;_o,t2; 1],
g .
(3.10) po(t) =c, v(t) = 7 sin/c(t — t2i_2),

(Gv) toi —toi—1 = 71'/\/3 and, for almost every t € [ta;—1, 2],

(3.11) wt)=d, ()= :/—‘2 sin Va(t — tai_1).

Proof of Lemma 3.1. Notice first that the function v cannot be one
sign. Indeed, if we assume, for example, that v(t) = v™(t), integration
of (3.7) on [0, 27] leads to the contradiction

0<aloh < / po(t)u(t) dt = 0.
[0,27]



FUCIK SPECTRUM 1329

The same argument holds if v(t) = v (¢).

Let [a, 8] be a positive hump of v, i.e., v(a) = v(8) = 0 and v(t) >0
for all t € Ja, 8. We must have 8 < a + m/+/a, since otherwise from
(3.7), we easily get

02/ (a — po())v(t) sin Valt — ) dt
[, a+m/+/a]

= / (v" + av) sin a(t — ) dt
[t/ /a]

= [v'(t) sin va(t — ) — Vav(t) cos va(t — )2/ Ve

= Vav(a +7/+/a) > 0.
This formula also shows that 8 = a + 7/+/a if and only if, for almost
every t € [a, 3],

po(t) =a and wv(t)= % sinv/a(t — a),

for some constant o > 0.

On the other hand, one sees that 8 > a + m/1/c. Indeed, otherwise
from (3.7), we easily get

og/ (c = po(t))v(t) sin Va(t — o) dt
[a,B]

= / (v" + cv)sin/c(t — ) dt
[a’/B}

= [v'() sinv/c(t — ) — vev(t) cos ve(t — a)]2
=v'(B)siny/c(8 — ) < 0.
(Note that v'(8) = 0, together with v(8) = 0, would imply v = 0.)

Moreover, using this formula, we also have that 8 = o + 7/+/c if and
only if, for almost every t € [a, ],

po(t) =c and w(t) = % sinv/c(t — a),

for some constant o > 0.
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Similarly, one proves that, for a negative hump [«, 5],

<B-a<

SE
Sl

Further, we have that § —a = 7/ Vb if and only if, for almost every

te [a7/8], -
q@(t) =b and wv(t) = %sm Vb(t — a),

for some ¢ > 0 and S —a = 7/ Vd if and only if, for almost every

te [a7/8], -
q@(t)=d and wv(t) = ﬁsm Vid(t — a),

for some o > 0.

Since v is a nonzero solution of (3.7), it has a finite number of zeros,
which are simple. Hence, the number of positive humps is equal to the
number of negative humps and they alternate. Assume that v has at
most m positive humps [t2; 2, t2; 1] and m negative humps [t9; 1, t2;].
Then

2r = Z[(tm'fl —toi9) + (t2i —t2i-1)] < m(% + %) -

i

and v is a solution if and only if the equality holds, i.e., v has exactly
m positive and m negative humps such that (3.8) and (3.9) hold, for
the same constant o. The same argument applies with

2m = Z[(t2i—1 —toi—2) + (t2i — t2i—1)] > (m + 1) (i + l) =27
Ve Vd

%

and v is a solution if and only if it has exactly m + 1 positive and m+1
negative humps such that (3.10) and (3.11) hold for the same constant
o. O

Proof of Theorem 3.1. Assume that (3.3) holds. Let u = (a + ¢)/2
and v = (b+ d)/2 and consider the homotopy

(3.12y) u” +pa(w)ut — gra(u)u” +ra(t,u) =0,
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with A € [0,1] and

pa(s) == Ap(s) + (1 — Ay,
ax(s) = Ag(s) + (1 = Ny,
ra(t, s) i = Ar(s) — Ah(t).

From (3.3) we can find a constant n > 0 and a sequence (R,), such
that R,, — +00 and

(a+n)R, < / p(€)dé < (¢ —n)Ry.

[0,Rn]

Claim 1. For any ng > 0, there exists n > ng such that, for all
A €[0,1], (3.12))—(3.2) has no solution u such that

(3.13) maxu = R,.

Proof of Claim 1. Suppose on the contrary that there exists ng such
that, for all n > ng, we can find a solution u,, of (3.12,)—(3.2) for some
An € [0,1], that satisfies

max u, = R,.

The function

Un,
Up =
|Un oo
solves the equation
7 + _ tuy,
Uy, + Pan(Un) vy, — O (Un)vy + 7, T 0
n|oo

and satisfies the boundary conditions (3.2). We can assume, going to
subsequences, that

(3.14) v, — v Z0, in CY([0,27]),
(3.15)
Pan(un) = Do, dxn(Un) = qo, in the L*°-weak™ topology,
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and
Apn ('7 un)

— 0, in L'(0,27).
[|unl|

Further, v € W?21(0, 27) satisfies the equation

(3.16) V" + povT —gov =0

and the boundary conditions (3.2), where by (3.15)
a<po(t)<e,  b<qo(t) <d,

for almost every t € [0,2n]. By Lemma 3.1 either v has exactly m
positive and m negative humps, such that (3.8) and (3.9) are satisfied
or v has exactly m + 1 positive and m + 1 negative humps, such that
(3.10) and (3.11) are satisfied.

In any case (3.14), (3.8) and (3.9) imply that w,, takes positive and
negative values. In the first case we consider, for each n, a positive
hump [a,, B,] such that u,(v,) = maxp o) un = Max(y, g,] Un = Ry-
Going to subsequences, we can assume «, — a, 8, — 8 and [, 5] is a
positive hump of v. One has

(0<) /[%B] (PAn(un)—po) = /[aﬁ] [(Anp(un)ﬂl—)\n)a ; C) —a} — 0.

Hence, A, — 1 and p(u,) — a in L'(a,B). It follows that, for any
€ > 0 and for n large enough, we can write

R < /[O,Rn](p@ —a)de

- /[ (Pl (6) — ) 0)

< fuilee| /H (p(un) — ) + /[a,%]@(un) ~a)

< E‘UIn‘OOa
i.e.,

(3.17) R, < %\uuw.
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On the other hand, one has
Jupn (8)] < Pan (un () ury (8) + @an (Un ()1, (8) + [7an (t un (1)),
for almost every t and, therefore, for some constant ¢; > 0,
lunly < caf(Junloo +1).

Hence, it follows
|uploo < ca(ftinoo + 1)

for some constant ¢z > 0. Using (3.14) and Lemma 3.1, we deduce
that, for K > 0 small enough and n large,

1\/E< 1/y/a— K o _maxu,
2V a 1/\/E+K_ min v,
max up _ 1/va+ K <9 b

minu, 1/\/[;7]{ a’

Hence, for some c3 > 0, |unleo < c3R,. Accordingly, we obtain a
contradiction from (3.17), choosing ¢ > 0 small enough. The proof is
similar in the second case. O

Claim 2. For n large enough, every solution u of (3.12))—(3.2), for
any A € [0,1], with maxu < R,, is such that

a c
i -2 —4]= ¢ Rn =1 Sh.
minu > max{\/;, \/;}

The proof repeats the argument of Claim 4 in the proof of Theorem
2.1 (see also the last part of the proof of Claim 1 above).

Consider now the set
Q={uc CO([O,QTF]) : S <minu < maxu < R},

where we choose R = R,, and S = S,, with n so large that Claims 1 and
2 hold. Hence there is no solution of (3.12))—(3.2) on the boundary of
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Q) and the proof of the theorem follows from a classical continuation
argument.

Assume now that (3.5) holds. Consider the homotopy (3.123)—(3.2).
First we notice that if

1
lim inf —/ p(§) d¢ < ¢,
[0,s]

s—+o00 §

the proof follows from (3.3). Hence, we can assume that

s—+o0 8§

1
lim - §)dé =c > a.
/[o,s1p() o

This implies that there exist constants 7 > 0 and R* > 0 such that, for
every R > R*,

(1/R) /[0 ROLE

Following the proof of Claim 1, we obtain:

Claim 3. There exists Ry > 0 such that, for any R > Ry and
A € [0,1], problem (3.12,)—(3.2) has no solution u such that maxu = R.

From the second part of (3.5) we can find 7 > 0 and a sequence (S, ),
such that S,, & —oo and

(1/5,) [ w@de=d-n
[0,5n]
The argument of Claim 1 proves the following

Claim 4. For any ng > 0, there exists n > ng such that, for all
A € [0,1], (3.125)—(3.2) has no solution u such that

minu =5, < 0.

We are now in a position to apply a continuation argument with the
set
Q= {uecC’I0,2n]) : S < minu < maxu < R},
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where S = 5, < 0, for n > ng, is given by Claim 4 and R is chosen
from Claim 3 such that R > max{—S, Ry}.

Since cases (3.4) and (3.6) are symmetric to (3.3) and (3.5), respec-
tively, the proof is complete. O

Remark 3.1. As in the preceding section, we can easily give conditions
on g so that (i) and (ii) hold. Moreover, using the results stated in the
Appendix we can rewrite conditions (3.3)—(3.6) in terms of the potential
G(s) = f[O,s] g(&) d¢. More precisely, one has the following corollary.

Corollary 3.1. Assume that (a,b) € Cr, = {(1,v) : 1/\/u+1/\/v =
2/m}, (¢,d) € Crngr = {(p,v) : 1/\/B+1/\/v =2/(m+ 1)} and

g9(s)

a < liminf =+ < lim sup
s—+oo 8 s—+oco0 S

b< liminfM < limsup@ <d.

s—#—o0 S s——oco S

— )

Suppose that at least one of the following conditions holds

2 2
b < limsup @ and liminf Ggs) < d,
s——oo0 8 §s—+—o0 §
2 2
b < lim sup ﬁ and liminf G(s) <egc,
§——00 52 s—+oo  §2

G 2G
a < lim sup gs) and liminf 58) <d,
s——+00 S §—H—o© S
2
a < limsup G(s) and liminf G(s) <ec.

s—+00 52 s—+oo 8

Then problem (3.1)—(3.2) has at least one solution, for any given
h € L'(0,2m).
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APPENDIX

Let ¢ : RT = [0, +oo[ & R™ be a nondecreasing continuous function
with ¢(s) > 0 for s > 0, and define

o(s) = o ]¢(£) dg.

According to [1, page 232], we say that ® satisfies the As-condition
near infinity if there exist ¢ > 1 and d > 0 such that

D(2s) < cP(s), forall s>d.

It can be easily seen that for a function ® as above this happens if and
only if there is a constant £ > 1 such that

D(s) < sp(s) < k®(s), foralls>d.

Then we can prove:

Lemma 4.1. Let @ satisfy the Ag-condition near infinity and suppose
that f : RT — [0, L] is a continuous function. Then

im = [ f(€)de=0

s—+o0 8§ [075]

if and only if .
im —— [ f(6)o(€)de = 0.

s—+oo (}(S) [0,s]

Proof. Assume that

m = [ f€)de=0

s—+o0 8§ [0,s]

and fix s > d. Then we have

1
5 /H F(€)0(€) de

s¢(s)
< d
< /[ . f(&)d¢

0<

s®(s)

L reae

5 J[o,s]

IN
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and the first part of the conclusion follows letting s — +oo.

Conversely, assume

(4.1) im —— [ fe)e(e)de =o0.

s=+oo ®(s) Jjo,4]

Fix € €]0,2L[, and let o = ¢/(2L) < 1. Taking s > d/«, we have

1 1 1
0 — dé = = d + - d€.
< 5 /[075] f(&)d¢ s /[o,as] f(&) d€ s /[M’S] f(&)d¢

Since f is upper bounded by L, we immediately obtain

1

(4:2) ; /[] F©de<aL =",

On the other hand, for as < £ < s, we have that ¢(§)/®(¢) < k/¢, so

that integration on [as, s] yields
P(s)
D(as)

< a~ k.

Hence, we have
®(s) < a F®(as) < sp(as)a'™F
and then, as ¢ is nondecreasing,

1 1
N RGEErrry IR IGEGL:

e RGLGE:

Q

<

<G/, F@s©

Using (4.1), we get, for s large enough,

1
4.3 - d
(4.3) /[] f(6) de <

S

N ™
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In conclusion, from (4.2) and (4.3) we have, for s large enough,
1

o f(g) dé‘ <&

5 J10,s]

and therefore,

im L[ fe)de —o.

s—+o00 § [0,s]

The equivalence of the two conditions is thus proved. O

Lemma 4.2. Under the same assumptions of Lemma 4.1, we have

im [ pe)de=1

s—+o00 8§ [0,5]

if and only if
lim @0 de =1

s—=+o0 (I)(S) [0,s

Proof. Apply Lemma 4.1 to the function L — f(s) and the result
immediately follows. o

Now we can conclude with

Lemma 4.3. Under the same assumptions of Lemma 4.1, we have

liminfl f(§)d¢ <L

s—+400 § [0,s]

if and only if

i inf 275

/[0 FGEGERS:

and .
lim sup ~ f(&)de>0

s—+oco S J0,s]

if and only if

F(£)$(€) d§ > 0.

lim sup
s—too (8) 0,4
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Proof. 1t is sufficient to observe that 0 < liminf < limsup < L, for all
the ratios considered above and then to apply Lemma 4.2 and Lemma
4.1, respectively. u]
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