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OPERATORS ON C*-ALGEBRAS
INDUCED BY CONDITIONAL EXPECTATIONS
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ABSTRACT. This paper investigates the relationship be-
tween a unital C*-algebra A and a C*-subalgebra B which
is the range of a conditional expectation operator on A by
studying a certain algebra D of operators on A. The inves-
tigation of D was suggested by previous work of A. Lambert
and B. Weinstock in the case where the conditional expecta-
tion operators were the classical ones of probability theory.

The commutant of D, the radical Rad D, the quotient
D/Rad D, the spectra of elements of D and the lattice of in-
variant subspaces for D are studied, as well as the questions of
when D is closed in the norm and strong operator topologies.

Introduction. In [5] the relationship between a probability space
(X,%2,m) and a o subalgebra ¥; of ¥ is studied by using a certain
algebra of bounded operators on L?(X,X,m). These operators are
defined in terms of the classical conditional expectation E(|X;), and
they have several natural analogues in which the classical conditional
expectation is replaced by a conditional expectation operator defined
on a C*-algebra (see Section 1 below). The purpose of this paper is
to study the relationship between a unital C*-algebra A and a C*-
subalgebra B which is the range of a conditional expectation operator
on A by investigating one such analogue which seems particularly
natural from the perspective of the theory of associative operator
algebras. In the noncommutative case our chosen analogue causes us to
lose the relationship (which is present in [5]) to the notion of Banach-Lie
algebra. That relationship is preserved, however, by other analogues of
the operators in [5], which clearly deserve further study.

In Section 1 we define a nondegeneracy condition (called “type 0”)
for a C*-subalgebra B which is modeled on an analogous property
for o subalgebras which plays a key role in [5]. We also introduce
a modification of this condition (“restricted type 0”) which is often
more appropriate for the case that the subalgebra does not contain the
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identity of A. In particular, B is of restricted type 0 (if B contains the
identity of A, of type 0) if and only if B contains no nontrivial closed
two-sided ideal of A. These concepts turn out to play a fundamental
role in the theory to be developed.

The algebra D being studied is an algebra of bounded linear operators
on the C*-algebra A. D depends upon the choice of a conditional
expectation operator from A onto B. Some basic structure theory for
D is developed in Section 2. In Section 3 the radical of D, the questions
of when D is closed in the norm and strong operator topologies, and the
spectra of elements of D are investigated. Section 4 characterizes the
commutant of D when either of the nondegeneracy conditions (type
0 or restricted type 0) applies, as well as in other cases of interest.
Section 5 is a study of the invariant subspaces of D.

The setting of this investigation, an algebra D of operators on a
C*-algebra, may seem unfamiliar to many readers. However, the
topics treated are motivated by the theory of nonselfadjoint algebras
of operators on Hilbert space. The results obtained suggest that
mathematicians from other backgrounds also may be interested in the
rich structure of algebras of this type.

1. Conditional expectations on C*-algebras. Let 4 be a unital
C*-algebra with identity element 1 and B a proper C*-subalgebra of
A. A conditional expectation from A onto B is a mapping ® : A — B
satisfying

(i) ®(b)=bforallbe B

(ii) ®(ab) = ®(a)b and ®(ba) = b®(a) for all a € A and b € B

(ili) ®(a) is positive for all positive a € A,

i.e., a conditional expectation operator from A onto B is a positive,
B-linear projection from A onto B. (Recall that if z € A, then z is
called positive if x = x* and the spectrum of z lies on the nonnegative

real axis, or equivalently, if x = y*y for some y € A.) Henceforth the
notation @ : A — B will always imply that ®(A) = B.

A linear mapping ® : A — B is called a Schwarz mapping if
®(a*)®(a) < ®(a*a) for all a € A. The following proposition sum-
marizes some of the well-known properties of conditional expectations.
We refer to Stratila [7, Section 9] for a complete discussion.
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Proposition 1.1 (i) (Tomiyama). Every projection of norm 1 from
A onto B is a conditional expectation.

(ii) Every projection from A onto B which is also a Schwarz mapping
is a conditional expectation.

(iil) FEvery conditional expectation ® from A onto B is a Schwarz
mapping and has norm 1. Also, B is unital with identity element ®(1).

(iv) If ® : A — B is a conditional expectation, then ®(a*) = ®(a)*
for all a € A.

Remark. Henceforth we write e for ®(1), unless otherwise indicated.

There are two further properties which a conditional expectation may
possess and to which reference will be made below. A positive linear
mapping ® : A — B is called faithful if ®(a*a) = 0 implies a = 0. A
Schwarz mapping of one von Neumann algebra onto another is called
normal if it is continuous in the ultraweak topology.

Definition 1.2. (i) S1(A|B) ={z € A: Az C B}.
(i) So(A|B)={ze A: Aex C B}.

When A and B are understood, we write these sets as S; and Sp,
respectively. It is clear that S; C Sy and that each of these sets is closed
in A. It is important to note that ® plays no role in the definition of
these sets.

It is useful to observe that, since e(1 — e) = 0, we have (1 —e) € Sp.
When e = 1, we write S for §; = Sy.

Lemma 1.3. (i) S is a closed two-sided ideal in A.
(ii) S CB.

(iii) Si contains every left ideal of A which is contained in B.

Proof. fa € A, x € S§; and b € B, then Adax C Ax C B and
Azb C Bb C B so that S; is a left ideal of A and a right ideal of B.
In particular, [3, page 252], Sy is a two-sided ideal of the C*-algebra
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B, hence S is self-adjoint. Thus S is a self-adjoint left ideal of A, so
S1 is a two-sided ideal of A. Finally, if Z is a left ideal of A which is
contained in B, then AZ C BsoZ C ;. a

Remark. If A and B are von Neumann algebras, S; is also closed in
the weak operator topology.

The following lemma shows that the right (left) annihilator of ker ®
in B depends only on B and is independent of the choice of ®.

Lemma 1.4.

S1={z € B:(ker®)x ={0}} = {z € B: z(ker &) = {0}}.

Proof.

r€8S<=areB forallac A
< P(ax) =ax forallac A
< z€B and P(a)r=ar forallaec A
< (®(a) —a)z=0 forallac A
< (ker ®)z = 0.

If z(ker ) = {0}, then by taking adjoints we have (ker ®)z* = {0}
so z* € 81, and hence x € §;. Conversely, x € §; = z* € §; &
(ker @)z* = {0} = z(ker ) = {0}. u]

Remark. (1 —e)A C ker® and thus BN (1 —e)A = {0}. Also,
S1+(1—e€)A C Sy. We will see below that in fact S; + (1 —e)A = Sp.

We shall be concerned principally with subalgebras which are of type
0 in the sense of the following definition. The terminology follows that
of Lambert and Weinstock [5]. We note that since it is always the case
that (1 —e) € Sy, it follows that if B is of type 0, then e = 1.

Definition 1.5. (i) B is a subalgebra of type zero if Sy = {0}.
(ii) B is a subalgebra of restricted type zero if e # 1 and S; = {0}.
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The following examples will be instructive to the reader.

Ezample 1.6. Let (X,X,m) be a probability space, and let T’ be a
sub ¢ algebra of ¥. In this measure theoretic setting we will refer
to the conditional expectation A : L*(X,¥) — L*(X,TI') satisfying
JoA(f)dm = [, f dm for every I'set A as the probabilistic expecta-
tion. The usual notation is A(f) = E(f | T'). A slight modification of
Lambert and Weinstock [5] shows that L>(X,T") is type 0 in L (X, X)
if and only if there is an f in L>°(X, X) such that f # 0 almost every-
where dm but A(f) = 0 almost everywhere dm.

When L*°(X,T) is not type 0, the ideal S is in fact a principal ideal.
Indeed, there is a maximum set By in ¥ (modulo null sets) such that
every Y-set contained in By is a I'-set. It follows that S = AXp, (see

[5])-

Ezxample 1.7. This example illustrates the fact that the type 0
condition depends only on B and not on the conditional expectation
onto B. The relationship between the type 0 condition and the D
algebras (to be introduced in Section 2 below) arising from different
expectations onto B will be made clear in Theorem 2.7. Let (X, X, m)
be the standard Lebesgue measure space on [—1, 1] (dm = dz/2) and let
T be the sub o algebra of ¥ generated by all sets of the form (—a, a). It
follows that the probabilistic expectation is given by A(f)(z) = (f(z)+
f(=z))/2. Now consider the mapping ® : L*°(X, %) — L>®°(X,T) given
by ®(f)(z) = f(|z|). A moment’s reflection (literally) shows that ® is
indeed a conditional expectation onto L>°(X,I'). The kernel of @ is
precisely {f € L>(X,X) : X[o,11 - f = 0}. Of course, this expectation is
far from being faithful, and every function f vanishing on [—1,0] is an
annihilator of ker ®. However, no I'-measurable function other than 0
annihilates ker ® since each such function is an even function vanishing
to the left of 0.

FExample 1.8. Let $ be a separable Hilbert space with orthonormal
basis {e1, €2, ...}. Viewing operators on §) as matrices with respect to
this basis, we consider the conditional expectation ® onto the algebra
of diagonal matrices by setting ®(A) = diag A. Then the kernel
of @ consists precisely of those matrices (corresponding to bounded
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operators) with zero diagonal. It is easily verified that the diagonal
matrices are type 0 in the algebra of all bounded operators.

Ezample 1.9. Let U be a C*-algebra, and let Z be a (closed, two
sided) ideal in U. Define A to be the set of all matrices of the form

X K
o]
with X and Y in 4 and K and L in Z. With conjugate transpose
as involution, A is seen to be a C*-algebra, where the C*-norm is
constructed by representing I/ as an algebra of operators on a Hilbert
space $) and viewing A as an algebra of operators on @ . Let B be
the C*-subalgebra consisting of all such matrices with K = L =0, and

take @ to be the diagonal conditional expectation onto B. It follows
that B is type 0 if and only if 0 is the only annihilator of Z.

As a special case of this last construction, take U to be the algebra
of all bounded operators on a separable Hilbert space ), and let Z be
the set of all compact operators on ). Since 0 is the only annihilator of
the compact operators, this gives an example of a type 0 subalgebra.

Remark. Let A be a factor and B a von Neumann subalgebra of
A which is the range of a conditional expectation operator defined on
A. Since, as was remarked above, S; is closed in the weak operator
topology and since, by [3, pages 442-444], each nonzero ideal in A is
weak-operator dense, it follows that S; = {0}. Thus B is either of
restricted type 0 (if e # 1) or of type 0 (if e = 1).

2. The algebras D(A|B; ®). Given C*-algebras A and B with B a
subalgebra of A, and ® a conditional expectation of A onto B, for each
a € A we define the linear operator D, : A — A by

D,(z) = ®(a)z — a®(x).
Notice that A is the direct sum of the kernel of ® with B, and the kernel
of ® is the set of elements of A of the form a — ®(a) with a € A. Let
M, denote the operator of left multiplication by a acting on A. With
respect to this direct sum decomposition,

_ | Ma@)y Ms)-a
Da = 0 0
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Definition 2.1. D ={D, :a € A}.

Since @ is linear, D is a linear space of operators. Since @ is
contractive, for each a we have ||D,|| < 2||a||, and in particular,
D consists of bounded operators. Omne notes immediately that the
mapping A : A — D given by A(a) = D, is linear, with norm no
greater than two.

For the sake of clarity we shall on occasion describe D as D(A|B) or
D(A|B; ®). This last form will be used in situations where we must
consider more than one conditional expectation onto B. We now show
that D is an algebra of operators:

Proposition 2.2. (i) For every  and y in A, D.Dy = Dg(g)y; in
particular, D is an algebra.

(ii)) A(ker®)D = {0}; i.e., for each k in ker®, Dy, is a left
annihilator of D.

Proof. Note first that each D, maps A into ker ®. Let x, y and z be
members of A. Then

D,D,z = B(2)D,z — a®(Dy2) = B(a) (B ()= - y®(2))
— 8(®(a)y)z — (2(2)y)®(z) = Do(ayyz- O

Although the conditional expectation @ is used to define the algebra
D(A|B), this algebra is algebraically and topologically independent of
®, as the following proposition shows.

Proposition 2.3. Let B be a C*-subalgebra of A, and let ® and ¥
be conditional expectations of A onto B. Define G =¥ +1 — ®. Then

(i) G is an invertible operator on A, and G=' = ® +1 — ¥. Also,
PG =V =GV, UG~ =& =G, and (1 - ¥)(1 — &) =1 — V.

(ii) For each x € A, let F, € D(A|B;®) and S, € D(A|B; ¥) be
defined by Fpy = ®(2)y — 2®(y) and Syy = V(x)y — 2¥(y). Then
G 'F,G = Sg-1,, and the mapping T : F, = G~'F,G is an algebra
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isomorphism of D(A|B; ®) onto D(A|B; ¥) which is a homeomorphism
(norm-norm or strong-strong topologies).

Proof. (i) is just straightforward calculation. To establish (ii), let
and y be elements of A. Then
G 'F,Gy =G '((®2)(Yy +y — y) — 2(Vy)).

Now ®F, =0, so

GTF,Gy = (1 - 1)((22)(Ty +y — By) — 2(Ty))
= (1= 9)((®2)(¥y)) + (1 = ¥)((2z)(1 - @)y)
—[(1 = ¥)a] oy

=0+ (®z)(1 — ¥)y — [(1 — ©)z] Ty
= (®x)y — (Px + 2z — Y)Wy = (VG 'z)y — (G tz)Wy
= SG—lzy.

Thus I' is an algebra isomorphism. Since it is conjugation by the

bounded invertible operator G, it is a homeomorphism with respect
to any of the operator topologies. a

Lemma 2.4. Let ® : A — B be a conditional expectation, and let K
denote the kernel of ®. Then

i) K=(1-¢e)A(l—¢€)® (Ke+ekK)
(il) Kenek =eKe
(ili) KeneK =K if and only ife =1
(iv) Ke+el = Vgea range D, (where VV denotes the algebraic span).

Proof. (i) The set to the right of the equality symbol is clearly
contained in the kernel of ®. If a € A, then
a=-eae+ea(l —e)+ (1 —e)ae+ (1 —e)a(l—e),
so that a — ®(a) satisfies

a—®(a) =¢e(a— P(a))+ (1 —e)ae+ (1 —e)a(l —¢)
cek+Ke+ (1—-e)A(l—e).
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But every element of K has the form a — ®(a) for some a. The fact that
(1—e)A(l—e)N(Ke+eK) = {0} follows immediately from e(1—e) = 0.
(ii) If k,k' € K and ke = ek’ = z, then (1 —e)z = 0, so that
x = ex = eke.
(iii) If eKe = K, then (1—e) = eae —®(a) for some a. Multiplying by
e, we have 0 = eae—®(a), i.e., e = 1. The converse follows immediately.

(iv) For each a, x € A,

Do(z) = @(a)(z — @(z)) — (a — (a))2(z)
=e®P(a)(x — ®(x)) — (a — P(a))®(z)e € e + Ke.

Conversely, if k € K, then ek = D; (k) and ke = —Dj(1). O

The following lemma shows that a subalgebra can be the range of a
unique conditional expectation. The subsequent proposition explores
this case in greater detail in relation to the algebra D. In particular,
although Proposition 2.3 implies that if & and ¥ are conditional
expectations from A onto B, then D(A | B; ®) = {0} if and only if
D(A | B; %) = {0}, Proposition 2.6 shows that when D = {0} there
is in fact a unique conditional expectation from A onto B, of the form
described by Lemma 2.5.

Lemma 2.5. Let f be a Hermitian idempotent in A, and let
®: A — fAf be a conditional expectation. Then ®(a) = faf.

Proof. If a € A, then faf = ®(faf) = f®(a)f = P(a). O

Proposition 2.6. Let @ : A — B be a conditional expectation, and
let IC denote the kernel of ®. Then the following are equivalent:

(i) Ke+eK = {0}
(i) Ke = {0}
(iii) ek = {0}

(iv) e is central and B = Ae, (and hence ®(a) = ae for all a € A by
Lemma 2.5)

(v) D= {0}
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(vi) Dg|B=0forallac A
i) B is an ideal of A

(viii) B =8

(ix) A= Sp.

(vii

Proof. By Lemma 2.4 (iv), the first and fifth statements are equiv-
alent. The first clearly implies the second and the third. If D = {0},
then for all z,y € A, ®(z)y = 2P(y). Replacing z and y in turn
by 1 and z yields that for all z € A, ez = ®(z) = ze. Conversely, if
®(a) = ae for all @ € A with e central, then D, (y) = (ze)y —x(ye) = 0.
Thus the fourth and fifth statements are equivalent. For any a,
D,(e) = (®(a) — a)e. Since (®(a) — a) is the generic element of I,
the second and sixth statements are equivalent. Since both & and e
are x-invariant, the second and third statements are equivalent. If the
sixth statement is true, then for all a, 0 = D,e = ®(a) — ae, and by
taking adjoints we have that e is central, i.e., the fourth statement is
true. Thus, the first six statements are equivalent. Now (iv) = (vii)
= (viii) = (ii) since, if B = Ae with e central, then B is an ideal of A;
hence by Lemma 1.3 B = &7 and, if B = 81, then e € S so by Lemma
1.4 Ke = 0. Finally, (ix) = (iv) since A = Sy implies that aex € B for
all a,z € A. In particular, ae, ea € B so that ®(a) = ae = ea for all a.
Conversely, if ®(a) = ea with e central, then as we have seen, §; = B,
so since a = ea+ (1 —e)a € S; + (1 — e).A we have 4 = S,. O

Remark. One class of examples to which Proposition 2.6 applies is the
case where A is a C*-algebra of bounded operators on a Hilbert space
and B = AQ where Q is a central orthogonal projection. It follows from
Lemma 2.5 that ®(T') = T'Q defines the unique conditional expectation
of A onto B in this case.

Note that the situation leading to the collapse of D to {0} is an-
tithetical to the condition “S; = {0}.” We now explore the strong
relationship between D, Sy and S; in the general case.

Theorem 2.7. Let ® : A — B be a conditional expectation, with
e = ®(1). Then
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(i) So=Nacaker Dy =81+ (1 —e)A={a € A: D, =0}

(ii) If e is central, then So = {a € A : D, = 0} and Sy is a
closed, two-sided ideal of A. (Thus, B+ Sy is a C*-subalgebra of A
and (B + 8p)/So can be canonically identified with a C*-subalgebra of
A/Soy.)

Proof. (i). We show that

SoC [ kerDy €81+ (1—e)AC{a€ A: D, =0} C S,
acA

Let z € Sy. Then aex is in B for every a in A and, in particular,
ex € B. Now ex = ®(ex) = e®(x) = ®(x), so that for each a in A,

D,z = ®(a)r — aex = ®(a)ex — aex
= ®(aex) — P(aex) = 0.

Thus Sy C Ngeaker D, .

Now suppose that z € Ngeaker D,. Since D1y = ey — ®(y) for
every y, it follows that ex = ®(z). Consequently, for every a € A,
0 = Doz = ®(a)z — aex, ie., [P(a) — alex = 0. It follows from
Lemma 1.4 that ez € S;. Since z = ex + (1 — e)z, we have shown
that Nyeaker D, C 81 + (1 —e)A.

Let ¢ € 81 + (1 —e)A. Then ec is in §; and ®(c) = ec. Taking
the adjoints of both sides of this last equality yields the equation
®(c*) = c*e. Then for each y in A,

Dery = @(c")y — " ®(y) = c'ey — " ®(y)
=cey — c*e®(y) = c'e(y — ®(y)) = 0,

since c*e € 1. Thus §1 + (1 —e)A C {a € A: Dy = 0}.

Finally, suppose D .« = 0. Then, for each y, ®(c*)y = ¢*®(y) and, in
particular, ®(c*) = c*e. But the penultimate equation then becomes
c*ey = ¢*®(y). Since c*P(y) = c*eP(y), (c*e)Ker ® = 0. Thus c*e is
a member of §; and consequently so is ec, which shows that ¢ € Sy.
This completes the proof of (i).

(ii) We assume that e is a central idempotent. Then S; + (1 —e)A is
easily seen to be a closed, two-sided ideal in 4. Thus, if ¢ € S1+(1—e) A,
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then so is ¢*. But we may then apply part (i) to see that D, = 0.
Conversely, if D, = 0, then the argument in part (i) shows that ce € Sy,
hence ec € 81, which proves that ¢ € §; + (1 — e).A. This establishes
the equation Sop = {a € A: D, = 0}. u]

Ezample 2.8. Let A be the algebra of 2 x 2 matrices with complex
entries and B the subalgebra consisting of matrices all of whose entries
except possibly the (1,1) entry are zero. Let E be the unit element
of B, and define ® on A by ®(A) = FAE. Then ® is a conditional
expectation of A onto B. It is easily verified that, in this case, S =0
and that Sp = (1 — E).A consists of those matrices whose first row is
zero. Thus, B is of restricted type zero but not type zero. Also, E is
not a central idempotent in A. If A = (a;;) and X = (z;;) are elements
of A, then

0 a11T12

Da(X) = —a21%11 0

Thus, {A : D4 = 0} is the set of matrices whose first column is zero,
i.e., §;. This illustrates that Sy need not be self-adjoint if ®(1) is not
in the center of A.

Let A; be a second C*-algebra and 7 : A — A; a *-homomorphism
of A onto A;. Then By = 7(B) is a C*-subalgebra of A;. If
®(kerm) C kerm, then ® induces a mapping ®; : A; — By defined
by @ (m(x)) = m(¢(z)). We will denote Sy(A; | B1) by Sj. It follows
immediately from Definition 1.2 that m(Sp) C Sj.

Lemma 2.9. Suppose that Ay is a C*-algebra and m : A — Ay a
unital x-homomorphism of A onto Ay such that ®(kern) C ker 7. Let
By = 7w(B). Then

(i) @, is a conditional expectation of Ay onto Bj.

(i) The map D, — Dy(q) is well-defined and is an algebra homo-
morphism T of D(A|B; ®) onto D(A1|B1; 1)

(iii) 7 is an isomorphism if and only if m also satisfies 7 1(S}) C Sp.

Proof. (i) If z € A, ®1(P1(n(x))) = 1(7(P(z))) = 7(P(P(z))) =
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m(®(z)) = @1 (n(x)), so ; is a projection. Also, if b, ¢ € B,
@ (r(b)7(z)7(c)) = @1 (m(bxc) = w(P(bxc))
=71(b®(z)c) = 7(b)w(®(z))7(c)
= 7(b)®1(m(z))7(c).
Thus ®; is Bj-linear. Finally, ®;(w(z)*n(x)) = ®1(n(z*z)) =
m(®(z*z)). Since ® is positive and 7 is a homomorphism, we see that
®, is a positive map. Thus, ®; is a conditional expectation.

(ii) Do =0=a" € S = m(a)* = 7n(a*) € Sy = Dy(q) = 0. Thus,
T is well defined. Also, T is clearly a linear surjection. Moreover,
D,D. = Dgg).. But m(®(a)c) = n(®(a))m(c) = @1(m(a))n(c).
Therefore, D,r(@(a)c) = Dﬂ(a)DW(c).

(ili) 7T is an isomorphism if and only if Dy = 0 = D, = 0. If
7=1(8p) € So, then Dy = 0 & w(a)* € S§ & w(a*) € Sj = a* €
So & Do = 0. Conversely, if Dy, = 0 = D, = 0, the double
implications in the previous line show that = 1(S}) C Sp. o

The next proposition shows that for the purpose of studying an
algebra D(A | B) when e is a central idempotent in A, one may assume
without loss of generality that B is type 0 in .A.

Proposition 2.10. Suppose that e = ®(1) is a central idempotent

in A. Define
A B+ So

: S_O — SO
by <I’/(E) =® (a) (where a — a is the canonical quotient map.)
Then

)

(i) @ is a conditional expectation
(ii) A/So and (B + Sy)/So have the same unit
(iii) (B+ 8o)/So is type 0 in A/So

(iv) the map D, — Dy is an algebra isomorphism of D(A/B) onto
D(A/Sol(B+ So)/So)-

Proof. Since ®(Sp) C Sp we may apply Lemma 2.9 with 4; = A4/S
and 7 the canonical projection to prove (i).
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(ii) Each element of (B+ Sp)/So has the form b+ Sy for some b € B.
Since 1 — e isin Sy, 1 = é. But

é(b+So) =eb+ Sy =b+Sp =be+ So = (b+ So)é;
while 1 is also the unit in A/Sp.

(iii) In order to prove that (B + Sp)/Sp is type 0 in A/Sp it
suffices, via Theorem 2.7(i), to show that Nycaker D, = {0}. To
this end, let z € A for which £ € Ngeqker D;. For all a € A,
D,z = 0, so that Dyz € Sg. Thus D,z € (1 —e)A. In particular,
Diz € (1 —e)A. But Diz = e(z — ®(x)), so that Dz = 0, ie.,
®(x) = ex. But this shows that for all a in A, D,z = ®(a)z — aex.
Now if a € ker @, then D,z = —aex = e(—az) by the centrality of e.
Since D,z € (1 —e)A, D,z = 0 in this case. On the other hand, if
a € B, then D,z = ®(a)ex — aex = 0 and so, by decomposing each
a € A along B and ker ®, we see that x € Ngcqker D, = Sy, so that
z=0.

(iv) Since kerm = Sy and S = {0}, Lemma 2.9 shows that this map
is an isomorphism. ]

Remark. (i) The hypothesis that e is central can be replaced by the
assumption that the principal left ideal generated by e is two-sided,
without otherwise affecting the validity of the preceding proposition.

(ii) Since BN Sy = 81, and for any closed (two-sided) ideal J of A
we have (B+J)/J -isomorphic to B/BNJ (see [3, Corollary 10.1.9]),
it follows that (B + Sy)/So is *-isomorphic to B/S;. (Of course, when
e =1, so that § = 81 = Sy, we have B+ Sy = B.)

Finally, we consider the center of D. In general, D can be abelian.
It is easily verified that Example 2.8 above is an instance of this, and
this example can be generalized to the case of 2 X 2 matrices over any
commutative C*-algebra. However, if e is central, the center of D is

just {0}.
Proposition 2.11. If e is central, then the center of D is {0}.

Proof. Let Z denote the center of D. D, € Z < Dg(a)s = Da(x)a
for all z € A, by Proposition 2.2(i). By Theorem 2.7(ii), D, € Z <
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®(a)zr — ®(x)a € Sp. Since e(®(a)r — (z)a) = P(a)x — ®(z)a, we
have D, € Z & ®(a)z — ®(z)a € S; for all z. Suppose that D, € Z.
Then, taking = 1 shows that ®(a) — ea € S; Nker ® = {0}, so that
®(a) = ea = ae. Taking = € ker & now shows that aex € S; Nker P,
hence aek = 0 for all k € ker @, i.e., a € Sy (by Lemma 1.4). But this
implies that D, = 0 by Theorem 2.7(ii). O

Remark. Another proof of Proposition 2.11, based on Proposition
2.10, will be given below in Section 4. (See the remark following
Theorem 4.3.)

3. Analytic properties of D(A | B;®). In this section we
investigate various analytic properties of D(A|B; ®) such as closure in
the norm and strong operator topologies, spectrum of elements of D,
and radical. Henceforth we use K to denote the kernel of ®, and if X
is a Banach space, we use B(X) to denote the space of bounded linear
transformations on X.

For each b € B let L, be the operator of left multiplication by b,
restricted to K, and let £ = {Ly : b € B}. (Note that L, maps K to K.)
We give £ the norm topology it inherits as a subspace of the space of
all bounded operators on K.

Proposition 3.1. L is isometrically isomorphic to B/S;. In
particular, L is closed in the norm topology.

Proof. By Lemma 1.4, L, = 0 if and only if b € S&;. Thus, L is
isomorphic to B/S;. For b € B left [b] denote the coset of b in B/S;.
Let |[b]] = ||Lp||- Then |- | defines a norm on B/S;. For each b in B
and k in K,

[1bK|[* = [1&~b"bk|| < [1K]|[[o"bk[| < ||k|! |[6"]][|bk]]
< [[k[*1"]H[b]I

It follows that |[b]|? < |[b*]]|[b]] and so |[b]] < |[b*]|. Since the same
argument applies to b* we have proven that |[b]| = |[b*]| for every b € B.
Now if we take the supremum over vectors k of length 1 in the displayed
expression above, we deduce that |[b][2 < |[b*b]] < |[b*]||[b]| = |[b]|*
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This shows that |- | exhibits all the properties of a C*-algebra norm on
B/S; with the possible exception of completeness.

Let C be the completion of B/S; in this norm. Then C is a C*-algebra
and the identity map on /S is an injective *-homomorphism of B/S;
into C. It follows that this map is in fact isometric [3, page 242], i.e.,
for all b in B, |[b]] = ||[b]||. This shows that the map [b] — L is an
isometric algebra isomorphism from B/S; onto L. O

Corollary 3.2. D is closed in the norm topology on B(A), the space
of all bounded linear operators on A.

Proof. Throughout this argument “—” refers to convergence in the
norm topologies, context dictating whether applied to operators or
vectors. Let {D,_ } be a sequence in D, and let D be an operator
on A for which D, — D. Since each operator from D maps K into
itself, D does as well. Moreover, D, |K — D|K, where | denotes
restriction. Now D, |K is precisely Lg(q,) (as defined above), so by
Proposition 3.1 there exists b € B such that D | K = L. For ¢ € B,
D, c=(®(an) — an)c — Dc. Let a = b — De. Then, for any = € A,

D,z =®(a)(z — ®(x)) + (®(a) — a)®(x)
=b(z — @(z)) + (De)®(x)
= D(z — ®(z)) + nli_>nolo(Dane)<I>(m)
~2(@) + lim {(2(a,) - a)e®(x)}
- @(2)
- ®(2)

(z))
(z — ®(2))
(z @) + lim (@(an) — an)@(x)
( (z))

T

Il
O © ©

P(z

x + D®(z) = Dx. O

Remark. In light of the preceding result it seems reasonable to ask if
D need be closed in the strong operator topology. Note that if {D,,}
were a net converging strongly to the operator D, then the arguments
presented in the preceding result would carry through, with the crucial
exception of the existence of b € B, determined there by the norm
closure of £. There is, as Example 3.6 below will show, no reason to
believe that D is strongly closed. Here we present one situation where
D is in fact strongly closed.
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Proposition 3.3. If K contains a right invertible element of A, then
D is closed in the strong operator topology.

Proof. By hypothesis, there exist k € K and ¢ € A such that kc = 1.
Suppose that {L, } is a net in £ converging strongly to an operator L
on K. Then b,k — Lk, and so b, = b,kc — (Lk)c. Since B is closed,
(Lk)c € B. Now for any h € K, Ly,h = bph — [(Lk)clh = L(pkch,
so that L = L(pk). € £. By the comments made in the paragraph
preceding the statement of the proposition, we conclude that D is closed
in the strong operator topology. o

Ezample 3.4. To see that K can contain a right invertible element,
one need go no further than to take A to be the set of all block matrices

of the form
A B
C D

where the entries are operators on a Hilbert space, and ® is taken as

the diagonal map
o A B\ |4 0
C D|)] |0 D’

i)

is an invertible member of ker ®. (We have stated this example in
sufficient generality to show that the strong closure of D does not
require finite dimensionality.)

Then

On the other hand, here is an example where B is type 0, ® is faithful,
A is abelian, and yet ker ® contains no invertible elements.

Ezample 3.5. Let X be the set of positive integers with probability
distribution m(2n —1) = 1/((n+1)2") and m(2n) = n/((n+1)2") for
n € X, and let A be the [* space L*(X,2%,m). Define ¥ to be the
sigma algebra of subsets of X generated by the set of 2-point atoms
{{2n — 1,2n} : n > 1}, and let B = L*°(X, X, m|x). For each bounded
sequence « the (probabilistic) conditional expectation is given by

®(a) = E(a| ) =) (m(2n — Laza-1 +m(2n)a2:)X {20120},

n=1
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so that ®(a) = 0 if and only if for all n > 1, (agn—1 + n - @2,)/
((n+ 1)2™) = 0. Since the sequence « is bounded, lim, ;o a2, = 0
and consequently a cannot be invertible in [°°. Note that since ®
is a classical probabilistic conditional expectation, it is faithful and, of
course, the C*-algebras A and B are abelian. Also, B is type 0 since if 8
is any sequence such that Sa = 0 for all a € ker @, then 8 = 0. Indeed,
if B # 0 for some k, then we must have ay = 0 for all & € ker ®. But
ker @ obviously contains elements which do not satisfy this condition.

We note that for ® as in the preceding example, although ker ®
fails to contain an invertible element of A, D is closed in the strong
topology. Indeed, if {b®)} is a net in B for which b*)h converges in
A for each member h of ker ®, then by applying this to the sequence
g = (1,-1,1,-1/2,1,—-1/3,...) € ker®, we see that for each fixed
integer n, limk{b%k)} = b, exists. By hypothesis, lim;{b*)g} € A.
Since g,, = 1 for odd n and since, for each ¢ € B, we have c3,—1 = cay,
b must be in A (in fact, in B) and b*) — b. It now follows from the
paragraph preceding Proposition 3.3 that D is closed.

The following is the promised example where B is type 0 and D is
not closed in the strong operator topology on A.

Ezample 3.6. Consider the special case of Example 1.9 in which U/ is
a proper unital C*-subalgebra of B() () a separable Hilbert space)
such that ¢/ contains the ideal Z of all compact operators on §). Then
K counsists of the set of all matrices of the form

2 o)

where K and L are compact operators on §).

Let A be an operator on $) which is not in ¢. Since Z is strongly
dense in B(9), we choose a net {A,} in U converging in the strong
operator topology to A. Let

A, 0 C K
an—[o 0] and let {L B}

be an arbitrary member of A. It is easily verified that

0 AK
Danm—[o 0 }
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Since {4, } converges strongly to A and K is compact, {A,K} con-
verges uniformly to AK. Thus, D,, converges in the strong operator
topology to an operator D. However, for

[E M
y:

N F} in A,

the (1,2) entry of the matrix Dyx is EKX — M B. If this were to equal
AK for every choice of K and B (not to mention L and C), then M
would equal 0 and F would equal A. But A is not in I/, so D cannot
be D, for any y € A.

We now turn to the radical, Rad D. We recall that A : A — D is
given by A(a) = D,.

Lemma 3.7. A(K) is closed.

Proof. By Corollary 3.2, D is norm closed. Let Dy — D,, k, € K.
Then, for every z in IC,

0= Dy, x — Doz = ®(a)z.

This implies that ®(a) € Si, hence Dg(q) = 0. Then Dy = D,_g(q)-
Because a — ®(a) € K, D, € A(K).

In the following lemma, attention is paid to the case ||1 — ®|| = 1.
This condition occurs in many, but by no means in all, examples.

Lemma 3.8. Suppose ||1 — ®|| =1. Then
(i) Do)l = ll[®(a)]ll5/s,
) [ Dairll = [I[2(a))ls/s,-

Proof. (i) For any x in the unit sphere of A and s € Sy,

1Daayz]| = [[®(a)(z — @(2))]| = [|(®(a) + 5)(z — ®(2))]]
< ||®(a) + s[[ |1 — @[] = [|®(a) + 5],
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by Lemma 1.4. Thus |[Dgq)|| < [/[®(a)]l||/s,- On the other hand,
from Proposition 3.1, we see that

I[@(@)]lls/s, = sup [[®(a)z]| = sup ||De(a)z|| < [|Daall-

[lz]|=1 [lz]|=1
ze €K
(i) By () inf1Darell < Dol = lI@@)]lls/s, Fix k € K.

Then, by Proposition 3.1,

| Dot = e, l(a + k)®(2) — ®(a)z]| = it ||®(a)z]]

zeX
= l[®2(a)lllz/s,- D

When B is of type 0, the preceding arguments may be summarized
in the following proposition, without the restriction that ||1 — ®|| = 1.

Proposition 3.9. If B is of type 0, then for every a in A,

|1®(a)l] = P |®(a)z]| = S 1D (a)||
wEE wEE

i <
inf || Daykl| < || Do
11— 2l [|®(a)]]-

IN

IN

Theorem 3.10. A(K) is the radical of D. Moreover, D/A(K) is
algebraically and topologically isomorphic to B/Sy. If |1 — @|| = 1,
then this isomorphism may be taken to be isometric.

Proof. We showed above that A(K) is closed. We now show that
A(K) is a two-sided ideal. For a € A and k € K, DyDy = Dgq)), and
DDy = Dg(k)q = 0. Since ®(a)k € K, A(ker @) is a two-sided ideal in
D. Define I' : D/A(K) — B/S1 by I'(D, + A(K)) = [®(a)]. T is linear
and surjective. If [®(a)] = 0, then ®(a) € S; so D, € A(K). Thus, T’
is one-to-one. Lemma 3.8 (ii) shows that I is isometric if ||1 — ®|| = 1.
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Moreover, the proof of Lemma 3.8 (i) shows that ||T'|| < ||1 —®||. Also,
I" is multiplicative since

In order to prove that Rad D C A(K), we shall show that for a in A,
if D, D, is quasinilpotent for every z in A, then [®(a)] is in Rad (B/S1).
Since B/S; is a C*-algebra, Rad (B/81) is {0}, and the desired result
will follow, since then Dy = Dy_g(q), 50 Dy € A(K).

Note that for a and x in A,
(DaDz)"™ = Dg(a)e = D (@(a)a(z))n12(a)e
and, in particular, if ®(z) = =,
(DaD2)" = D(@(a)@(a))-
Now it was shown above that for every b € B, ||[b]|| < ||Ds||, so that
([ @(@)a])™ [ < [ID(s(@ye)n 1" = [(DaDe)"||M".
Consequently, if D,D, is quasinilpotent, then [®(a)z] = [®(a)][z] is

quasinilpotent. Since z is an arbitrary element of B, [®(a)] belongs to

Rad (B/S)).

As for the reverse inclusion, we have already noted that for all k € IC
and z € A, DD, = 0. Thus, A(K) C Rad A. O

Finally, we study the spectrum of elements of D. Of course, since the
range of each element of D is contained in ker @, no element of D is
invertible in B(A). Nevertheless, it is possible for D, to be one-to-one.
To see this, take A and ® to be as in Example 3.4. Let

w=lo ]
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where v and v are isometries with mutually orthogonal ranges, and w
and z are likewise isometries with mutually orthogonal ranges. If

0 ub — vd

a b
A_[c ] then DyA= e — wa 0

d
Thus Dy A = 0 implies A = 0.

Lemma 3.11. If A # 0, D, — Al is one-to-one on A if and only if
Lg(a) — Al is one-to-one on K.

Proof. If D, — AI is one-to-one on A and ®(a)k — Ak = 0, then
Dk — Ak = 0, hence k = 0. Conversely, if Lg,) — Al is one-to-one
on K and D,z — Az = 0, then applying ® to this equation shows that
®(z) =0, ie., z € K. Hence ®(a)z — Az =0, so z = 0. u]

Lemma 3.12. If A # 0, D, — Al is invertible in the algebra of
bounded operators on A if and only if Leq) — M is invertible in the
algebra of bounded operators on K.

Proof. Suppose first that Lg,) — Al is invertible. Then D, — Al is
one-to-one, so it suffices to show that D, — A\I maps A onto A. Given
z € A, we may write ¢ = b+ k, where b € B and k¥ € K. By our
hypothesis, we can find h € K such that Lgq)h — Ah = k. But Lg(,)
agrees with D, on K. Hence D,h — A\h = k. Likewise, we can find
g € K such that (®(a) — \)g = (®(a) — a)(A~'b). Then

(Dy — MX)(g— X)) =®(a)(g — A 0) + X tab - Ng+b
= (®(a) — \)g — (®(a) —a)(A"'b) +b=b.
Thus, « is in the range of D,.

Conversely, if D, — Al is invertible, then given k € K, we can find

x € A with D,z — Ax = k. Applying ® to this equation, we see

that z € K, and since D, agrees with Lg(,) on K, we conclude that
Lg(q) — Al is onto, and hence invertible. o

For the remainder of this section, we use o(x) to denote the spectrum
of z in the Banach algebra B(.A), and for other Banach algebras C,
oc(z) to denote the spectrum of z in C.
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Theorem 3.13. Leta € A.

(i) o(Ds) Uo(Dex)” = {0} Uogss, ([2(a)]). (T denotes complex
conjugation).

(ii) The spectral radius of D, equals the spectral radius of [®(a)] in
B/Si.

(i) If [®(a)] is a normal element of the C*-algebra B/S;, then
o(Da) = {0} Uosys, ([2(a)]).

Proof. As was remarked above, D, is never invertible, so for all
a € A we have 0 € o(D,). By Lemma 3.12, if A # 0, then
A€ a(Da) & A€ opk)(La)). Now &(a)* = &(a*), hence

0(Da) U (Dqe-)” = {0} Uogk)(La(a)) Y o) (L))~
= {0} Uos(La)) = {0} Uosys, ([2(a)]),

where the second equality follows from the application of Rickart’s spec-
tral permanence theorem for C*-algebras [6, Corollary 1 of Theorem
2] to the C*-algebra £ and the third equality follows from Proposition
3.1. Assertions (ii) and (iii) follow similarly from [6, Theorem 3, and
6, Corollary 1 of Theorem 2], respectively. i

Corollary 3.14. If B is abelian, then o(D,) = og/s, ([®(a)]) U {0}.

Remark. As the proof of Theorem 3.13 indicates, one has o(D,) =
op/s, ([®(a)]) U {0} whenever Lg(q) invertible in B(K) implies Lg(q)
invertible in £, at least in the case that e = 1. Suppose, for instance,
that B is of type 0 and that for some closed ideal Z of B the repre-
sentation L : B — B(K) given by b — L; is equivalent to the left
regular representation A of B on Z. If Z has the property that A, is
invertible in B(Z) if and only if b is invertible in B then it is true that
o(Da) = 0/s,([®(a)]) U{0}.

Consider specifically the modification of Example 3.6 where for I/ one
takes B(9). Then B is still of type 0. If

(4 K
“=1rL B|’
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then the invertibility of Lg(,) in B(K) is equivalent to the invertibility,
in the algebra of bounded operators on the space of compact operators,
of the operators “left multiplication by A” and “left multiplication by
B.” But the invertibility of these operators implies that A and B are
invertible operators on $) since the space of compact operators on $)
contains every rank one projection.

(In the situation described above, type 0 is equivalent to Z being an
essential ideal of B. It would be interesting to know when an essential
ideal Z in a unital C*-algebra B has the property that )\, is invertible
in B(Z) if and only if b is invertible in B. It is true, for example, when
B is abelian.)

4. The commutant of D. It is easy to see that if b € B then
the operation R;, of right multiplication by b on A commutes with
every element of D. We denote {R; : b € B} by R. In this section
we determine D', the commutant of D in the algebra of all bounded
operators on A, under the assumption that either e = 1 or B is of
restricted type 0. In particular, we show that D’ = R if and only if B
is of type 0. Thus, when B is of type 0, D’ depends only on B and not
on .

Let A; = B, Ay = Ke, A3 = K(1 —€). Then A = A; & Ay & As.
Relative to this direct sum decomposition, any operator 1" on A has the
matricial form (73;), 1 <4, j < 3 where Tj; : A; — A;. If A3 = {0},
then A, = K and the matricial form of T is a 2 x 2 matrix.

Theorem 4.1. Let A be a C*-algebra with unit 1, B a C*-subalgebra
with unit e, and ® a conditional expectation from A onto B.

(i) If St = {0} then T € D’ if and only if T has the matricial form:

R, 0 O
A R, B
X 0 Y

where t = T'1, Ry is right multiplication by t, Leq)A = Lee)X =0,
and Lg(q) commutes with B and Y, for all a € A. (Here L, denotes
left multiplication by = on the appropriate space.)

(il) If Sy = {0} and e is in the center of A, T € D' if and only if T
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has the matricial form

R, 0 O
0 R O
X 0 Y

where X and Y are arbitrary operators between the appropriate spaces.
(i) If B is of type 0, then T € D' if and only if T = R;.
Proof. If T € D', then for all a,z € A,

(4.1) T(®(a)z) — T(a®(z)) = ®(a)Tz — a®(Tx).

If a,x € K we see that a ®(Tz) = 0 so that ®(Tz) € S;. But S; = {0}.
Thus T'(K) C K, which implies that Ty = T13 = 0.

If we take x =1 in (4.1) we see that
T(®(a) — ae) = ®(a)t — a®(t).
If a = e we conclude that ®(¢t) = et. Thus,

T((®(a) — a)e) = ®(a)t — aet = (P(a) — a)et
= (®(a) — a)@(t) = (®(a) — a)®(t)e.

Since @((®(a) — a)®(t)) = 0 we see that T As C Ay and that T = R,
on Az. Thus, T22 = Rt and T32 =0.

Now for all a,z € A,

D,z = D,[®(z) + (z — (x))e+ z(1 — €)]
= (2(a) — a)®(z) + (a)(z — @(z))e + D(a)(2(1 - ¢))

so that the matricial form of D, is

0 0 0
—Li-3)a La 0
0 0 Lo

Since left and right multiplication operators always commute, we con-
clude that TD, = D,T implies

(@) —La-a)@)T11 + Law@To1 = —RiL_a)a
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(b) Laa)Tes = TazLa(a)
(¢) La@)Is =0
(d) Laa)T33 = T33La(a)-
However, if b, ¢ € B, (4.1) implies that

0 = T(D.b) = c(Tb — ®(Th))
= C(T21 + Tgl)b
so that Lg(q)(T21 + T31) = 0. Condition (c) thus implies that

Lga)T21 = 0 so that condition (a) becomes L(;_g)(q)(R¢ — T11) = 0.
ThU.S, Rtb —Ti1be Sy forallb e B, so 111 = R;.
Conversely, if T has the form given in part (i) of the theorem, direct

calculation shows that 7" € D'.

If e is central the (3,3) entry of the matrix for D, is 0 for all a € A.
Thus there is no condition imposed on T3; or T33. Also, for b € B,
z €A,

T21b = (T(b) — ®(Th))e = T'(b)e — ®(Th)

= eT'(b) — ®(Tb) = D, Th
= Tle - 0,

and, likewise,

Tos(x(1 —e)) = [T(2(1 —¢)) = D(T(z(1 —¢)))le
= (Tz)e — T(ze)e — ®(Tz) + ®(T(ze))
= [eTz — ®(Tx)] — [eT(xze) — ®(T(ze))]
= DT, — D, T(ze)
=DiT(x —xze) =TD;i(x —xe) =0

because e is central. Thus, T5; = To3 = 0.

Conversely, if e is central and 7" has the matricial form given in (ii) of
the theorem then T € D’ by direct calculation. If B if of type 0, e = 1,
so the matricial form given in part (i) of the theorem reduces to

R, O

A Ryl
Thus, the argument above shows that T5; = 0 for T € D’. Thus,
TeD =T=R,. o
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Corollary 4.2. D' =R if and only if B is of type 0.

Proof. Assume first that S; = {0}. Then by Theorem 4.1, D’ consists
of right multiplications if and only if B is of type 0, in which case
TeD =T=R; where t = T1 and ®(t) = et = ¢t. But then t € B,
so that D’ C R. Since the reverse inclusion is always true, we conclude
that if S = {0} then D' = R < B is of type 0.

Suppose now that S; # {0}. Then by Lemma 1.4 there exists b € B
with b # 0 and Kb = {0}. We may assume that b # Ae for any scalar
A: if e € 81, ® must be right multiplication by e, hence D = {0}. If
b% # 0, choose a continuous linear functional v on B such that y(e) = 1
and 7v(b) = 0. Define T" on A by the requirement that 7'(a) = v(®(a))b
for all a € A. Then for all a,c € A, D.T(a) = v(®(a))(®(c) —c)b =0
by the choice of b. Also T'D. = 0 since the range of D, lies in K. Thus
T € D'. But T is not right multiplication by any element of B. Indeed,
since T'(¢) = b, the only candidate is right multiplication by b, but
the fact that «(b) = 0 rules out this possibility. If b?> = 0, repeat the
argument with ~ satisfying v(b) # 0. o

Using Theorem 4.1 we can determine D’ whenever e = 1.

Theorem 4.3. Suppose that e = 1. Let H be the set of bounded
operators h : A — S such that h(K) =0. Then D' =R + H.

Proof. If T(xz) = xb + h(z) where b € B and h is as above, then a
straightforward calculation shows that T' € D’.

Suppose now that T' € D’. Taking a = 1 in (4.1), we have
T(x) = T(®(x)) = T(x) — 2(T(x))
SO0
(4.2) T(®(x)) = &(T(x)).
Thus TB C B. Taking = 1 in (4.2) we see that if t = T'(1) then ¢ € B.

Next recall that z € S & ®(a)x = ax for all a € A. Taking z € S in
(4.1) and recalling that S C B and hence TS C B, we have

T[®(a)z] — T[a®(z)] = ®(a)T(z) — aT'(z)
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and
®(a)z = ®(az) = a®(z).

Therefore, ®(a)T(z) = aT(z), ie., T(z) € S. Since TS C S, T
induces T on A/S defined by T(a) = T(a)". Clearly, T' commutes
with each operator D; defined in terms of the conditional expectation
$ : A/S — B/S of Theorem 2.10. But B/S is of type 0 in A/S.
Therefore, T'(a) = a(7'1) by Theorem 4.1, i.e., T(a) — at € S. Thus,
since § C B, T(a) — at = ®(T(a)) — ®(a)t = T(P(a)) — ®(a)t. For
z € A, let h(z) = T(®(z)) —P(x)t. Then h € H and T = R; + h. o

Remark. As an application of Corollary 4.2 and Proposition 2.10 we
can now give another proof that the center of D is trivial if e is central
in A. We note first that by Proposition 2.10 we need only consider the
case where B is of type 0. Then, by Corollary 4.2, every element D,
in the center of D is of the form Ry for some b € B, so for all z € A
we have D,z = zb. Applying ® to both sides yields 0 = ®(x)b. With
x = 1 we conclude 0 = b so that D, = 0. a

One of the curious properties of D which we would like to point out
is the fact that when B is type 0, “commutes with” is an equivalence
relation on a certain subset of D.

Theorem 4.4. Let G denote the set of invertible elements of B'.
Define the relation R on G by aRc if and only if ®(a)c = ®(c)a. Then
R is a transitive relation (and thus an equivalence relation) on G.

Proof. Assume that a, ¢ and d belong to G, ®(a)c = ®(c)a, and
®(d)c = ®(c)d. Then c®(a) = ®(c)a and ®(d)c = d®(c). This yields
®(a)a™t = c1®(c) = ®(c)c ! = d1®(d), or d®(a) = ®(d)a. One
more application of the hypothesis that d € B’ gives aRd. u]

In view of Proposition 2.2(i) and Theorem 2.7, we immediately have
the following

Corollary 4.5. If B is type 0, “commutes with” is an equivalence
relation on A(G).
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5. Invariant subspaces for D. Throughout this section, we assume
that B contains 1. We continue to denote ker & by K.

Theorem 5.1. Let & denote the collection of closed subspaces of B.
Let § denote the collection of closed left B-submodules of IC. Then, the
collection of closed invariant subspaces of D 1is

M={G+J:Ge®,JeF, and kG C J for all k € K}.

Proof. First consider G + J € 9 and a € A. For g € G,
D,g = [®(a) —a)lg € KG C J. For j € J, Dyj = ®(a)j € J. Thus
G + J is invariant under D. To see that G + J is closed, consider a net
Ja + jo with terms in G and J, respectively, which converges to z € A.
®(gy) converges to ®(z), so ®(z) belongs to G. Likewise, (I — ®)x
belongs to J.

Now let M be any subspace of A which is invariant for D. D; =
I-® € D, so ®M] C M. Consequently, ?(M] = M N B by the
idempotence of ®. Thus, ®[M] is closed. Likewise, (I—®)[M] = MNK
is closed. Take G = ®[M] and J = (I — ®)[M]. J is a left B-module
because for all b € B and j € J, bj = Dpj € M N K. Similarly, for all
keKandge G, Kg=—-Drge MNK. o

With basically the same argument, we have the following result.

Corollary 5.2. Let &; denote the collection of closed right ideals
of B. Let §1 denote the collection of closed B-bimodules contained in
K. Let F be the algebra generated by D and {Rp : b € B}. Then the
collection of closed invariant subspaces of F is M1 = {G+J : G €
&1,J €F1 and kG C J for all k € K}.

Remark. (i) Theorem 5.1 and Corollary 5.2 can be generalized to
other topologies on the space of bounded operators on A. What is
required is that A and B be closed and that ® be continuous. For
example, if 4 and B are von Neumann algebras and & is normal, then
the o-weak topology satisfies these conditions (see [2, page 53]).

(ii) When B is of type 0, F is the algebra generated by D UD'.
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In some cases the ideals and modules in the preceding results have
explicit characterizations. Then we have useful descriptions of all of
the invariant subspaces of D or F. (We continue to use F to denote
the algebra generated by D and {Rp : b € B}.) We now present some
of the most illuminating examples.

Ezample 5.3. Take A = L®[0,1], and let ®f(x) = [, f(¢)dt for all
z in [0,1]. Then G could only be {0} or C. In the latter case, the
condition G C J implies that the invariant subspace G + J is all of
A. In the case G = {0}, J can be any subspace of K = {f € L*[0,1] :
fol f(t)dt = 0}. Thus A together with all subspaces of K represent all
of the invariant subspaces for D or F.

Ezample 5.4. Consider the following modification of Example 1.9.
Let

A:{[é fﬂ EB(ijBfo):AeB(s’)),Kcompact}.

Define ® to be the diagonal map onto

o= {[4 %] e

Proposition 5.5. Under the hypotheses of Example 5.4, a norm-
closed subspace M of A is invariant for D if and only if there exist a
closed subspace N of 9, a closed subspace G of B(H), and a subspace
J of compact operators on $) such that

(i) Az =0 forallz € M and A € G,
(i) J ={K : K is compact and Kz =0 for all x € 9},

(iii) M:{{é Ij] :AegandKej}.

Proof. Write the general closed invariant subspace for D as G+ J, as
in Theorem 5.1. Then G has the form

o[t 21
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for some closed subspace G of B($)), and J has the form

(1 2w

where J is a closed left ideal in the algebra of compact operators
such that for all compact operators L, LG C J. By a theorem
of Kaplansky [4], there exists a closed subspace 91 of §) such that
J = {K : K is compact and Kz = 0 for all x € 91}. The condition
LG C J for all compact operators L is equivalent to the condition that
Az =0forallz €9 and all A € G. O

Remark. Under the hypotheses of Example 5.4, it follows immediately
from Corollary 5.2 that a norm-closed subspace M of A is invariant for
F if and only if M = {0} or there exists a norm-closed right ideal G in
B($) such that

M = {[}3 Iz] tAeg, K compact}.

Ezample 5.6. Assume that there exist minimal projections a, in B’
with o in a countable index set A such that Eae 4 0q = 1, the identity
operator. Fix S C A, and for each s € S fix T,, another subset of A.
Let M ={m e A: ®(m)a, = 0 for all & € S and a,mag = 0 for all
(a, B) such that 8 € S and o € Tg}. Then we call M a fundamental
subspace for F.

Theorem 5.7. Take A = B(9), and let B be a von Neumann
subalgebra of A such that B = B’ and the identity operator is a sum of
minimal projections from B. The set of tnvariant subspaces for F which
are closed in the o-weak topology is the set of fundamental subspaces
for F. This is also the set of invariant subspaces for F which are closed
in the weak operator topology.

Proof. The fact that B’ is atomic and commutative implies that @ is
normal [1, page 90]. From the same reference, note for use below that
one necessarily has

(5.1) ®(z) = Z agra, forall z e B(9).
a€A
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From the fact that the equation ®(m)a, = 0 can be rewritten as
aoma, = 0in this case, it is clear that a fundamental subspace is closed
in the weak operator topology (as well as the o-weak topology). Let A/
denote a fundamental subspace, and write G = @[N], J = (I — ®)[N].
It is easily verified that G is an ideal in B and J is a B-bimodule.
Consider £k € K and N € N. k®(n) = (I — ®)[k®(n)] € (I — ?)|N]
because ®(n)ag = 0 for all 3 € S. Thus, KG C J, so N is invariant
under F by Corollary 5.2.

Let M be a subspace of B($)) which is closed in the o-weak topology
and invariant for F. Define S to be the subset of the index set A for the
atoms such that ®(M)a, = {0} for & € S. For each « € S, define T, to
be the subset of A such that 3 € T, implies that agMa, = {0}. From
Corollary 5.2 and the following remark, M = G +J where G is an ideal
of B which is o-weakly closed, J is a o-weakly closed B-sub-bimodule
of  and kG C J for all k € K.

There exists a projection p € B such that G = pB [8, page 81]. For
a ¢ S, there exists m € M such that ®(m)ay, # 0. ®(m) € G,
so pa, # 0. Then anp = pa, = a, because a, is an atom in
B. Thus, p = > ,c4@aP = D ocge Ga- It follows that G is exactly
{beB:ba, =0 for a € S}.

Now we claim that J = {j € K : anjag = 0 for all (a, ) such that
B € S and a € Tg}. Denote the latter set by L. Clearly, J C L.
For each («,f), aqJag is a o-weakly closed B-bimodule of the set
of all bounded linear operators from the range of ag to the range
of a,. Denote the range of a, by H, for each a € A. From (5.1),
aaB(9)as C B (and likewise with « replaced by 8). From this and the
fact that J is a B-bimodule it follows that if anJag contains a nonzero
operator it contains every finite rank operator in a,B($))ag. It then
follows from o-weak closure that a,Jag = aoB($)ag except for those
(o, B) such that apJag = 0. In the latter case, &« = B or 5 € S because
otherwise (a.B(9)ag)(asGag) # {0} would contradict the fact that
KG CJ. If B €S, then o € T3 by definition of T3. Thus, J = L.

It now follows from the fact that M = G + J that M is the
fundamental subspace corresponding to the sets S and {Ts : 8 € S}.
O
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Note added in proof: The characterization of the spectrum of D, as
o5/, ([®(a)]) U {0} has now been obtained in full generality, because
the authors have shown that invertibility of Lg(4) is always equivalent
to invertibility in £. (see the remark following Corollary 3.14).
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