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ON THE ABSOLUTE SUMMABILITY FACTORS
AND ABSOLUTE SUMMABILITY METHODS

HUSEYIN BOR

ABSTRACT. In this paper we have proved two theorems on
the absolute Cesaro and weighted mean summability methods.
These theorems include some known results.

1. Introduction. Let ) a, be a given infinite series with partial
sums (s,). We denote by w2 and t< the nth Cesaro means of order «,
with a > —1, of the sequences (s,) and (na,), respectively, i.e.,

n

1.1 we = — A% Llg
n Aa n—uv

=0
1 n

(1.2) == DAY tva,
n »=0

where

(13) 5= (") 0w

a> -1, g =1 and A% =0
for n > 0. The series ) a, is said to be summable |C,a|x, k& > 1,
a > —1,if (see [10])

(1.4) S nF g — wi_y |F < oo

n=1

and it is said to be summable |C, o;6|k, k > 1, « > —1 and § > 0, if
(see [11])

o0
(1.5) D R — g |F < oo

n=1
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But since t2 = n(wg —w&_;) (see [12]) the condition (1.5) can also be
written as

oo
(1.6) > ek < oo
n=1

Let (¢,,) be a sequence of complex numbers. The series ) a,, is said
to be summable ¢ — |C, a|x, k > 1, if (see [1])

(1.7) Zn_kwntmk < 00.

n=1

In the special case when ¢, = n' Yk, respectively ¢, = not1-1/k,
¢ — |C, a|i summability is the same as |C, a|k, respectively |C, «; §],

summability.

Let (p,) be a sequence of positive real constants such that

n
Pn:va—>oo as n — 00,
v=0
P_i:p_i:[], ZZ].

(1.8)

The sequence-to-sequence transformation

l n
(19) T, = P_nvz:%pvsv

defines the sequence (T},) of the (N,p,) means of the sequence (s,),
generated by the sequence of coefficients (p,,). The series ) a,, is said
to be summable |N,p,|k, & > 1, if (see [2])

(o]

(1.10) > (Pa/pa)f AT, |F < 00

n=1

and it is said to be summable |N,p,; 6|k, k > 1 and § > 0, if (see [4])

o0

(1.11) D (Pu/pa) AT, < oo,

n=1
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where

P
1.12 AT, = — N Piya,, > 1.
(1.12) 1 Pob ;2 1a n >

2. Preliminary results. Bor [6] proved the following theorem for
¢ — |C, 1| summability methods.

Theorem A. Let (X,,) be a positive monotonic nondecreasing se-
quence, and let (\,) be a seqgeunce such that

(2.1) XpAn =0(1) asn —

(2.2) ZvXU|A2)\U| =0(1) asn— 0.
v=1

If there exists an € > 0 such that the sequence (n° *|p,|¥) is nonin-
creasing and

(2.3) Zvikwvtﬂk =0(X,) asn — oo,

v=1

then the series Y ap A, is summable ¢ — |C, 1|, k > 1.

It should be noted that, under the conditions of Theorem A, we have
that

(2.4) AN, — 0 asn — oo.
It is known that the summability |C, a; 6|, and summability [N, p,; 6|
are, in general, independent of each other. For @ = 1 Bor [5] has es-

tablished a relation between the |C,1;6|; and |N,p,; 8| summability
methods by proving the following theorem.

Theorem B. Let k > 1 and 0 < 0, < 1. Let (p,) be a sequence of
positive real constants such that as n — oo,

(2.5) P, =O(np,) and np, =O0(P,).
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If the series Y. a, is summable |N,pp; 6|k, then it is also summable

|Ca 17 5|k .
If we take 0 = 0 in this theorem, then we get a result due to Bor [3].

3. The main results. The aim of this paper is to generalize the
above theorems in the form of the following theorems.

Theorem 1. Let k > 1 and 0 < o < 1. Let the sequences
(Xn) and (\,) be such that conditions (2.1)—(2.2) of Theorem A are
satisfied. If there exists an € > 0 such that the sequence (n° *|p,|*) is
nonincreasing and if the sequence (u2), defined by

%], a=1
(3.1) us = { " N
maxi<y<n 15, 0<a <1,

satisfies the condition

(3.2) Zv_k(uﬂcpvbk =0(X,) asn— oo,

v=1

then the series Y ap\, is summable ¢ — |C, ay.

If we take a = 1 in this theorem, then we get Theorem A. Further-
more, if we take o = 1 and ¢, = n!~1/* then we get a theorem due to
Mazhar [13] concerning the |C, 1|, summability factors.

Theorem 2. Letk >1,0< a <1 and 0 < < 1. Let (p,) be a
sequence of positive real constants such that condition (2.5) of Theorem

B is satisfied and let (T,) be the (N, p,) mean of the series > a,. If

(3.3) > (Po/pp) FHE R AT, |F < oo,

n=1

then the series Y an is summable |C, a;0|.

It should be noted that, if we take o = 1 in this theorem, then we get
Theorem B. In fact, in this case condition (3.3) reduces to the condition
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(1.11). Also, if we take § = 0 in this theorem, then we get a result due
to Bor [8].

4. Needed lemmas. We need the following lemmas for the proof
of our theorems.

Lemma 1 [9]. f0<a<1and1 <wv <n, then
> Axla, > oAy ta,
p=1 p=1

where AY is as in (1.3).

< max

(4.1) < max

?

Lemma 2 [7]. If the conditions (2.1)—(2.2) of Theorem A are
satisfied, then

(4.2) D Xu|AN,| < 00
n=1
(4.3) nXp|AX,| =O0(1) as n — oco.

Lemma 3 [14]. Ifo > § >0, then

> n—uv p-1
(4.4) > (n=v _ O(’7).

ne
n=v+1

5. Proof of the theorems.

Proof of Theorem 1. Let T be the nth (C, a) means of the sequence
(napAy), with 0 < o < 1. Then, by (1.2), we have that

1 n
(5.1) T =ta > AST vay A,
n =1
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Using Abel’s transformation, we get
1 n—1 v
Ty = DA\ AT pay
n oy=1 p=1
)\n - a—1
e ; A% Lva,,

so that making use of Lemma 1, we have

n

-1
g AnT va,

v=1

o] Pl
A

[e4
n

\Tﬁ‘\< Aa PP

< AO‘ ZA o AN + [Ap |ug

=T7 + Tn,g.
By Minkowski’s inequality for & > 1, to complete the proof it is
sufficient to show that

(5.2) > n ke, T F < oo forr=1,2, by (L7).

n=1

Now, when k > 1, applying Holder’s inequality with indices k and &/,
where 1/k + 1/k' = 1, we get that

m+1 m+1 n—1 k
>ttt = 3 nh ’“I%I’“{ZASUSAM}
n=2 v=1

m+1

<Zn (A7) " onl*

{§<As>’“<u3>kmv|} x {Z Axv}k_l
o

Zn n= e, \kaak VEIAN, |
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S SR lealt
3 eerian 3 Jad
v=1 n=v+1
m m—+1 s|(,0
Z |A)\ ‘ Z ak+k+5
v=1 n=v+1
m m+1 E k\tp
20(1)2 )¥1AN| Z ak+:
v=1 n=v+1
m m+1
= 0 Y vt @M AN e Hpu [ Y
v v v nok+e
v=1 n=v+1
N ko . [ dz
DY ekl hHaN et [T
v=1 v
= 0(1) > vl AN Jo " (ug|pu])*
v=1

m—1 v
1) Y A@AND DY (ule. )
v=1 r=1
m\A/\m|Zv u® |, |)*

m—1
= 0(1) 3 IA@IANDIX, + O(L)m| AN X
v=1

m—1
1)) wX,|A%),|
v=1

m—1
+0(1) Y 1AN Xy + O(1)m| AN, [ X,
v=1
=0(1) asm — oo,
by virtue of (3.2), (4.2) and (4.3). Since A\, = O(1/X,,) = O(1), by
(2.1) we have that
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m

m
> enTiol® =D al Al " (ullon))*
n=1

n=1

=0(1) Y [Aaln™" (uplen))®

AlA, Izv_k ul|po|)*
m|Zn L

=o( )Z [AA] X + O(1) [ A | X

m — 00,

by virtue of (2.1), (3.2) and (4.2). Therefore, we get that
Zn*k|g@nTr‘j‘7r|k =0(1) asm — oo forr=1,2.

This completes the proof of Theorem 1. |

If we take ¢ = 1 and ¢, = ndt1-1/k

result for |C, a; §|;, summability factors.

in this theorem, then we get a

Proof of Theorem 2. Let t% be the nth (C, ) means of the sequence
(nay), with 0 < a < 1. By (1.12), we have that

P, P,
(5.3) ap = ——LAT, 1 + 22

n Pn—1

AT, _o.
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If we put (5.3) in (1.2), then we have that

o 1 - a—1 PU PU—2
£ = o Z;Amv( - 2AT,_, + ATv_2>

Do DPv—1

nP, o 1P
= pnAaATn 1+—Z V)45, T E AT,

n

1 P’U—2
+—) vAZ! AT,_
A% ; Pv-1 2

P,
= pAATn 1+—Z Aal ATDI

n—1

1 a— Pv—l
+ as D (w+1)AnT) o ATy

v=1

= pAATn1+—Z Lar,_,

{(—oP,AYZ, + (v + 1) AT, Py}
Since
— 0P, ApZ 4+ (v+ )P 1 AT,

= —UPUAUAz,}, — Uvaa T PvflAz;l)fl

we have

AT Z AA“IATUI

n op=1

pnA”‘

- ZvAg AT,

”Ul

_Z S 1A2 11; 1ATv—1
T" v=1
=ty ttno+ tz,s +itna
By Minkowski’s inequality for & > 1, to complete the proof it is
sufficient to show that

(5.4) > e |F < oo, forr=1,2,3,4, by (16).
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First we have that

m m nP k
E Sk— E ok—

n k 1‘t571|k = n k-1 p—f{;ATn_l
n=1 n=1 ntn

=0(1) > n*EY(P, /p,)En k| AT, |F
n=1

=0(1) Z(Pn/pn)6k+(2_a)k_1|ATn71|k =0(1)
n=1

as m — 00,

by virtue of the hypotheses of Theorem 2.

If a =1, AA"! = 0, hence tho=0. If 0 < a <1 we have, since
k > 1, by Holder’s inequality,

m+1
Zn6k71 ‘t572|k
n=2
m—+1 1 n—1 k
<3 Y (R aA AT
n=2 n

v=1
n—

=0(1) :i; n5kak1{ U_I (P, /py)*(n - v)“IATv_ll’“}
X { nil(n - v)"‘z}k_1

v=1

m+2 n—1
=0(1) > n“a“{ > 0*(Py/py)F(n - v)“2|ATv_1|’°}

v=1
o~k k k = (n—wv)*?
= O(l)Zv (Po/po)"|ATy— | Z nltak—ok

v=1 n=v+1

— O(l) ZUk(Pv/pv)k|ATU,1|k06k_ak+a_2

— O(].) Z,UékJrkfl(Pv/pv)k,ufak|ATv_1|kva71‘
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Since v*~! = O(1) when 0 < o < 1. Hence

m+1 m
Z nék—luzﬂ\k Z /p k+(2 a)k— 1|AT |
n=2 v=1

=0(1) asm — oo,

by virtue of the hypotheses of Theorem 2 and Lemma 3. Also, we have
that

m—+1 m+1

n—1 k
DI S T {szz LAIAT, )
v=1
m—+1 n—1 k
= Z ok 1 YOk {ZUA“ AT, 1}
v=1
m—+1
Znék 1 {kaAz 1|ATU 1|k}
1 n—1 —1
a—1
{Aa ZA }
n oy=1
m—+1
a 1
~on3 e vt an )
n=2
o k sy (n—v)*t
N FIAT A Y not+1-ok
v=1 n=v+1

I)ka|AT _1|FotRt
v=1

Since 1 — a > 0 and k > 1, we have that 1 < v(!=®*_ Thus,

m+1

Z nék—l‘tg13|k — O(l) Z’l}k|ATv,1‘k’U6k_1v(1_a)k
n=2
_ O(l) Z ’Uék+(2_a)k_1‘AT1},1|k

=0(1) i(Pv/pv)‘”“*(z*“)’“*l|ATU_1\ =0(1)
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as m — 00, by virtue of the hypotheses of Theorem 2 and Lemma 3.
Finally, we have that

m+1 n—1 P k
SRECHIED S )k{z A AT
n=2 n v

v=1
m+1 n—1 k
=00 Y a2 P/ AL ATl
n=2 v=1

m+1 n—1
—0) Y e | (P /m A LAT
n=2 v=1
1 n—1 k—1
a—1
Aoy o

n oy=1

m+1

—0) Y. s | S (Pl -0 ATl

v=1

3
[V

m+1 a—
(P, /po)¥| AT,k Z (n—v)*
v/ Puv v—1 na+175k:

n=v+1

M3 I

—0(1)

Il
-

v

(Pv/pv)k|ATv,1|kv6k_l.

NE

= 0(1)

Il
-

v
Hence, as in 7, 3, we have that

m—+1

Znék 1|t 4|k

Z Pv/pv)k|ATv,1|kU6k_1’U(1_a)k
v=1
)

o)y (
= O(1) Y (Po/po) ==Y AT, 4|}
=0(1) ) as m — 00

by virtue of the hypothese of Theorem 2 and Lemma 3. Therefore,
(5.4) holds. The case k = 1 can be dealt with in a similar manner.
This completes the proof of Theorem 2. o
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