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ULTRAFILTERS OVER N AND OPERATORS ON L!
MINOS A. PETRAKIS

Introduction. Let X be a Banach space. Bx denotes the unit ball
of X and X* denotes the dual of X. Let (2, X, 1) be a probability space.
We denote by L!(x) the Banach space of all y-integrable functions with
the usual norm. L' denotes the space of Lebesgue integrable functions
on the unit interval [0,1]. For a nonnegligible subset A of Q, P(A)
is the set {f € L'(u) : f > 0,supp(f) C A and [ fdu = 1} of all
probability densities supported in A.

A tree in X is a bounded family (z,%), n =0,1,..., k=1,2,...2"
of elements of X verifying ., = (Tn+1,26—1 + Tnt1,2¢)/2 for each
n=012,...,k=1,23,...,2"

A O-tree is a tree verifying ||zp41,26-1 — Tnt1,26/] > 6 for each
n=01,2..., k=12 2"

A 6-Rademacher tree is a tree (z,, 1) verifying || 2211(,1)k+lxn7k|| >
a2,

Let Iz = [(k—1)/2%,k/2"], n = 0,1,2,... ,k = 1,2,...,2" and
bk = 2" - X, where X, 1, is the characteristic function of the dyadic
interval I, ;. If T : L' — X is a (bounded) operator it is clear that
(T(hnk)), n=0,1,2,..., k=1,2,...,2" is a tree in X. Conversely,
every tree (zp ) in X produces an operator 1" : L' — X such that
T(hpi) = Tnp,n=0,1,..., k=1,2,...2".

An operator T : L'(u) — X is called Dunford-Pettis if it maps weakly
convergent sequences in L!(x) into norm convergent sequences in X.

A Banach space X has the complete continuity property if every
operator from L! into X is Dunford-Pettis.

In [2] it is proved that if T : L' — X is an operator and ||T'(r,,)|] > 2e
for some L*°-bounded sequence (r,) and some ¢ > 0, then there exists
a set A of positive Lebesgue measure such that limsup,, ||T'(r,,- f)|| > €
for all f in P(A). This result was used in [2] and [4] in the construction
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of certain trees in Banach spaces. Later many authors [12, 16, 10]
used variations of the above constructions. In this paper we present
some more variations on the same theme. We are led naturally to the
following result:

Theorem 7. If the Banach space X fails the CCP, then there is a
subspace Z of X such that Z has a finite dimensional decomposition

and contains a d-tree which is also a §-Rademacher tree. In particular,
Z fails the CCP.

This result answers a problem posed to the author by Professor
S. Argyros in May, 1992. This result was also obtained by M. Girardi
and W.B. Johnson.

In Proposition 1 and Corollaries 2 and 3, we use ultrafilters over the
set N of the positive integers. For anything on ultrafilters, we refer to
[7, 18, 14]. All other notation and terminology are as in [8].

Proposition 1 (and its proof) is similar to Proposition 5 in [2].

Proposition 1. Let T : L'(u) — X be a bounded operator
e >0 and (r,), n =1,2,..., a bounded sequence in L (u) such that
[|T(r)|| > 2. Let U be a free ultrafilters over the set N of the positive
integers. Then there exists a set A in ¥ with u(A) > 0 such that
limy ||T(r f)|| > 4¢/3 for every f in P(A).

Proof. Let (z¥), n = 1,2,..., be a sequence in X* such that
[lz£|| = 1 and 2% (T (rs)) = ||T(rn)|| for each n in N. Consider the
set K ={f € LY (u): f>0andlimyz}(T(r,)) < (4/3)e-||fll1}-

K is a closed convex cone, and the constant function 1 on 2 does
not belong to K. By separation there exists g in L®(u) such that
fg > [gf for each f in K. Since 0 belongs to K, we have that
J g > 0 and therefore the set A = {z € Q : g(z) > 0} has positive
p-measure. If f € I, then n - f belongs to K for each n in N so
J fg < [(1/n)g. This means that [ fg <0 for all f in K. It is clear
that if f is a probability density in P(A), then f does not belong to K
and limy z% (T (rnf)) > 4¢/3. Therefore, limy ||T(r, f)|| > (4/3)e for
every f in P(A). o
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Corollary 2. Under the assumptions of Proposition 1 given any
finite number fi, fa,..., fa of elements of P(A), there is an infinite
subset N' of N such that ||T(rnf;)|| > € for every n in N’ and for all
i=1,2,3,...,d. Moreover, if the space L'(u) is separable, there is a
subsequence (1)) of (r,) such that liminf,, ||T(r] f)|| > € for every f in
P(A).

Proof. Let U; = {n € N : ||T(rnfi)|| > ¢}, i=1,2,...,d. Every U;
belongs to the ultrafilter U and therefore the set N' = U;NU;N---NUy
is an element of U. Since U is a free ultrafilter, the set N’ is infinite.

To prove the second statement, let (¢;), i = 1,2,..., be dense in an
L(p) norm sequence in P(A). Set V; = {n € N : |[|T(rnpx)|| > 4¢/3
for all ¥ < i}, ¢« = 1,2,.... Note that each V; belongs to the
ultrafilter U and V;4; C V;, ¢ = 1,2,.... A diagonal argument

produces an infinite subset N” of N such that, for every 7 in N,
all but finitely many elements of N’ belong to V;. Suppose that
N'"={ki <ka <+ <kp<---},andlet r, =m,,n=12,....
It is clear that ||T'(rl,¢:)|| > 4e/3 for all but finitely many n in N.
Let f € P(A). We can find ¢; so that ||f — ¢;|| < (¢/3M)||T||~*
where M is a uniform bound of the sequence (r,). Now ||T(r], f)|| >
|T(rle)ll = IT((wi — f)rl,)|| > € for all but finitely many n in N. We
have proved that liminf,, ||T'(r}, f)|| > € for all f in P(A). O

Remarks. (i) It has been noted by several people that the second
statement of Corollary 2 follows from Proposition 5 in [2] and a diagonal
argument. We note that the set N” in the proof above can be taken
to belong to U in case the ultrafilter U is a p-point. Under Martin’s
axiom p-points (in fact, Ramsey ultrafilters over N) exist (see [14, pp.
257-259]).

(ii) Let (X)u be the ultraproduct of the Banach space X. If
z = (z;), ¢ = 1,2,..., is an element of (X)y the norm of z is the
quantity limy ||@;|| (see [13]). Let T" be as in Proposition 1. Consider
the operator S : L'(u) — (X)u defined by S(f) = (T'(rnf)), f € L.
Proposition 1 says that ||S(f)|| > 4¢/3 for every f in P(A).

If K is a subset of the Banach space X, z* € X* and a > 0, we
denote by S(z*, K, a) the slice {z € K : z*(z) > a} of K.
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Corollary 3. Let T : L'(n) — X be an operator. Consider the set
K =T(P(Q)) of the images of the probability densities of Q. Suppose
that xz; € Bx,n=1,2,..., anda >0, > 0.

Let (Sp), n = 1,2,...,8, = S(zf,K,a) be a sequence of slices of
K such that NS(z),K,a+¢€) # @. Then there exist a subset A of Q
with p(A) > 0 and an infinite subset N’ of N such that for all f in
P(A), T(f) is contained in S,, for all but finitely many elementsn € N'.

Proof. Suppose h € P(f) such that T'(h) € S, (2}, K,a+¢) for all n
in N. This means that z}(T(h)) >a+ecforn=1,2,.... Let U be a
free ultrafilter over N. Consider the cone K = {f € L!(u) : f > 0 such
that limy 2 (T(f)) < a-||f||1}. Note that h does not belong to K since
limy z} (T'(h)) > a. There exists g € L°°(p) such that [hg > [ fg for
every f in . We can proceed now as in the proof of Proposition 1.
O

Remark. Note that Corollary 3 implies that every slice of T'(P(Q2))
contains T(P(A)) for some nonnegligible subset A of Q. This result
is Lemma 1.2 of [3] and therefore Corollary 3 can be considered as a
variation of it. (See also [11]).

It is known [2] that if a Banach space fails the complete continuity
property, then X contains a é-tree. It is also known [9, 10] that
separated trees (see [9]) for a definition) and §-Rademacher trees grow
in any space that fails the CCP. We have shown in [15] that a slight
variation of the arguments in [16] gives that if X fails the CCP, then
there exist a § > 0 and a closed bounded subset K of X such that
every convex combination of slices of K contains a §-tree. The next
proposition is related to all the results above.

Proposition 4. Let X be a Banach space that fails the CCP. Then
there exist a closed conver bounded subset K of X and a § > 0 such
that every convex combination of slices of K contains a §-tree which is
also a 6-Rademacher tree. In particular, any weakly open set V so that
VNK # @ contains such a tree.
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Proof. Since X fails the CCP, there is an operator T': L' — X and
an £ > 0 such that ||T'(r,,)|| > 2¢ for all n in N, where now (r,) is a
weakly null sequence in L'. We may assume (see [2, 16]) that each r,
is a simple function and |r,| < 1 for all n in N. The construction of
the tree in X is similar, of course, to the standard construction in [2].

By Corollary 2 there is a subsequence of (r}) of (r,) and a set
A C [0,1] with m(A) > 0 (here m denotes the Lebesgue measure
on [0,1]) so that liminf, ||T(r},f)]| > € for all f in P(A). Let
K =T(P(A)). Let S1,Ss,...,S4 be (nonempty) slices of K and ¢; >0
such that Z?:l ¢; = 1. We claim that the set Z?:l ¢;S; contains a -
tree which is also a §-Rademacher tree. For each i = 1,2,... ,d there
exists a set 4; C [0, 1], m(A4;) > 0 such that T(P(A4;)) C S; (see the
Remark after Corollary 3). We may assume that the A;’s are disjoint
subsets of the set A. Let wo 1 = Z?:l c; - p* where p' = X, /m(4;).
Clearly T'(wo,1) belongs to Zle ¢ - S;. Suppose now that ws,; for
some n in N and all £k = 1,2,...,2" has been constructed such that
Wp k= Zle ci -pihk, where pﬁl’k, 1=1,2,...,d,k=1,2,...,2" are
simple functions in P(A;). For every n > 0 there exists a function 7/, in
the sequence (7)) such that ||T'(w, k7},)|| > ¢ for all k = 1,2,...,27,
[ Pl jrm < m and (2", wnk) - 7)|] = 27e. Although the integral
fpilykr;n can be made as small as we wish, it might not be equal to 0.
However, a perturbation argument in [16] shows that we can replace
r;, by a function g, close to r/, in L® norm such that fpil,kgm =0.
(If A, is the finite algebra generated by the simple functions {pfhk},
i=1,2,...,d,k=1,2,...,2" asin [16], one can set g,, = r/,, —E(r! |
A,). It follows that ||E(r],|An)|lcc — 0 as m — o00.) Assume for
simplicity that fpilykr;n =0,1=1,2,...,d, k=1,2,...,2". Now set
Wnt1,26—1 = Wn k(1 4+ (1/3)r),) and wpi1 2k = W k(1 — (1/3)7],), k=
1,2,...,2". Note that both the wy41,2k—1 and wy—1 2 are of the form
Z?zl c;p* where each p’ is a simple function in P(4;), i =1,2,...,d.
Clearly, the system (I'(wnk)), n =0,1,..., k =1,2,...,2", is a tree
inside Zle ¢;-Si. Since ||T(Wn=1,2k—1 — Wn+1,2)|| > 2¢/3, we see that
(T'(wn,k)) is a d-tree for 6 = 2¢/3. Now notice that
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on

Z T(Wpt1,2k — Wrt1,2k)

_ _ HT<<,§(2/3)“’””“> -r7'n> H > (2/3)e2".

Therefore, the §-tree (T'(w,, 1)) is also a é-Rademacher tree.

It is known (see [6] that if V is a weakly open set of X such that
KNV # & then V contains a convex combination of slices of K. This
proves the last statement of the proposition. u]

The next proposition is similar to Lemma IL5 in [12].

Proposition 5. Let T be a non Dunford-Pettis operator from L'
into a Banach space X. Let S be an operator from X into a Banach
space Y such that ST is a Dunford-Pettis operator. Then there exists
an operator W : L* — X such that the system (W (hy,x)), n =0,1,...,
k=1,2,...,2" is a §-tree and a §-Rademacher tree for some § > 0 (so
in particular W is not Dunford-Pettis) and the operator S-W : L* — X
is Bochner representable.

Proof. In [12] it is proved that, under the assumptions of Proposition
5, there exists a 0-tree (z,%) in X so that the dyadic martingale
corresponding to the tree (S(z, x)) converges almost everywhere. Using
Corollary 2 the tree (z, %) can in fact be constructed to also be a J-
Rademacher tree. The operator W is the operator associated with the
tree (zn k) by W(hn i) = Tnk, n=0,1,..., k=1,2,...,2" i

For the next propositions we need some notations: If a Banach space
X is contained in a space Y (e;), i = 1,2,..., is a basis for Y and
e > 0, p < q integers, z € X, we write z & e;[p, g;¢| if there exist
scalars ¢;, i = p,p+1,...,q so that ||z — Y1 cie;|| < e. If (znp),
n=0,1,..., k =1,2,...,2" is a tree in X, we denote by d,  the
differences 41,261 — Tnt1,26. These differences are called the nodes
of the tree.
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In [16] it is proved that if a Banach space X fails the CCP, then X
contains a d-tree (z, ) such that the sequence do1,d1,1,d1,2,d21,. ..
of the nodes of this tree is a basic sequence. The next proposition is in
the same spirit.

Proposition 6. Suppose that the Banach space X is contained in a
space Y with a basis (e;), i = 1,2,..., and that X fails the CCP. Let
(en), n=0,1,..., be a sequence of positive reals so that e, — 0. Then
there exist a d-tree (xn 1) in X, n=0,1,2,..., k=1,2,...,2" which
is also a §-Rademacher tree and a sequence pg < qo < p1 < q1 < --*
of positive integers so that for each n =0,1,2,..., the nodes d, 1 have
the property that dp, ; & €;[Pn, qn;en) for all k=1,2,...,2™.

Proof. Let T : L' — X be an operator so that ||T(r,)|| > 2-¢
for all n = 1,2,..., where (r,) is a weakly null sequence of simple
functions in L! and ¢ > 0. We may assume that |r,| < 1 for all n
in N. By Corollary 2 there is a set A C [0,1] with m(4) > 0 and a
subsequence of (r,) (which for simplicity is also denoted by (r,)) so
that liminf, ||T(r,f)|| > € for all f in P(A).

Let wo1 = Xa/m(A). The sequence (T (wp17,)) converges weakly
to 0 in X and ||T(wp,175)|| > € for all but finitely many n in N.
Choose k; in N and pg,qo in N such that T'(wo1; 7k ) &~ €;[po, qo; €o)
and [ wo,1-7, assmall as we wish. In fact, as in [16] and in the proof of
Proposition 4, we may assume that this integral is actually zero. Define
now wi 1 = wo,1(1+(1/3)7k,), w12 = wo,1(1—(1/3)rg, ), and note that
w11, w2 are in P(A). Now find k2 and p1,¢1, p1 < ¢1, p1 > ¢o in
N so that T(’U)l’l . Tkz) ~ ei[pl,ql;sl], T(’LULQ . Tkz) =~ 6,’[])1,(]1;51],
[T (wiark,)I| 2 €, [T (wi2mes)ll 2 &, [[T((w1,1 + wi2)re,)|| = 2¢ and
f W11 Tk, = f w127k, = 0. We can continue in this manner to construct
a tree (wy, ) in L' so that the tree (T'(w,x)) has the properties in the
statement of Proposition 6. u]

A refinement of the arguments in the proof of Proposition 6 gives the
following:

Theorem 7. Suppose the Banach space X fails the CCP. Then
there exists a subspace Z of X such that Z has a finite dimensional
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decomposition and contains a é-tree which is also a §-Rademacher tree.

In particular, Z fails the CCP.

Proof. Assume that X is separable. We consider X as a subspace
of the space C[0,1] of the continuous functions on [0,1]. Let (e;),
i =1,2,... be a basis for C[0,1]. We denote by (e}),i=1,2,..., the
sequence of the biorthogonal functionals associated to the basis (e;).
Let ¢ > 0 and T : L' — X be an operator so that ||T(r,)|| > 2¢
for al n = 1,2,... where now (r,) is the sequence of the Rademacher
functions on [0,1]. Let A be a subset of [0,1] of positive Lebesgue
measure and (r],) a subsequence of (r,,) such that liminf,, ||T(r] f)|| > €
for f in P(A). We first prove the following claim (see Lemma 18 in [5]
or Lemma 1.6 in [1]): Given p in N, w in L', ¢’ > 0, there exists an s
in N such that if s > sq there exists a y in L' with ||y|| < &’ so that
ef(T(wrs +y)) =0forall i =1,2,...,p. To prove the claim, consider
the map u : L' — RP, ||-|* given by u(f) = (e (T(/)), .. ,e5(T(£)),
for f in L'. Let F = u(L"'). There is a subspace E of L!, dim F < oo
so that u(F) = F. By the open mapping theorem, there is a ¢’ so
that B(0,0") N F C u(E N B(0,¢’)). Find sy large enough such that
lef(T(w-7rs))| < ¢ foralli=1,2,...,pand s > so. For every s > s,
there is a y in ENB(0,¢’) so that u(wrs) = u(—y). Therefore, ||y|| < &
and ef (T (w-rs+y))=0foralli=1,2,...,p.

We construct a tree (wy, ), n=0,1,...,k=1,2,...,2" in L' and a
sequence of finite dimensional subspaces of X so that F,, = [dpk, k =
1,2,...,2"] where d,r = T(Wpt1,26—1 — Wnt1,2k), » = 0,1,2,...,

k=1,2,...,2" are the nodes of the tree (T'(w,x)) in X. We give the
first few inductive steps of the construction: Let (¢,,), n =0,1,2,...,
be a sequence of poistive reals so that Y .~ &, < 1/(2C) where C
is the basis constant of the basis (e;). Set wp; = Xa/m(A). Find
po in N so that ||T(wo1) — D52 ef (T (wo,1))eil] < €o. Find sp in N
and yo,1 in LY, ||yo]| < €/2 so that ||T(wo1 - 7s, + Yo,1)|| > /2 and
eX(T(wo7s, + Yo,1)) = 0 for all ¢ = 1,2,...,pp. This is possible by
the claim and Corollary 2. Also note that sy can be chosen so that by
perturbing if necessary the ry, as is done in [16] (and in the Proof of
Proposition 4) we may assume that fw0,1 -5y = 0.

Now set

1 Yo 1 Yo
w1,1 = Wo,1 <1 + 57“30) + bR w12 = Wo,1 <1 - 57“30> D)
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and note that ||dy1|| > /2 and e} (dy1) =0 fori =1,2,...,po. Also
note that the positive functions

1
wo,1 <l + 57'5())

belong to P(A). We set F_y = [T(wo1)] and Fy = [dp1]- There
is a p1 > po such that if = belongs to the unit ball Bp, of Fp,
then |lz — Y71 ef(z)es]| < e1. Again, by the claim, Corollary 2
and a perturbation argument as in [16], we can find s; > sy and
Y1,1,y1,2 in L* such that |[yo,1|| + [|y1,1]] + [|y1,2]] < €/2 such that
the vectors T(wi - s, + y1,6), K = 1,2, have norms > ¢/2 and
efT(wig -7s; +y16) = 0, ¢ = 1,2,...p1, k = 1,2 and the vector
T((w1,1 + wi,2)rs, +Y1,1 + y1,2) has norm > 2-¢/4. Now defining

1 1
W2,1 = W11 (1 + —Ts1> + &, W22 = W11 <1 ——r > _

2 2 2 S1 9 )
1 y172 1 y1,2
W2,3 = W1,2 <1 + 57'51) + Ta W24 = W12 <1 — 57'51) — T,

we may assume that the nonperturbed part of the functions wa m,
m =1,2,3,4livesin P(A). Note that dj 1, d; 2 have norms greater than
e/2 and ef(d1 k) = 0for i =1,2,...,p; and k = 1,2. Also note that
[|[di1 + di2|| >2-¢/4. Let Fy = [di,1,d1,2]. The compactness of By,
implies that we can find p, > py such that ||z — 372 e*(z)e;l| < /2

for all z in Bp,. Find s2 > s; and ya1, k = 1,2, 3,4, so that
(i) the vectors T(waf - Ts, + y2,;) have norm > /2,
(ii) ef(T(wokrsy+y2,k)) =0,foralli =1,2,... ,ppand k =1,2,3,4,

(iii) the vector T((Z:i:1 Wa i )Ts, —i—Zi:l Y2,k) has norm greater than
22 .¢/4,

(iv) yo,ull + llyrall + - + lly2.4]] <e/2,
(v) the integrals [wo ) -7s, =0, k=1,2,3,4.

To ensure the last condition (v) we may have to perturb the r,, in the
sense of [16] as we have done in the proof of Proposition 4.
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Set
1 Y2,1
w31 = Wa,1 (1 + 57“52) + R
w32 = W 1- lr - 22t
3,2 2,1 5 7s2 5
1 Y2,2
w33 = W2 (1 + 57“32> + IR
W3 g = W 1 lr _ %2
3,8 2,4 o 52 9
Let Fy = [da,;1,d2,2,d2,3,d2,4]. It is clear now how we construct by
induction the spaces F,. The space Z = UF,, has an F.D.D. and
contains an £/2-tree which is also an ¢/4-Rademacher tree. O
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